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Abstract. PSALM is a powerful extension of the Large Multi-modal
Model (LMM) to address the segmentation task challenges. To overcome
the limitation of the LMM being limited to textual output, PSALM
incorporates a mask decoder and a well-designed input schema to han-
dle a variety of segmentation tasks. This schema includes images, task
instructions, conditional prompts, and mask tokens, which enable the
model to generate and classify segmentation masks effectively. The flex-
ible design of PSALM supports joint training across multiple datasets
and tasks, leading to improved performance and task generalization.
PSALM achieves superior results on several benchmarks, such as Re-
fCOCO/RefCOCO+/RefCOCOg, COCO Panoptic Segmentation, and
COCO-Interactive, and further exhibits zero-shot capabilities on unseen
tasks, such as open-vocabulary segmentation, generalized referring ex-
pression segmentation and video object segmentation, making a signifi-
cant step towards a GPT moment in computer vision. Through exten-
sive experiments, PSALM demonstrates its potential to transform the
domain of image segmentation, leveraging the robust visual understand-
ing capabilities of LMMs as seen in natural language processing. Code
and models are available at https://github.com/zamling/PSALM.
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1 Introduction

Large multi-modal model (LMM) has ignited the dawn of the vision GPT [2]
moment by making ground-breaking progress in various advanced visual under-
standing tasks by compressing image and language information into a single
auto-regressive model. However, there are still many obstacles on the road to
achieving vision GPT, and an important one being that current LMM can only
perform text outputs, making it challenging to address the pixel-level image un-
derstanding problem directly, i.e., image segmentation, which is one of the most
critical tasks in computer vision.

Behind the obstacle is many challenges. First, the default output of the LMM
is discrete tokens, and there is no apparent way to generate masks directly.
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Fig. 1: PSALM has capability to handle multiple segmentation tasks in only one sin-
gle model. We visualize some tasks, including Panoptic segmentation in COCO [24];
Open-Vocabulary instance segmentation in ADE20K [59]; Interactive segmentation in
COCO-Interactive; Referring segmentation in RefCOCO [57]; Generalized referring
segmentation in gRefCOCO [25]; Ego-exo correspondence in Ego-Exo4d [12]; Video
object segmentation in DAVIS2017 [36].

Second, the variety of image segmentation tasks requires different forms of inputs
and outputs. For example, semantic segmentation needs support inputs with
different categories. Instance segmentation demands generate object IDs and
the class confidence score for each object. Referring segmentation is supposed to
have a language sentence as input and interactive segmentation has more varied
inputs than the other tasks, which can be points, scribbles, bounding boxes, or
masks. Third, unifying different segmentation tasks with a shared weight model
is also challenging because different tasks require varied capabilities.

In this work, we propose a method named PSALM (Pixelwise SegmentAtion
with Large Multi-Modal Model) that aims to address the above challenges and
extend the capabilities of LMM from text-output tasks to general segmentation
tasks (Fig. 1 shows representative tasks). Specifically, PSALM externalizes a
mask decoder on the top of LMM and designs a flexible input schema to unify
different segmentation tasks into a single model.

The input schema consists of four different parts: images, task instruction
prompt, condition prompt, and a set of mask tokens, where the instruction
prompt is a text sentence describing the task itself, condition prompt contains
the additional necessary information to solve the task, either in terms of cate-
gory names, sentence or visual features, and mask tokens are a set of learnable
embeddings. All these inputs are fed into the LMM, and the resulting output
mask tokens are further used as input by the mask generator to present mask
proposals. Apart from producing the mask proposals, it is also necessary to pre-
dict the class of each segmentation mask or estimate a confidence score, which
can be achieved by using the output embedding of the condition prompt as the



PSALM: Pixelwise SegmentAtion with Large Multi-Modal Model 3

classifier weights to classify each mask proposal. In practice, we categorize con-
ditions into category condition, sentence condition, and visual-prior condition,
and present the corresponding methods to build the classifier weights according
to the properties of each type of condition.

Some other methods, represented by LISA [17], also aim to use LMM for
segmentation tasks. However, these methods are usually designed for referring
segmentation and fail to justify their ability to solve generalized segmentation
tasks (see Tab. 1). In contrast, thanks to the generality and flexibility of the pro-
posed architecture, PSALM can not only solve a variety of segmentation tasks
but also be able to joint train on different tasks, which makes the model task
generalizable while allowing the model to take full advantage of the intrinsic con-
nections of different datasets/tasks to achieve better performance. Specifically,
with the joint training of COCO Panoptic Segmentation [24], RefCOCO [57]/Re-
fCOCO+/RefCOCOg [31], and COCO Interactive, we observe a significant per-
formance improvement compared to training at different tasks individually, and
therefore result in even better performance than other task-specific methods. On
referring segmentation tasks, we outperform other LLM-based pixel reasoning
methods (e.g., LISA, PixelLM [40] and GSVA [48]) on RefCOCO, RefCOCO+,
and RefCOCOg, and it worth noting that we only use Phi-1.5 1.3B model [22]
while others adopt Vicuna-7B [7] or LLama2-13B model [45].

The flexible design of architecture and input schema, multi-task joint-training,
and the strong visual understanding capability of LMM not only make PSALM
perform well on trained in-domain tasks but also enable generalizability to out-
of-domain tasks in a zero-shot manner, i.e., directly dealing with unseen tasks
without additional training. We test on three tasks: open-vocabulary segmen-
tation, generalized referring expression segmentation, and video object segmen-
tation. PSALM achieves promising zero-shot performance on these tasks. We
believe this task-level generalizability is crucial, which is one of the key proper-
ties of the large language model for its success in natural language processing.

Through extensive experiments on a variety of segmentation tasks, we show
that presented PSALM has strong potential to address general image segmen-
tation tasks and exhibits a certain degree of task generalization capability as
LLM does in NLP. We believe that this work can inspire extensive research on
realizing the GPT moment in computer vision and facilitate its arrival.

2 Related works

2.1 Large Multimodal Models

With the release of GPT-V [32] and Gemini [44], more attention and efforts
from open-source and research communities are shifting from large language
models (LLM) to large multi-modal models (LMM). LLaVA [27], BLIP-2 [19],
and Flamingo [1] are three representative works, where the core idea of both
LLaVA and BLIP-2 is to map visual features into the input space of LLM to
implement multi-modal capabilities, while Flamingo employs deeper feature fu-
sion in the intermediate layers of LLM. Some works, such as Kosmos-2 [33],
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Table 1: Capability for different methods. Our proposed PSALM can handle more
segmentation tasks than other LLM-centric methods. LLM-centric methods can also
deal with text generation tasks, which is hard for most vision-centric methods.

Methods Generic Seg. Referring Seg. Interactive Seg. OV Seg.

Vision centric

Mask2Former [6] !

ODISE [49] ! !

UNINEXT [53] ! ! !

SEEM [61] ! ! ! !

OMG-Seg [21] ! ! !

LLM centric

LISA [17] !

GLAMM [39] !

PixelLM [40] !

PSALM (Ours) ! ! ! !

Shikra [4], and Ferret [55], further introduce object localization tasks into the
LMM, while others, such as Emu [43], CogVLM [46], and DreamLLM [10], focus
on how to integrate visual generation into the LMM. Monkey [23], OtterHD [18],
and LLaVA-NeXT [26] explores mechanisms for processing large-size images and
significantly improves performance on tasks such as OCR. However, these above
methods are mainly designed for text output tasks or image generation and
cannot directly deal with pixel-level understanding tasks such as image segmen-
tation, which is different from ours and we can base on these models.

2.2 Pixel Reasoning with LMM

Similar to our goal, some existing works attempt to enable LMMs to generate
segmentation masks. LISA [17] is a pioneering work that uses a special seg token
to aggregate information of a given sentence and use it as a prompt embedding in
a SAM decoder to predict the segmentation mask. u-LLaVA [50] further supports
object grounding tasks on the basis of LISA, and NExT-Chat [58] introduces
richer inputs, such as bounding boxes. Furthermore, since LISA can only deal
with a single object, many subsequent works that attempt to address the multi-
object case, such as GLaMM [39], PerceptionGPT [34], PixelLM [40], GSVA [48],
and LISA++ [54], all of which share the basic idea of introducing a seg token
for each sentence describing a different object, and except PixelLM, all other
methods are based on SAM decoder [15].

Although all these methods can generate masks, they are primarily designed
for reference segmentation. In contrast, our method is designed for generalized
segmentation tasks, which have diverse input and output requirements. In ad-
dition, the difference in goals also brings technical discrepancies: these methods
use language models to directly generate the final segmentation masks, while
our approach is closer to Mask2Former [6], which first generates mask proposals
and then classifies the masks.
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Fig. 2: PSALM architecture overview.

2.3 Unified Segmentation Framework

Another class of relevant explorations [21,47,53,61] studies how to unify differ-
ent segmentation tasks into a single framework. For instance, Mask2Former [6]
presents a unified architecture of generic segmentation 3 but with different mod-
els. OneFormer [14] further integrates these three tasks within a single model.
UNINEXT [53] aims to unify instance-perception tasks and introduce text in-
puts and thus it can handle referring segmentation. X-Decoder [60] presents
a flexible decoder architecture that can support generic segmentation, refer-
ring segmentation, retrieval, and image captioning. SEEM [61] designs a generic
encoder-decoder to unify different segmentation tasks, where the encoder is used
for projecting image, text, and human inputs into a joint visual-semantic space,
and the decoder is used for mask prediction. However, all these works are not
based on LMM, instead, they are mostly vision-centric models, i.e., usually de-
signed for visual tasks only and thus cannot address language tasks very well.

3 Methods

Fig. 2 provides an overview schematic of PSALM, which consists of a large multi-
modal model (LMM), a mask generator, and a flexible input schema designed for
general segmentation tasks. The input schema has four different types of inputs:
image, task instruction prompt, condition prompt, and a set of mask tokens.
LMM processes the input tokens and the output embedding of mask tokens is
further fed into the mask generator to generate masks. In the following, we will
introduce our approach in detail.

3.1 Large Multimodal Model and Input Schema

PSALM is built on large multimodal models (LMM), and there are many differ-
ent LMM architectures, such as LLaVA [27], BLIP [20], and Flamingo [1]. Here,
3 Generic segmentation includes semantic segmentation, instance segmentation, and

panoptic segmentation.
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we adopt the design of LLaVA because of its proven performance and simplicity,
but the other LMM architectures are also compatible with our approach without
any theoretical difficulties.

The LMM used in our work has a visual encoder and pre-trained large lan-
guage model (LLM). The two models are connected by a lightweight vision-
language alignment model, which is a 3 × 3 convolution layer followed by a
linear layer. The official LLaVA model uses a frozen CLIP model [37] as a visual
coder, whose features lack the fine-grained information that is required for seg-
mentation tasks [52]. Therefore, we train a customized LLaVA model by using
the Swin Transformer [28], and limited by resources, we additionally replace the
LLM from the Vicuna 7B model [7] to a smaller Phi-1.5 1.3B model [22]. Here,
we applied only the first visual-language alignment stage of LLaVA by following
its default settings. In our ablations, we found the alignment stage is crucial for
open-vocabulary segmentation and referring segmentation tasks (Tab. 6).

Different segmentation tasks need different forms of inputs and outputs,
which motivates us to present a flexible input schema to unify various require-
ments. In addition to the input image used in the visual encoder, our input
schema has three other different types of inputs: task instruction prompt, con-
dition prompt, and a set of mask tokens. We will introduce each of them and
summarize the prompts used for all different tasks in the Appendix.
Task Instruction Prompt. The task instruction prompt is usually a text
sentence describing and specifying the model’s task. For example, in panoptic
segmentation, the task instruction can be “You need to segment all objects. This
is all the candidate categories.” and in referring segmentation, the instruction
can be “Please segment according to the following instruction.”
Condition Prompt. Some tasks require additional information to perform,
e.g., panoptic segmentation needs specifying the candidate set of categories to
be segmented, and interactive segmentation needs interactive inputs. The con-
dition prompt is designed for these tasks. In addition to providing information,
condition prompt also plays an important role in predicting categories or esti-
mating confidence scores for each segmentation mask. In Sec. 3.3, we will discuss
the design of condition prompts for different tasks in detail.
Mask Token. The LLM is designed for text output and cannot directly generate
segmentation masks. To bypass this challenge, we append a set of mask tokens
after other inputs, and then these mask tokens are decoded to segmentation
masks by a mask generator (will be introduced in Sec. 3.2). This design is inspired
by Mask2Former [6], with the difference that the mask tokens in Mask2Former
are used directly in the mask generator, whereas the mask tokens in our approach
are first updated by the LMM and then used in the mask generator, and we found
our approach leads better performance in practice (see Tab. 2).

Some works, such as LISA [17] and PixelLM [40], take similar seg tokens as
input and employ a decoder to generate the masks. However, our objective is
fundamentally different: in LISA and PixelLLM, seg tokens are used to generate
the final prediction, while we generate mask proposals and further classify them
based on condition prompts. Compared to the design of LISA and PixelLLM,



PSALM: Pixelwise SegmentAtion with Large Multi-Modal Model 7

Large Language Model

You need to segment all objects.
This is all the candidate categories:

person,              bicycle,               background

…

Category Names

Average Pooling

Large Language Model

Sentence

Please segment according to the 
following instruction: Coach on the right side [REF]

Category Condition

Sentence Condition

Please segment by given 
regions

feature 1

Visual-Prior Condition

𝑓!"#

𝑓!"#

𝑓!"#

Visual
Encoder

Mask 
Pooling

Visual Interactions

𝑓!"#

feature 2 feature K

(a)

(b) (c)

mask scribble box point

Convert masks

Large Language Model

𝑵 × Mask Tokens

…

… ……

…

…

…

𝑵 × Mask Tokens

𝑵 × Mask Tokens

…

Fig. 3: Detailed processing for different condition prompts. (a) shows the processing
for category condition. (b) shows the processing for sentence condition. (c) shows the
processing for visual-prior condition.

our approach is more flexible and adaptable to more tasks, yet decoupling mask
generation and classification is more efficient (see Tab. 3 and Tab. 4).

3.2 Mask Generator

The mask generator predicts the mask and their category probabilities from
three inputs: a multi-level visual features {vl}Ll=1, a set of mask tokens {qi}Ni=1,
and a set of condition embeddings {ck}Kk=1. It can be formally defined as:

{(mi, pi)}Ni=1 = MaskGenerator({vl}Ll=1, {qi}Ni=1, {ck}Kk=1), (1)

where mi ∈ RH×W is the i-th predicted segmentation mask and pi ∈ RK is the
corresponding category probability. In practice, the multi-level visual features
are the internal features of the Swin visual encoder used in LMM. The design of
the mask generator follows Mask2Former, which employs multi-scale deformable
attention as a pixel decoder and a transformer-based mask decoder to generate
segmentation masks. The class of each mask is predicted by the condition embed-
ding {ck}, which is basically obtained from the output of the condition prompt,
the obtaining method is slightly different for different types of conditions.

3.3 Design of Condition Prompts

In our approach, the conditional prompt serves two important purposes: First,
it provides the necessary information required to solve the task; Second, we use
the output embedding of the conditional prompt in the LLM as classifier weights
to predict the class of each segmentation mask. The design of the conditional
prompt is closely tied to the type of task, and based on the information required
for different tasks, we summarize three condition types: category condition, sen-
tence condition, and visual-prior condition.
Category Condition This condition type is used for tasks that need speci-
fying a set of categories to be segmented, such as semantic segmentation, in-
stance segmentation, and panoptic segmentation, and often needs to predict the
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class probability of each segmentation mask. Specifically, given a set of category
names, we join them into a sentence by a comma separator, e.g.,, given three
categories: person, bicycle, and car, the joint sentence is "person, bicycle, car".

The joint sentences are then proceeded by LMM to get the output embed-
dings, which can be further used to classify the predicted segmentation masks.
Specifically, for each category, we select its corresponding output embeddings
and apply the avg_pooling over them to obtain a condition embedding c ∈ RD,
where D is the embedding dimension, and thus condition embedding for all cat-
egories is a set {ck}Kk=1, where K is the number of categories (see Fig. 3 (a)).
This embedding set can be used by the mask generator to predict the class.
Sentence Condition This condition is usually used for referring segmentation.
Unlike the category condition, where category names are usually short, sentences
are much longer, and not every word in the sentence is useful, so the avg_pooling
is not the optimal choice here. Instead, we introduce a special [REF] token,
which is appended after the condition sentence as an anchor to aggregate useful
information, and the output embedding of [REF] token, i.e., the output features
of LMM on the location of [REF] token, is used as condition embedding c and
used by mask generator, as shown in Fig. 3 (b).
Visual-Prior Condition We formulate most interaction (e.g., point, mask,
box, or scribble) used in interactive segmentation tasks as the visual-prior condi-
tion. Taking the scribble as an example, we first generate a binary scribble curve
with a width of 5 pixels on a binary map, whose size is the same as the input
image of the Swin vision encoder, and then apply the binary map to the output
features of the vision-language alignment model, performing average mask pool-
ing by upsampling the output feature map to the size of the binary map. The
average pooled feature is used as the visual-prior condition and fed into LMM. If
there are multiple interactions, the process is repeated for each, yielding multiple
pooled features as inputs, each feature separated using a strategy akin to the
category condition. For other types of interaction, we adopt similar approaches.
Specifically, for box or mask, we directly apply the pooling operator by treating
them as binary masks, and for point, we bold it to a 10-pixel circle and then
apply the mask pooling. After that, we use the output embedding of the visual-
prior condition as the classifier weight in the mask generator to estimate the
confidence of each mask proposal, as shown in Fig. 3 (c).

3.4 Training Objectives

The training process of PSALM has two stages: In the first stage, we train
the visual language alignment model following LLaVA setting by freezing the
vision encoder and LMM; In the second stage, we only freeze the vision en-
coder and fine-tune all other modules, including the mask generator. Similarly
to Mask2Former, we use matching loss in the second stage training, i.e., we use
bipartite matching to find the optimal assignments between the mask propos-
als and the ground truth masks by minimizing the matching loss and use these
assignments to perform training. The loss has two terms: L = Lmask + Lcls,
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where Lmask indicates the mask loss which comprises a pixel-level Binary Cross-
Entropy (BCE) loss and Dice loss [42], while the Lcls indicates the category
classification loss, and we use Cross-Entropy loss for category condition and
BCE loss for other cases.

4 Experiments

We conduct extensive experiments on various datasets and tasks to analyze
PSALM. Details of the datasets and implementations are given in the Appendix.

4.1 Ablations

We first ablate key designs and present behind insights in this section. To bet-
ter show how different designs affect the performance on a wide range of tasks,
we mainly report the results on three in-domain benchmarks: COCO Panoptic
Segmentation (COCO-Pan), RefCOCO-val (RefCOCO), and COCO Interactive
Segmentation with point inputs (COCO-Point), and one out-of-domain bench-
mark: open-vocabulary instance segmentation on ADE20K-150 (A150-OV).

Table 2: Ablation on the design of mask tokens.
w.LLM: use mask tokens as inputs of LLM. Prefix:
place mask tokens at the front. Suffix: place mask
tokens at the end.

Mask Tokens COCO-Pan RefCOCO COCO-Point A150-OV

w.LLM Pos. PQ cIoU mIoU mAP

! Suffix 55.1 76.1 53.3 9.3
% - 54.8(↓0.3) 74.3(↓1.8) 53.1(↓0.2) 8.2(↓1.1)
! Prefix 55.0(↓0.1) 75.1(↓1.0) 53.0(↓0.3) 7.8(↓1.5)

Table 3: Effect of decou-
ple design in COCO Semantic
Segmentation.

Decouple mIoU fwIoU

! 66.5 72.5
% 42.7 35.0

Design of Mask Tokens. In our approach, we use a set of mask tokens to
predict the mask proposal. In practice, we have found that using mask tokens as
inputs to the LLM leads to better performance than applying them directly to
the mask generator, which is the default method of Mask2Former. Tab. 2 shows
the results, where the direct use of mask tokens leads to a noticeable performance
degradation in RefCOCO and A150-OV. We believe this is because using mask
tokens as input leads to a better awareness of the information needed for the
task and thus improves performance, which is essential for these two tasks. For
better validation, we placed mask tokens before conditional prompts and task
instruction prompts and found a similar performance drop to that of not using
mask tokens in LMM, which further supports our hypothesis.

Compared to LISA and other methods that use seg token to generate final
segmentation results directly, our mask proposal approach has three advantages:
First, our design is more flexible and thus can be applied to a wider range
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of segmentation tasks, especially tasks that require predicting category or confi-
dence scores; Second, our design decouples the mask prediction and classification,
which alleviating the learning difficulties for some tasks. In Tab. 3, we study how
the decouple design affects the semantic segmentation performance on COCO
Semantic Segmentation4, and we found our decouple design is significantly bet-
ter5. Third, the mask proposals allow multiple masks to be generated for a single
instance, which makes the mask accuracy superior to solutions like LISA that
only predict a single mask. Tab. 4 shows that using more mask proposals on
RefCOCO gives a clear improvement over using a single mask.

Table 4: Effects of number of
mask tokens in RefCOCO(cIoU).
The results of LISA are listed as
a reference.

#Mask Token val testA testB

LISA 74.1 76.5 71.1

1 75.3 78.0 72.2
100 76.5 78.5 73.4

Table 5: Ablation on different designs for con-
dition prompts.

Condition COCO-Pan RefCOCO A150-OV

Category Sentence PQ cIoU mAP

avg_pooling avg_pooling 55.1 75.3 9.2
[REF] [REF] 54.9 76.1 8.4

avg_pooling [REF] 55.1 76.1 9.3

Design of Condition Prompts. Another key design in PSALM is the condi-
tion prompt, particularly the way we obtain the condition embeddings, which are
used as classifier weights in the mask generator to predict the class of mask pro-
posals. As described in Sec. 3.3, for category condition, we use the avg_pooling
over output embeddings of each class name as the condition embedding, and
for sentence condition, we adopt a [REF] token to aggregate useful information.
Tab. 5 shows the ablation, where we first tried to use the same design for all
conditions and found that avg_pooling performed slightly better on COCO-
Pan, with a larger improvement on A150-OV, while [REF] worked better on
RefCOCO. We further used different designs and found that the advantages of
each design are preserved, and the best overall performance is achieved.

Table 6: Ablation on effect of vision-
language alingment.

VL Alignment COCO-Pan RefCOCO COCO-Point A150-OV
PQ cIoU mIoU mAP

! 55.1 76.1 53.3 9.3
% 54.9(↓0.2) 71.7(↓4.4) 53.0 (↓0.3) 8.2(↓1.1)

Table 7: Ablation on joint training.

Ablation COCO-Pan RefCOCO COCO-Point A150-OV
PQ cIoU mIoU mAP

Task Specific Train 55.6 76.5 62.2 7.0
Joint Train 55.9 83.6 64.1 9.0

∆ +0.3 + 7.1 + 1.9 +2.0

4 This benchmark is introduced by Mask2Former, which is composed by merging in-
stances belonging to same class together in COCO Panoptic Segmentation.

5 More experimental details are in Appendix.
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Table 8: Comparison with the state-of-the-art methods on three referring im-
age segmentation benchmarks with cIoU. (ft) denotes models further finetuned on
RefCOCO/+/g after mix training. We abbreviate the datasets: COCO(C) [24],
LVIS(L) [13], RefCOCO(RC) [57], Object365(O365) [41], Video segmentation
datasets(V), ADE20K(A) [59], COCO-Stuff(CS) [3], PACO-LVIS(PL) [38], PASCAL-
Part(PP) [5], GranD(G) [39], VOC2010(VOC) [11], Visual Genome(VG) [16],
Flicker30k(F30K) [35], MUSE(M) [40], gRefCOCO(gRC) [25], COCO-Interactive(CI).

Method Segmentation Data LLM Type RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test

SEEM-L [61] C, L, RC - - - - - - - 65.6 -
UNINEXT-L [53] O365, C, RC, V - 80.3 82.6 77.8 70.0 74.9 62.6 73.4 73.7
UNINEXT-H [53] O365, C, RC, V - 82.2 83.4 81.3 72.5 76.4 66.2 74.7 76.4

LISA [17] A, CS, RC, PL, PP Vicuna-7B 74.1 76.5 71.1 62.4 67.4 56.5 66.4 68.5
LISA(ft) [17] A, CS, RC, PL, PP Vicuna-7B 74.9 79.1 72.3 65.1 70.8 58.1 67.9 70.6
GLaMM [39] G, RC Vicuna-7B 79.5 83.2 76.9 72.6 78.7 64.6 74.2 74.9
u-LLaVA [50] A, CS, RC, PL, VOC Vicuna-7B 80.4 82.7 77.8 72.2 76.6 66.8 74.8 75.6
PerceptionGPT [34] RC, VG, F30k Vicuna-13B 75.3 79.1 72.1 68.9 74.0 61.9 70.7 71.9
PixelLM [40] A, CS, RC, PL, M Llama2-13B 73.0 76.5 68.2 66.3 71.7 58.3 69.3 70.5
GSVA [48] A, CS, RC, PL, PP, gRC Llama2-13B 77.7 79.9 74.2 68.0 71.5 61.5 73.2 73.9
GSVA(ft) [48] A, CS, RC, PL, PP, gRC Llama2-13B 79.2 81.7 77.1 70.3 73.8 63.6 75.7 77.0

PSALM C, RC, CI Phi-1.5 (1.3B) 83.6 84.7 81.6 72.9 75.5 70.1 73.8 74.4

Importance of VL-alignments. The visual-language alignment stage (i.e.,
first training stage) is to project the visual features to the text input space, and it
is an important step towards making the LLM understand images. In Tab. 6, we
examine the impact of this stage, and we found that without VL alignment, the
performance of all four tasks becomes worse, with the performance of A150-OV
and RefCOCO being significantly affected, for example, the A150-OV dropped by
-1.1 mAP and RefCOCO even dropped by -4.4 cIoU, probably because these two
tasks require a strong requirement on understanding the relationship between
vision and language. This result also suggests that the VL alignment is essential,
and the LMM-based segmentation models have strong potential.
Joint Training. Our architecture design and input schema help integrate vari-
ous segmentation tasks so that they can be trained on one model. Tab. 7 shows
the effect of this joint training on different tasks. For the task-specific models,
we perform the training on the corresponding task data for 18k iterations. In
contrast, the joint training setting (see implementation section for details) has a
total of 56k training iterations, which corresponds to 14k iterations per task. The
results show that joint training of different tasks greatly improves the perfor-
mance. This suggests that learning between tasks is mutually beneficial, which
is also the secret of success in LLM. For example, the generic segmentation task
helps refine the mask prediction in the referring segmentation, and referring ex-
pressions also enhance the model’s ability to recognize more unseen categories,
which in turn improves the performance of open-vocabulary segmentation tasks.

4.2 System-Level Comparison on In-Domain Tasks

In this section, we compared our model on three in-domain tasks with other
state-of-the-arts to illustrate the effectiveness of our approach.
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Referring Segmentation. Most existing works aimed at getting LMMs to
perform image segmentation are designed for reference segmentation tasks. We
compare PSALM with other works on RefCOCO, RefCOCO+, and RefCOCOg,
and Tab. 8 shows the results. Owing to the generalized and flexible design of
PSALM and the advantages of joint training on multiple tasks and datasets, our
system was able to achieve state-of-the-art (SOTA) performance on RefCOCO
and RefCOCO+, and competitive performance on RefCOCOg with STOA, de-
spite being driven by LLM with only 1.3B parameters. It is worth noting unlike
methods such as LISA and GSVA, which may achieve improvements through
task-specific fine-tuning (gray-labeled results), PSALM does not perform addi-
tional fine-tuning but still achieves better performance on RefCOCO and Ref-
COCO+ than their fine-tuned models.
Generic Segmentation. We evaluate PSALM with state-of-the-art methods
on the COCO Panoptic Segmentation validation set (Tab. 9). Here, we follow
the evaluation protocol used in Mask2Former to report PQ, which is the main
metric for panoptic segmentation, mAP on thing classes for instance segmenta-
tion, and mIoU by merging instance masks from the same category for semantic
segmentation. Compared to other methods, PSALM achieves comparable perfor-
mance at similar visual backbone sizes, demonstrating that PSALM is a powerful
architecture, even when compared to approaches designed for specific tasks.

Table 9: Comparison with the state-of-the-art methods on Panoptic COCO-val. We
abbreviate the datasets: COCO-SAM(CM) [21], VIPSeg (VIP) [29], while others fol-
lowing Tab. 8.

Method Backbone Seg. Data PQ mAP mIoU

Mask2Former [6] Swin-B C 55.1 45.2 65.1
Mask2Former [6] Swin-L C 57.8 48.6 67.4
X-Decoder [60] DaViT-B C, L, RC 56.2 45.8 66.0
SEEM [61] DaViT-B C, L, RC 56.1 46.4 66.3
OMG-Seg [21] ConvNeXt-XXL C, VIP, CM, V 55.4 - -

PSALM Swin-B C, RC, CI 55.9 45.7 66.6

Interactive Segmentation. We also evaluate PSALM in the interactive seg-
mentation tasks. Since the task does not have a well-developed dataset contain-
ing all four instructions, previous works have typically used the in-house dataset,
thus we re-evaluate other methods on the COCO interactive validation set. The
results are shown in Tab. 10, and PSALM achieves leading performance on point,
scribble, and mask instructions than all other methods, while on box instruction,
SAM performs better on mIoU but worse on cIoU, and we hypothesize might be
caused by the different distribution of training data, and the fact that SAM is
trained on SA-1B [15], which has a much larger data scale than what we used.
In addition, we also report the official results of SEEM, which only evaluated
600 samples from the COCO validation set as a reference.
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Table 10: Comparison with the state-of-the-art methods on COCO-Interactive. The
results of SEEM-B∗ is the result reported in official paper, which is evaluated on 600
random samples of COCO-val, while all others are evaluated on all samples of COCO-val.
Abbreviations for each dataset are the same as Tab. 9.

Method Seg. Data Point Scribble Box Mask

mIoU cIoU mIoU cIoU mIoU cIoU mIoU cIoU

SAM-B [15] SA-1B 48.7 33.6 - - 73.7 68.7 - -
SAM-L [15] SA-1B 51.8 37.7 - - 76.6 71.6 - -
SEEM-B [61] C, L, RC 47.8 57.8 43.0 44.0 44.9 42.1 48.4 65.0
SEEM-B∗ [61] C, L, RC 81.7 - 83.5 - 75.7 - 76.0 -
OMG-Seg [21] C, VIP, CM, V 59.3 - - - - - - -

PSALM C, RC, CI 64.3 74.0 66.9 80.0 67.3 80.9 67.6 82.4

4.3 Generalizability on Out-of-Domain Tasks

Thanks to the flexible design of architecture and input schema, multi-task joint-
training, and the strong visual understanding capability of LMM, PSALM shows
excellent performance on in-domain tasks, but more importantly, PSALM also
demonstrates great potential to generalize to out-of-domain tasks in the zero-shot
setting. In this section, we conduct experiments on three different out-of-domain
tasks: open-vocabulary segmentation, generalized referring expression segmen-
tation, and video object segmentation. We also tested the zero-shot result of the
correspondence benchmark in Ego-Exo4D [12] and Video Object Segmentation
in the Appendix.

Table 11: Comparison with the state-of-the-art methods on open-vocabulary instance
segmentation and semantic segmentation benchmarks. We use mAP for instance seg-
mentation and mIoU for semantic segmentation.We abbreviate the datasets: Pascal
Context-459(PC459) [30], Pascal Context-59(PC59) [30], Pascal VOC-20(PAS20) [11]

Method OV Instance Seg. OV Semantic Seg.

A150 Cityscapes PC459 A150 PC59 PAS20

MaskCLIP [9] 6.0 - 10.0 23.7 45.9 -
ODISE [49] 14.4 - 14.5 29.9 57.3 -
SAN [51] 10.6 - 17.1 33.3 60.2 95.5

PSALM 9.0 20.5 10.2 18.2 48.5 81.3
PSALM+LVIS 13.9 19.3 14.0 24.4 57.2 95.0

Open-Vocabulary Segmentation. We first evaluate PSALM in open-vocabulary
segmentation tasks, which require the model to have the ability to deal with
unseen categories in training. Here, we conduct experiments on both open-
vocabulary instance segmentation and open-vocabulary semantic segmentation,
and Tab. 11 shows the results. Without any special design, PSALM achieves
reasonably good performance, although it is still worse than the best specific
method in this task, such as SAN, but we believe that PSALM has a strong
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potential to be further improved by adding more diverse training data, which is
advantages of our method. We have also made a preliminary attempt by further
involving the LVIS dataset, and as we expected, the performance has significantly
improvements. In addition, existing open-vocabulary segmentation methods are
built upon the CLIP model or diffusion model, while our approach is based on
LMM models, which is a new path and attempt to bring new inspiration to the
community, which we believe is even more important than the performance.

Table 12: Our method’s zero-shot performance on gRefCOCO. (ft) denotes models
further fine-tuned on gRefCOCO after mix training.

Methods LLM Type Zero-Shot val testA testB

cIoU gIoU cIoU gIoU cIoU gIoU

MattNet [56] - % 47.5 48.2 58.7 59.3 45.3 46.1
LTS [8] - % 52.3 52.7 61.9 62.6 49.9 50.4
ReLA [25] - % 62.4 63.6 69.3 70.0 59.9 61.0

LISA [17] Vicuna-7B % 38.7 32.2 52.6 48.5 44.8 39.7
LISA(ft) [17] Vicuna-7B % 61.7 63.3 69.2 70.1 60.3 61.3
GSVA [48] Vicuna-7B % 61.7 63.3 69.2 70.1 60.3 61.3
GSVA(ft) [48] Vicuna-7B % 63.3 66.5 69.9 71.1 60.5 62.2

PSALM Phi-1.5 (1.3B) ! 42.0 43.3 52.4 54.5 50.6 52.5

Generalized Referring Expression Segmentation. The referring segmenta-
tion datasets used in training contain only a single object, however, the design of
the mask proposal allows PSALM to directly address multi-target without any
further training or fine-tuning. We evaluate the gRefCOCO benchmark which
contains multiple segment targets. In practice, given an expression, we com-
pute the similarity with all mask proposals and retain all masks with similarity
greater than 0.6 as foreground. Tab. 12 shows the results, PSALM also achieved
very promising performance, even outperforming the LISA version that only
pre-trained on gRefCOCO but without task-specific fine-tuning.

5 Conclusion

The PSALM proposed in this study extends the capability of LMM from text
output tasks to image segmentation, addresses the output limitations of the
LMM, and unifies various segmentation tasks. PSALM exhibits excellent per-
formance in multiple in-domain tasks, and its generalization ability in out-of-
domain tasks further underscores its potential.
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