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1 Datasets and Tasks

In our experiments, many different datasets and tasks are involved. In training,
we used a two-stage training strategy. In the first stage, we use CC3M [2] to align
the vision features to the text input space. In the second stage, we train the model
on four different tasks and corresponding datasets: generic segmentation(COCO
Panoptic Segmentation [13]), referring segmentation(RefCOCO/+/g [18, 24]),
interactive segmentation(COCO-Interactive) and the vision-language instruction
task (LLaVA1.5 training data [15]). Note that COCO-Interactive is our in-house
dataset, as there is no well-established public dataset that supports all four
interaction types (point, scribble, box, and mask); we released this dataset, and
its construction details are given in the Sec. 4.

The evaluation tasks are classified into in-domain tasks and out-of-domain
tasks, according to if the evaluation task appears in the training. Specifically,
we use three out-of-domain tasks in this work: generalized referring expression
segmentation(gRefCOCO [14]), open-vocabulary segmentation (ADE20K [25],
Cityscapes [4], Pascal Context [17], and Pascal VOC [6]) and video object seg-
mentation (DAVIS-2017 [20]).

We list the details of the datasets used below:
COCO-Panoptic. The COCO-Panoptic dataset is an extension of the COCO
dataset, specifically designed for panoptic segmentation tasks. It consists of over
200,000 images with detailed annotations that cover 80 object categories for
instance segmentation and additional categories for semantic segmentation.
RefCOCO. RefCOCO is a dataset designed for the task of referring expression
comprehension and segmentation. It consists of images from the COCO dataset
that are annotated with referring expressions, where each expression uniquely
identifies a particular object within the image. It includes three splits: RefCOCO,
RefCOCO+, and RefCOCOg, each with different characteristics and annotation
styles.
LVIS. The LVIS dataset is a benchmark for instance segmentation with a large
vocabulary of object categories. It features high-quality instance annotations
for over 1,000 object categories across a diverse set of images. LVIS is particu-
larly known for its long-tail distribution of categories, which presents a unique
challenge for segmentation models.
ADE20K. ADE20K is a widely used dataset as an open-vocabulary segmen-
tation benchmark, it contains both things and stuffs annotations and thus can
evaluate panoptic segmentation. It encompasses a diverse collection of images
from various indoor and outdoor scenes. It is part of the MIT Scene Parsing
Benchmark and provides dense pixel-wise annotations for 150 object categories,
facilitating research in scene understanding and segmentation.
Cityscapes. Cityscape is a dataset focused on urban street scenes. The dataset
contains a large number of high-quality video sequences and pixel-accurate an-
notations from 30 categories in 50 different urban street scenes. With its detailed
instance-level annotations, Cityscapes is pivotal to advancing semantic and in-
stance segmentation research, especially in autonomous driving and urban scene
perception.
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Pascal VOC. Pascal VOC contains 20 classes of semantic segmentation anno-
tation.
Pascal Context. Pascal Context is an extension of the PASCAL VOC dataset,
providing comprehensive scene understanding through detailed semantic labels
for the entire scene in each image. It comes in two versions: PC-59, which focuses
on the most frequent 59 categories, and PC-459 includes a broader set of 459
categories.
DAVIS-2017. DAVIS-2017 is a video segmentation benchmark that provides
high-quality, full-resolution video sequences with per-pixel annotations of mul-
tiple objects. It is commonly used to evaluate the performance of video object
segmentation methods, particularly in semi-supervised settings where the first-
frame mask is provided.
gRefCOCO. gRefCOCO is the first large-scale Generalized Referring Expres-
sion Segmentation dataset that contains multi-target, no-target, and single-
target expressions.
Ego-Exo4D. Ego-Exo4D is a diverse, large-scale multimodal multiview video
dataset and benchmark challenge. Ego-Exo4D centers around simultaneously
captured and time-synced egocentric and exocentric vides of skilled human ac-
tivities. More than 800 participants from 13 cities worldwide performed these
activities in 131 different natural scene contexts, yielding long-form captures
from 1 to 42 minutes each and 1,422 hours of video combined. The Correspon-
dence benchmark needs the model to predict the corresponding mask for the
same object in each synchronized frame of the other view if it is visible.
CC3M. CC3M is a large-scale dataset of image-caption pairs designed for train-
ing and evaluating visual-language models. It contains around three million im-
ages sourced from the web, each accompanied by a descriptive caption.

2 Implementation Details

Swin-B [16] is used as a visual encoder with a Phi-1.5 1.3B [12], the architecture
of the mask generator is the same as Maks2Former, the number of mask tokens
is set to 100, and both Swin-B and mask generator are initialized from the
pre-trained Maks2Former model weight. If not specified, the model is trained
with a joint training setting and without additional task-specific fine-tuning. All
experiments are run on 16×V100 GPUs.

Our model has two training stages, the first stage is the vision-language
alignment stage, in which we strictly follow the default settings of LLaVA, with
the only change being the adoption of Phi-1.5 as the LLM and the use of Swin
as the visual encoder with the hyper-parameters as shown in Tab. 15.

In the second stage, to train the final model, we use a total of 56k training
iterations. In each iteration, we randomly sample one task with equal probability
from four tasks: generic segmentation (COCO Panoptic), referring segmentation
(RefCOCO/+/g), interactive segmentation (COCO-Interactive), and a visual-
language instruction task (LLaVA1.5 training data) and all images are resized
to 10242 by padding the shorter side to keep the aspect ratio. During training,
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the visual encoder is frozen while all other model parts are trainable. In addition,
we adopt the Hungarian matching to automatically assign the ground-truth of
mask proposals during training. In generic segmentation tasks, we use both clas-
sification loss and mask loss as cost matrix for matching, while other tasks use
only mask loss. Tab. 16 shows the hyper-parameters.

For ablation, we use the same training setting as the final model, but with
the shorter 9k training iterations to reduce the cost of the experiment.

3 Prompts for Different Tasks

As discussed in Sec. 3.3, our input schema has three kinds of inputs: task instruc-
tion prompt, condition prompt, and a set of mask tokens. For different tasks, we
use different instruction prompts and condition prompts, as listed in Tab. 14.
Basically, tasks that use the same type of condition prompts also adopt the same
task instruction prompt.

In addition, some tasks that use category condition often need to deal with
background as well, such as instance segmentation, for which we specifically
append a ‘background‘ at the end of the joint sentence.

Table 14: Detail prompts for all tasks.

Task Dataset Instruction prompt Condition prompt

Panoptic Seg. COCO You need to segment all objects.
This is all the candidate categories: [class1], [class2] ...

OV Seg. ADE20K, etc. You need to segment all objects.
This is all the candidate categories: [class1], [class2], ...

Referring Seg. RefCOCO/+/g Please segment according to
the following instruction: object description

Generalized Referring Seg. gRefCOCO Please segment according to
the following instruction: object description

Interactive Seg. COCO-Interactive Please segment by given regions: <interaction1>, <interaction2>...

Video Object Seg. DAVIS Please segment by given regions: <interaction1>, <interaction2>...

Ego-exo Correspondence Ego-Exo4D Please segment by given regions: <interaction1>, <interaction2>...

4 Details on building COCO-Interactivate Dataset

In this section, we describe in detail how to build the COCO-Interactive dataset.
The COCO-Interactivate is based on image and annotations of COCO2017 in-
stance segmentation, which provide the masks and bounding boxes for each
instance, and we use the annotations to automatically generate four types of
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Table 15: Hyper parameters of our model in the first stage training.

Parameters Value

Optimizer AdamW
Learning Rate 2× 10−3

Batch Size 128
Number of Iteration 4,650
Learning Rate Schedule Cosine Decay
Weigth Decay 0.0
Warmup Steps 140
β1 0.9
β2 0.999
Training Data CC3M
Image Size 1024× 1024

Image Processing Resize long edge to 1024
and padding short edge to 1024.

Table 16: Hyper parameters of our model in the second stage training.

Parameters Value

Optimizer AdamW
Learning Rate 4× 10−5

Batch Size 64
Number of Iteration 56,000
Number of Iteration (for Ablation) 9,000
Learning Rate Schedule Cosine Decay
Weigth Decay 0.0
Warmup Steps 1680
Warmup Steps (for Ablation) 270
β1 0.9
β2 0.999

Training Data COCO-Panoptic (25%); RefCOCO/+/g(25%);
COCO-Interactive(25%); LLaVA 1.5(25%)

Image Size 1024× 1024

Image Processing Resize long edge to 1024
and padding short edge to 1024.

visual prompts: point, scribble, mask, and box. Fig. 8 shows the illustration of
the visual prompts, and we will introduce each of them in the following:
Point. For each instance, we generate a point visual prompt by randomly sam-
pling a point within a circular region centered on the bounding box with a radius
of half the short side of the bounding box.
Scribble. The generation process of scribble has two steps. First, we randomly
jitter the width and height of the ground-truth bounding box from a scale factor
range of [0.5, 1.2], and ensure that the IoU between the jittered box with the
original box is greater than 0.5. Then, given a jittered box, we randomly select
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ScribblePoint Box Mask

Fig. 4: Visualization of different types of visual prompts

one of its diagonals and generate a sin curve along it. The amplitude of the sin
curve is randomly chosen from [10, 20], the frequency is randomly sampled from
[0.2× 2π, 2π], and the phase shift is randomly sampled from [0, 2π].
Box. We randomly jittered ground truth boxes as box prompts, and the length
and width of each jittered box were obtained by scaling from a scale sampled in
the range [0.9, 1.1].
Mask. The mask visual prompts are obtained by applying a Gaussian filter on
the ground truth mask at first, with the standard deviation of the Gaussian
kernel set to 2, and then binarizing the blurred mask.

5 Implement Details of Decouple Ablation

In Tab. 3, we compare the decouple design and non-decouple design on COCO
Semantic Segmentation. Here, we will introduce the implementation detail for
the non-decouple design. Specifically, we omitted the mask token, and instead
of using the category condition embeddings as the mask query, and fed into the
mask generator to generate masks. In this case, the matching loss mechanism is
unnecessary, the condition embedding of a category is used to predict the class
and mask at the same time.
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Table 17: Performance on multi-modal benchmarks.

Methods LLM Type VQAV 2 SQA MMB POPE

OpenFlamingo [1] MPT-7B 51.8 - 5.7 -
Kosmos-2 [19] - 51.1 - - -
BLIP-2 [10] Vicuna-13B 41.0 61.0 - 85.3
InstructionBLIP [5] Vicuna-7B - 60.5 - 36.0
IDEFICS [9] Llama-7B 50.9 44.2 48.2 -
LLaVA-1.5 [15] Vicuna-7B 78.5 66.8 64.3 85.9

PSALM Phi-1.5 (1.3B) 62.3 64.9 52.5 80.3

Table 18: Zero-shot performance of Correspondence benchmark on Ego-Exo4D.

Query Mask Method Zero-Shot Test Val
IoU IoU

Ego XSegTx ! 0.6 -
Ego XMem ! 4.6 -
Ego XSegTx % 13.9 -
Ego XMem % 14.6 -

Ego PSALM ! - 7.9

Query Mask Method Zero-Shot Test Val
IoU IoU

Exo XSegTx ! 1.6 -
Exo XMem ! 21.8 -
Exo XSegTx % 43.8 -
Exo XMem % 43.4 -

Exo PSALM ! - 9.6

6 Additional Experiment

Multi-modal Benchmark Evaluation. Our PSALM model is based on MLLM
and thus able to deal with vision and language tasks, and therefore we evalu-
ate our model on several commonly used multi-modal benchmarks, and results
are shown in Tab. 17. PSALM achieved promising results compared with other
MLLM methods, such as BLIP-2 [10] and InstructionBLIP [5]. Although our
model still lags behind the official LLaVA1.5 7B model, we believe that increas-
ing the model size can largely close the performance gap.

Given the absence of training data, our related works such as LISA [8] and
PixelLM [21], despite their theoretical capability to handle such tasks, yield
suboptimal results. Take LISA as an instance, it achieves a mere 0.12 on the
VQA score in a zero-shot manner.

Video Object Segmentation. We evaluate PSALM on video object segmen-
tation task on DAVIS-2017 [20], In inference, we extract the region feature based
on the last-frame prediction (or first-frame segmentation reference) as the visual-
prior condition and use the image of the current frame to predict the mask.
Tab. 19 shows the results, without training on any video data, PSALM shows
promising zero-shot performance.

Ego-Exo4D Correspondence Benchmark. Ego-Exo4D [7] is a large-scale
multi-modal multiview video dataset, and its correspondence benchmark is de-
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Table 19: Our method’s zero-shot performance on DAVIS-2017 val. Note the SEEM
report results on 345 randomly sampled frames, while others are evaluated on all frames.

Methods Video Data J&F J F

XMem [3] ! 87.7 84.0 91.4
OMG-Seg [11] ! 76.9 - -
Painter [22] % 34.6 28.5 40.8
SegGPT [23] % 75.6 72.5 78.6
SEEM-B [26] % 62.8 59.5 66.2

PSALM % 68.8 65.9 71.7

signed to predict the mask of an object in a novel view based on a given view.
We evaluate this benchmark in a zero-shot manner to show the task generality
of our model for such tasks. We performed the evaluation on Ego-Exo4D bench-
mark, since the official test set and model have not been released yet, we cannot
directly compare the performance under the same setting, so we only report the
quantitative results on the validation set as a reference in Tab. 18 and shows
more qualitative results in Fig. 12.

7 Failure Case

As shown in Fig. 5, we observed failure cases, including: 1) Easily fails with small
objects. It often presents as failing to predict small objects or connecting multiple
neighboring small objects together; 2) Although PSALM performs competitively
on open-vocabulary segmentation, its performance on the unseen category is
far from perfect; 3) In Video Object Segmentation benchmark, model needs to
understand the object relationship across different views/video frames, which is
challenge for current model, and it requires better model design and involving
more training tasks.

8 More Qualitative Results

Fig. 6, Fig. 7 and Fig. 8 show more qualitative examples of in-domain tasks.
Fig. 9, Fig. 10 and Fig. 11 shows more examples of out-of-domain tasks.
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GT for frame 0 Prediction for frame 10

(a) Failure cases in Panoptic seg. (b) Failure cases in OV seg (c) Failure cases in Video seg.

Painting, picture

Pillow

Bulletin board

Window

GT for frame 0 Prediction for frame 42

GT for frame 0 Prediction for frame 30

GT for frame 0 Prediction for frame 36

Fig. 5: Failure cases in different tasks
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Fig. 6: More examples of panoptic segmentation in COCO [13].
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Man sitting on the 
bench.

Person with white 
hoody.

Player on right of the 
three in front.

Skier in blue vest. Man on right in black 
suit.

Guy with red pants 
standing.

Man next to woman. Lady in back. Man on left crossing 
arms.

Woman in blue dress 
bending.

Man in front of other 
man.

Woman behind flower.

Fig. 7: More examples of referring segmentation in RefCOCO [24].
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Fig. 8: More examples of interactive segmentation in COCO-Interactive.
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Fig. 9: More examples of open-vocabulary instance segmentation on ADE20K [25].
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Boy on skateboard and 
person on left edge.

Skater coming down.

Tennis player on the 
right.

Tennis Player on the 
right and left guy.

Screen right.

Chair bottom right.

The head in the 
background.

The head in the background 
and a woman.

Fig. 10: More examples of generalized referring segmentation in gRefCOCO [14].



14

GT for frame 0 GT for frame 0
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GT for frame 0 GT for frame 0

prediction prediction prediction

GT for frame 0

Fig. 11: More examples of video object segmentation in DAVIS val [20].
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Fig. 12: More examples of Ego-exo correspondence in Ego-Exo4D [7].



17

References

1. Alayrac, J.B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., Lenc, K., Men-
sch, A., Millican, K., Reynolds, M., et al.: Flamingo: a visual language model for
few-shot learning. Advances in Neural Information Processing Systems 35, 23716–
23736 (2022)

2. Changpinyo, S., Sharma, P., Ding, N., Soricut, R.: Conceptual 12m: Pushing web-
scale image-text pre-training to recognize long-tail visual concepts. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
3558–3568 (2021)

3. Cheng, H.K., Schwing, A.G.: Xmem: Long-term video object segmentation with
an atkinson-shiffrin memory model. In: European Conference on Computer Vision.
pp. 640–658. Springer (2022)

4. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 3213–3223 (2016)

5. Dai, W., Li, J., Li, D., Tiong, A.M.H., Zhao, J., Wang, W., Li, B., Fung, P.N., Hoi,
S.: Instructblip: Towards general-purpose vision-language models with instruction
tuning. Advances in Neural Information Processing Systems 36 (2024)

6. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.:
The PASCAL Visual Object Classes Challenge 2010 (VOC2010) Results.
http://www.pascal-network.org/challenges/VOC/voc2010/workshop/index.html

7. Grauman, K., Westbury, A., Torresani, L., Kitani, K., Malik, J., Afouras, T.,
Ashutosh, K., Baiyya, V., Bansal, S., Boote, B., et al.: Ego-exo4d: Understand-
ing skilled human activity from first-and third-person perspectives. arXiv preprint
arXiv:2311.18259 (2023)

8. Lai, X., Tian, Z., Chen, Y., Li, Y., Yuan, Y., Liu, S., Jia, J.: Lisa: Reasoning
segmentation via large language model. arXiv preprint arXiv:2308.00692 (2023)

9. Laurençon, H., Saulnier, L., Tronchon, L., Bekman, S., Singh, A., Lozhkov, A.,
Wang, T., Karamcheti, S., Rush, A., Kiela, D., et al.: Obelics: An open web-
scale filtered dataset of interleaved image-text documents. Advances in Neural
Information Processing Systems 36 (2024)

10. Li, J., Li, D., Savarese, S., Hoi, S.: Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. arXiv preprint
arXiv:2301.12597 (2023)

11. Li, X., Yuan, H., Li, W., Ding, H., Wu, S., Zhang, W., Li, Y., Chen, K., Loy,
C.C.: Omg-seg: Is one model good enough for all segmentation? arXiv preprint
arXiv:2401.10229 (2024)

12. Li, Y., Bubeck, S., Eldan, R., Del Giorno, A., Gunasekar, S., Lee, Y.T.: Textbooks
are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463 (2023)

13. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12,
2014, Proceedings, Part V 13. pp. 740–755. Springer (2014)

14. Liu, C., Ding, H., Jiang, X.: Gres: Generalized referring expression segmentation.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 23592–23601 (2023)

15. Liu, H., Li, C., Li, Y., Lee, Y.J.: Improved baselines with visual instruction tuning.
arXiv preprint arXiv:2310.03744 (2023)



18

16. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: Proceedings
of the IEEE/CVF international conference on computer vision. pp. 10012–10022
(2021)

17. Mottaghi, R., Chen, X., Liu, X., Cho, N.G., Lee, S.W., Fidler, S., Urtasun, R.,
Yuille, A.: The role of context for object detection and semantic segmentation
in the wild. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2014)

18. Nagaraja, V.K., Morariu, V.I., Davis, L.S.: Modeling context between objects for
referring expression understanding. In: Computer Vision–ECCV 2016: 14th Euro-
pean Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings,
Part IV 14. pp. 792–807. Springer (2016)

19. Peng, Z., Wang, W., Dong, L., Hao, Y., Huang, S., Ma, S., Wei, F.: Kosmos-
2: Grounding multimodal large language models to the world. arXiv preprint
arXiv:2306.14824 (2023)

20. Pont-Tuset, J., Perazzi, F., Caelles, S., Arbeláez, P., Sorkine-Hornung, A.,
Van Gool, L.: The 2017 davis challenge on video object segmentation. arXiv
preprint arXiv:1704.00675 (2017)

21. Ren, Z., Huang, Z., Wei, Y., Zhao, Y., Fu, D., Feng, J., Jin, X.: Pixellm: Pixel
reasoning with large multimodal model. arXiv preprint arXiv:2312.02228 (2023)

22. Wang, X., Wang, W., Cao, Y., Shen, C., Huang, T.: Images speak in images: A
generalist painter for in-context visual learning. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 6830–6839 (2023)

23. Wang, X., Zhang, X., Cao, Y., Wang, W., Shen, C., Huang, T.: Seggpt: Segmenting
everything in context. arXiv preprint arXiv:2304.03284 (2023)

24. Yu, L., Poirson, P., Yang, S., Berg, A.C., Berg, T.L.: Modeling context in referring
expressions. In: Computer Vision–ECCV 2016: 14th European Conference, Ams-
terdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14. pp. 69–85.
Springer (2016)

25. Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S., Barriuso, A., Torralba, A.: Se-
mantic understanding of scenes through the ade20k dataset. International Journal
of Computer Vision 127, 302–321 (2019)

26. Zou, X., Yang, J., Zhang, H., Li, F., Li, L., Wang, J., Wang, L., Gao, J., Lee,
Y.J.: Segment everything everywhere all at once. Advances in Neural Information
Processing Systems 36 (2024)


