
20 Iwai et al.

A Details of Token Refinement Task

In Sec. 3.2, we conducted preliminary experiments to evaluate the token refine-
ment capability of DDMs. We present the experimental setup and results in more
detail.

A.1 Transition Probability Design

We use LayoutDM [21] as the representative of DDMs. The default setting of
�̄t,K = (K + 1)�̄t in LayoutDM is not exactly zero but is sufficiently close. As
a baseline, we set �̄t,K = ✏ for any timestep t, where ✏ equals to 10�6. In this
setting, the diffusion process primarily induces transitions from regular tokens to
[MASK], and transitions between regular tokens rarely occur. Therefore, we can
not expect corrections of errors in regular tokens during the generation process.
Setting a large value for �̄t,K is expected to facilitate transitions between regular
tokens during the diffusion process, allowing the corresponding denoising model
p✓(zt�1|zt) to acquire the capability to correct regular tokens. To verify the
effect of �̄t,K schedule, we consider schedules for �̄t,K based on two guidelines.
The first involves assigning high �̄t,K values later in the diffusion process, while
the second involves high �̄t,K values earlier. A detailed schedule, including ↵̄t

and �̄t, is shown in Fig. 12. Here, we adopt a linear scheduling for timesteps.

A.2 Impact of Transition Schedules on FID

In Tab. 5, we report the results of FID for each schedule depicted in Fig. 12.
When �̄t,K increases from ✏ to 0.05 or 0.1 with the timestep t, the performance
is comparable to the baseline for the unconditional generation task; however, we
observe degradation in the conditional generation tasks. Conversely, when �̄t,K

decreases from 0.05 or 0.1 to ✏, the performance is inferior to the baseline for
both unconditional and conditional tasks.

Regarding the degradation in conditional generation tasks, we hypothesize
that it stems from the condition gap between training and inference time. Train-
ing is conducted in an unconditional manner, where, especially for �̄t,K > ✏,
the model learns to restore the original layout while correcting substitutions of
regular tokens. On the other hand, in conditional settings, the model is expected
to preserve the conditioned regular tokens, leading to the discrepancy between
the training and inference phases. When �̄t,K = ✏, substitutions between regular
tokens rarely occur, which means that conditioning on regular tokens does not
negatively impact the generation process.

Additionally, applying high �̄t,K values in the earlier timesteps leads to poor
FID in the unconditional setting. This schedule causes rapid replacements of
regular tokens, indicated by ↵̄t < 1, as observed in Fig. 12d and Fig. 12e. The
results imply that it is necessary to design a schedule for ↵̄t that starts at 1.0
when t = 0 and gradually decreases as t increases, reflecting the fundamental
concept of the discrete diffusion process.

Layout-Corrector 21

Table 5: FID scores of LayoutDM for various �̄t,K schedules. The best and second-best
results are highlighted in bold and with underline, respectively.

FID#

�̄t,K schedule Unconditional C!S+P C+S!P

✏ ! ✏ 6.37 3.51 2.17
✏ ! 0.05 6.22 4.03 4.38
✏ ! 0.1 6.29 4.68 5.69
0.05 ! ✏ 7.98 5.21 5.11
0.1 ! ✏ 10.71 8.00 7.96

B More Detailed Experimental Setup

In this section, we describe the experimental setup in detail in addition to the
description in Sec. 4.1.

B.1 Datasets

We provide a more detailed explanation of the benchmark datasets used for eval-
uation, focusing particularly on how the datasets are divided and their respective
sample numbers.

– Rico [8]: We follow the dataset split in [21], resulting in 35,851 / 2,109 /
4,218 samples for train, validation, and test set.

– PubLayNet [50]: We use the dataset split in [21], resulting in 315,757 /
16,619 / 11,142 samples for train, validation, and test splits.

– Crello [45]: While the dataset provides various attributes for each element,
such as opacity, color, and image data, we only utilize category, position,
and size. We use the official splits, which result in 18,714 / 2,316 / 2,331
samples for train, validation, and test set, respectively.

B.2 Implementation Details

Model Architecture. Our Layout-Corrector employs a 4-layer Transformer
Encoder with 8 multi-heads. For Token-Critic [29] in Table Tab. 1, we used the
same architecture as Layout-Corrector. For LayoutDM [21], VQDiffusion [13],
and MaskGIT [5] experiments, we utilized the official implementation of Lay-
outDM.3 For LayoutDM* in Sec. 4.4, we used a 12-layer Transformer with 12
multi-heads to obtain the same model size as LayoutDiffusion [47]. Note that
we used the same Layout-Corrector architecture with a 4-layer Transformer for
LayoutDM*. For LayoutDiffusion [47], we used the official implementation4.
3
https://github.com/CyberAgentAILab/layout-dm

4
https://github.com/microsoft/LayoutGeneration/tree/main/LayoutDiffusion

https://github.com/CyberAgentAILab/layout-dm
https://github.com/microsoft/LayoutGeneration/tree/main/LayoutDiffusion

22 Iwai et al.

Fig. 11: Alignment and overlap [24] scores across various methods and real data on
three datasets. Alignment score is scaled by 100⇥ for visibility.

Training. We employed the shared pre-trained LayoutDM models on Rico and
PubLayNet datasets. For other models, including Layout-Corrector, we followed
the training configuration of LayoutDM, using AdamW optimizer [25, 34] with
an initial learning rate of 5.0 ⇥ 10�4, (�1,�2) = (0.9, 0.98), and batch size of
64. The number of training epochs varied according to the dataset: 20 for Pub-
LayNet, 50 for Rico, and 75 for Crello. For LayoutDiffusion [47], since the dataset
configuration (i.e., the maximum number of elements in a layout) in the official
implementation is different from our setting, we trained the model from scratch
instead of using the official checkpoints.

C Quantitative Evaluation

In this section, we present additional quantitative evaluation results, including
the effectiveness of Layout-Corrector on conditional generation and the results
of Alignment and Overlap metrics.

C.1 Effectiveness of Layout-Corrector on Conditional Generation

Tab. 6 shows a comparison of the performance of Token-Critic [29] and Layout-
Corrector on conditional generation when applied to three baseline models (i.e.,
MaskGIT, VQDiffusion, and LayoutDM). Layout-Corrector constantly improves
the FID scores of the baseline models.

C.2 Alignment and Overlap

Fig. 11 shows the relationship between Alignment and Overlap [24] on three
datasets. We also show the scores of real data for reference. When compared

Layout-Corrector 23

Table 6: Performance comparison of baseline models with/without external assessor
on conditional generation. Arch. represents the architecture of the discrete generative
model. Metrics improved by the external module are highlighted in bold.

Rico [8] Crello [45] PubLayNet [50]

Model Arch. FID# Precision" Recall" FID# Precision" Recall" FID# Precision" Recall"

MaskGIT [5] Non-AR 30.25 0.759 0.526 31.03 0.821 0.456 16.62 0.498 0.801
+ Token-Critic [29] 10.93 0.734 0.817 5.85 0.759 0.821 8.07 0.679 0.854
+ Corrector (ours) 7.78 0.814 0.795 6.53 0.843 0.789 7.86 0.503 0.937

VQDiffusion [13] DDMs 4.01 0.750 0.877 3.98 0.757 0.874 7.57 0.595 0.942
+ Token-Critic [29] 2.89 0.828 0.836 4.82 0.802 0.829 5.96 0.789 0.827
+ Corrector (ours) 2.53 0.790 0.878 3.63 0.791 0.834 5.61 0.678 0.932

LayoutDM [21] DDMs 3.51 0.768 0.899 4.04 0.759 0.876 7.94 0.549 0.939
+ Token-Critic [29] 3.15 0.842 0.846 4.43 0.822 0.816 6.51 0.806 0.819
+ Corrector (ours) 2.39 0.808 0.905 3.39 0.797 0.855 5.84 0.660 0.933

(a) C ! S + P task

Rico [8] Crello [45] PubLayNet [50]

Model Arch. FID# Precision" Recall" FID# Precision" Recall" FID# Precision" Recall"

MaskGIT [5] Non-AR 8.15 0.821 0.840 9.59 0.822 0.741 5.05 0.584 0.905
+ Token-Critic [29] 4.51 0.797 0.905 4.68 0.771 0.871 3.83 0.630 0.917
+ Corrector (ours) 3.61 0.825 0.894 4.26 0.826 0.842 3.97 0.607 0.934

VQDiffusion [13] DDMs 2.37 0.828 0.929 3.89 0.779 0.878 4.05 0.612 0.949
+ Token-Critic [29] 2.24 0.845 0.926 3.99 0.787 0.881 2.58 0.724 0.927
+ Corrector (ours) 2.02 0.845 0.921 3.46 0.813 0.876 2.72 0.679 0.935

LayoutDM [21] DDMs 2.17 0.844 0.928 3.55 0.800 0.885 4.22 0.587 0.941
+ Token-Critic [29] 2.06 0.860 0.912 3.57 0.803 0.888 2.60 0.712 0.925
+ Corrector (ours) 1.91 0.856 0.922 3.32 0.808 0.882 2.93 0.667 0.936

(b) C + S ! P task

with the baseline of LayoutDM, Layout-Corrector reduces Alignment on three
datasets. Regarding Overlap, the score is increased by applying Layout-Corrector
on Rico and Crello datasets, while it is reduced on PubLayNet. While those
hand-crafted metrics express a quality for intuitive visual appearance, as seen
in Appendix E.4, they do not necessarily correlate with improvements in the
higher-order generative quality represented by the FID score.

D Qualitative Evaluation

In this section, we present additional qualitative results, including additional
visualization of the generation results, visualization of the generation process,
fidelity-diversity trade-off of the generation results, and failure cases.

D.1 Additional Results

We report additional qualitative results for three datasets, including Rico, Crello,
and PubLaynet. Fig. 13, Fig. 14, and Fig. 15 show the samples of unconditional

24 Iwai et al.

generation. Fig. 16, Fig. 17, and Fig. 18 show the samples of C!P+S task.
Fig. 19, Fig. 20, and Fig. 21 show the samples of C+S!P task. To demonstrate
the diversity, we show eight samples for unconditional generation. For conditional
generation, we show four samples for each conditional input.

D.2 Visualization of the Generation Process

We present the layout visualization during the generation process for LayoutDM
and its integration with Layout-Corrector. Fig. 22, Fig. 23, Fig. 24 are the re-
sults of unconditional generation for the Rico, Crello, and PubLayNet datasets,
respectively. At earlier timesteps, such as t � 40, few elements have been gener-
ated, so we focus on visualizing the timesteps from t = 38 to 0. The corrector
is applied at timesteps t = {10, 20, 30}, which is the optimal schedule based on
the FID score, as discussed in Sec. 4.3. It is important to note that until t > 30,
both models follow the identical generation process. The results demonstrate that
Layout-Corrector effectively eliminates inharmonious elements at the timesteps
when the corrector is applied, leading to more consistent results compared to
the baseline.

D.3 Fidelity-Diversity Trade-Off

Fig. 25 displays the results from different scheduling scenarios of Layout-Corrector,
illustrating layouts generated by LayoutDM [21] with and without the Layout-
Corrector under two distinct corrector schedules: t = {10, 20, 30} and t =
{10, 20, . . . , 90}. Layouts generated with Layout-Corrector applied at t = {10, 20, 30}
demonstrate rich diversity. In contrast, more frequent application of Layout-
Corrector at t = {10, 20, . . . , 90} results in a noticeable increase in layouts fea-
turing centrally aligned elements along the horizontal axis, indicating reduced
diversity. It is consistent with the observations in Fig. 6, where the more frequent
application of Layout-Corrector to LayoutDM enhances fidelity but reduces di-
versity, highlighting a trade-off between these two aspects.

We showed the histogram of the width attribute across different corrector
schedules in Fig. 7. Here, we also report the histogram of the other four attributes
(i.e., category, x-center, y-center, and height) in Fig. 26. We observed the same
trend as Fig. 7, where the more frequent application of Layout-Corrector ampli-
fies the frequency trends of the original data.

D.4 Typical Failure Cases

While Layout-Corrector can improve the generation quality of baseline models, it
is not infallible. Typical failure cases are presented in Fig. 27, where we compare
the layouts generated by LayoutDM [21] with and without Layout-Corrector.
In Fig. 27a, Layout-Corrector effectively resolves overlap and misalignment in
LayoutDM’s output, but this produces unnatural blank spaces in the output.
This issue arises because, although Layout-Corrector enables DDMs to modify

Layout-Corrector 25

Table 7: Ablation study on Crello [45] and PubLayNet [50] dataset with unconditional
generation.

T 0 = 100 T 0 = 20

FID# Align.! FID# Align.!

Layout-Corrector 4.36 0.232 5.11 0.295
Mask estimation 4.71 0.285 6.22 0.336
w/o Self-Atteniton 4.42 0.260 6.11 0.317
Top-K 6.58 0.300 5.45 0.296
Correcting at every t 90.24 0.009 48.78 0.038

Real Data 2.32 0.338 2.32 0.338

(a) Crello [45]

T 0 = 100 T 0 = 20

FID# Align.! FID# Align.!

Layout-Corrector 11.85 0.172 15.39 0.178
Mask estimation 11.40 0.167 16.71 0.194
w/o Self-Atteniton 13.49 0.172 20.71 0.286
Top-K 19.96 0.615 23.89 0.443
Correcting at every t 69.21 0.125 53.26 0.092

Real Data 6.25 0.021 6.25 0.021

(b) PubLayNet [50]

incorrectly generated layouts by resetting tokens with low correctness scores, it
does not encourage DDMs to create additional elements, leading to these blank
areas. In Fig. 27b, Layout-Corrector fixes an overlap in the bottom-right of
LayoutDM’s output, yet a new overlap emerges in the top-left of the LayoutDM
+ Corrector output. This is because Layout-Corrector can not correct tokens
generated after its final application.

E Ablation Study

In this section, we present additional results of the ablation study, including
Crello [45] and PubLayNet [50], and architecture of Layout-Corrector, and thresh-
old value ✓th. In addition, we compare Layout-Corrector with rule-based post-
processing [24].

E.1 Additional Results

Tab. 7 shows the ablation results for Crello and PubLayNet in the unconditional
generation task. Please refer to Sec. 4.6 regarding the configurations. As with
the results of Rico dataset [8], Layout-Corrector achieves solid performance on
both Crello and PubLayNet datasets. For Crello dataset shown in Tab. 7a, we
observed that removing the self-attention layer results in a less significant per-
formance drop than in other datasets. We hypothesize that this phenomenon
is due to the complex and diverse relationships between elements in Crello, as
illustrated by real samples in Fig. 14. When the relationships among elements
are complicated, it is challenging for the self-attention layers to capture these
relationships, resulting in decreased effectiveness.

E.2 Corrector Architecture

We report the effects of varying the number of Transformer Encoder layers in
Layout-Corrector. To investigate this, we trained Layout-Corrector with {1, 2, 4, 6}

26 Iwai et al.

Table 8: The effect of the number of Transformer Encoder layers on Rico test set. The
best FID result is highlighted in bold.

of layers FID# # of params [M] Time/sample [ms]

- (LayoutDM) 6.37 12.4 23.7
1 5.07 + 4.6 24.6
2 4.94 + 7.3 24.6
4 4.79 + 12.6 24.6
6 4.93 + 17.9 24.6

Table 9: The impact of threshold ✓th in unconditional generation on three dataset
using LayoutDM [21] as DDM. The best result is highlighted in bold.

Threshold ✓th
Rico Crello PubLayNet

FID# Precision" Recall" FID# Precision" Recall" FID# Precision" Recall"

0.3 5.57 0.763 0.900 5.16 0.775 0.874 12.88 0.605 0.920
0.4 5.26 0.779 0.897 4.97 0.789 0.861 12.41 0.639 0.918

0.5 5.05 0.787 0.900 4.75 0.799 0.861 12.06 0.668 0.914

0.6 4.90 0.794 0.892 4.45 0.806 0.859 11.78 0.681 0.911

0.7 4.79 0.809 0.892 4.36 0.822 0.851 11.85 0.711 0.890

0.8 5.01 0.822 0.876 4.51 0.824 0.834 11.88 0.727 0.887

0.9 5.89 0.844 0.858 5.77 0.849 0.811 12.60 0.729 0.869

layers on the Rico dataset [8] and evaluated FID scores, number of parameters,
and inference speed. The application schedule for Layout-Corrector was set to
t = {10, 20, 30}. The results, presented in Tab. 8, indicate that the best FID is
achieved with 4 encoder layers. Although the number of parameters increases
with the number of layers, the impact on inference speed remains minimal since
the corrector is applied just three times.

E.3 Threshold ✓th

We compared various threshold values ✓th in Tab. 9 on three datasets. The results
show that ✓th = 0.7 yields the best FID on Rico and Crello, and the second-
best on PubLayNet, demonstrating that it performs well across various datasets
without tailored calibration. Precision and Recall scores are also presented in
the table to provide a more comprehensive analysis. A higher threshold keeps
only high-scored tokens, leading to higher fidelity (Precision) at the expense of
diversity (Recall). In contrast, a lower threshold allows the inclusion of low-scored
tokens, potentially enhancing diversity at the cost of reduced fidelity.

E.4 Effect of post-processing

In this section, we investigate the applicability of post-processing to refine lay-
outs. To achieve this, we use the layouts generated by DDMs and refine them
using rule-based methods. Following the approach of CLG-LO [24], we apply

Layout-Corrector 27

Table 10: Performance comparison of baseline models with/without post-processing
on the unconditional generation task. Metrics improved by post-processing are high-
lighted in bold.

Rico [8] Crello [45] PubLayNet [50]

Model FID# Align.! Overlap! FID# Align.! Overlap! FID# Align.! Overlap!

LayoutDM [21] 6.37 0.223 0.841 5.28 0.279 1.733 13.72 0.185 0.142
+ post-processing 6.23 0.211 0.854 5.20 0.258 1.738 13.77 0.16 0.052

LayoutDM + Corrector 4.79 0.167 0.884 4.36 0.232 1.829 11.85 0.172 0.082
+ post-processing 4.87 0.158 0.897 4.36 0.215 1.834 10.81 0.120 0.023

Real data 1.85 0.109 0.665 2.32 0.338 1.625 6.25 0.021 0.0032

constraint optimization to geometric metrics, including alignment and overlap
scores, to minimize these costs while modifying geometric attributes. For datasets
characterized by a large overlap, such as Rico and Crello, we adjust the opti-
mization by omitting the overlap term from the objective function and focusing
solely on minimizing the alignment.

Tab. 10 shows the effect of post-processing on LayoutDM and its combination
with Layout-Corrector. We observe that post-processing does not significantly
affect the FID score, except for LayoutDM + Corrector on PubLayNet, which
has lower alignment and overlap scores. We consider that optimization based
on geometric constraints is ineffective for layouts with complex structures, such
as Rico and Crello. On the other hand, Layout-Corrector outperforms post-
processing in terms of FID because it intervenes in the generation process to
realize layout correction. This suggests that our learning-based approach is far
more effective than simple rule-based optimization.

28 Iwai et al.

(a) �̄t,K : ✏ ! ✏

(b) �̄t,K : ✏ ! 0.05 (c) �̄t,K : ✏ ! 0.1

(d) �̄t,K : 0.05 ! ✏ (e) �̄t,K : 0.1 ! ✏

Fig. 12: Scheduling of transition probabilities for preliminary experiments. Fig. 12a
illustrates the baseline schedule used in LayoutDM, where �̄t,K is approximately zero
at any timestep. Fig. 12b and Fig. 12c demonstrate the schedules that introduce tran-
sitions between regular tokens in the later stages of the diffusion process. Conversely,
the schedules of Fig. 12d and Fig. 12e promote transitions between them in the early
stage of the diffusion process.

Layout-Corrector 29

Real data MaskGIT [5]
MaskGIT

+Corrector LayoutDM [21]
LayoutDM
+Corrector

Fig. 13: Comparison of unconditional generation results on Rico, with eight samples
from each model to show diversity.

30 Iwai et al.

Real data MaskGIT [5]
MaskGIT

+Corrector LayoutDM [21]
LayoutDM
+Corrector

Fig. 14: Comparison of unconditional generation results on Crello, with eight samples
from each model to show diversity.

Layout-Corrector 31

Real data MaskGIT [5]
MaskGIT

+Corrector LayoutDM [21]
LayoutDM
+Corrector

Fig. 15: Comparison of unconditional generation results on PubLayNet, with eight
samples from each model to show diversity.

32 Iwai et al.

MaskGIT [5]
MaskGIT

+Corrector LayoutDM [21]
LayoutDM
+Corrector

Input

Real Data

Input

Real Data

Fig. 16: Comparison of conditional generation results for C!S+P on Rico, with four
samples per condition input from each model to show diversity.

Layout-Corrector 33

MaskGIT [5]
MaskGIT

+Corrector LayoutDM [21]
LayoutDM
+Corrector

Input

Real Data

Input

Real Data

Fig. 17: Comparison of conditional generation results for C!S+P on Crello, with four
samples per condition input from each model to show diversity.

34 Iwai et al.

MaskGIT [5]
MaskGIT

+Corrector LayoutDM [21]
LayoutDM
+Corrector

Input

Real Data

Input

Real Data

Fig. 18: Comparison of conditional generation results for C!S+P on PubLayNet, with
four samples per condition input from each model to show diversity.

Layout-Corrector 35

MaskGIT [5]
MaskGIT

+Corrector LayoutDM [21]
LayoutDM
+Corrector

Input

Real Data

Input

Real Data

Fig. 19: Comparison of conditional generation results for C+S!P on Rico, with four
samples per condition input from each model to show diversity.

36 Iwai et al.

MaskGIT [5]
MaskGIT

+Corrector LayoutDM [21]
LayoutDM
+Corrector

Input

Real Data

Input

Real Data

Fig. 20: Comparison of conditional generation results for C+S!P on Crello, with four
samples per condition input from each model to show diversity.

Layout-Corrector 37

MaskGIT [5]
MaskGIT

+Corrector LayoutDM [21]
LayoutDM
+Corrector

Input

Real Data

Input

Real Data

Fig. 21: Comparison of conditional generation results for C+S!P on PubLayNet, with
four samples per condition input from each model to show diversity.

38 Iwai et al.

(a) Example1: LayoutDM (b) Example1: LayoutDM + Corrector

(c) Example2: LayoutDM (d) Example2: LayoutDM + Corrector

Fig. 22: Comparison of unconditional generation process for Rico. Left: the results of
LayoutDM. Right: the results of LayoutDM in conjunction with Layout-Corrector. The
timestep is denoted at the top of each layout visualization, and the timesteps when the
corrector is applied are highlighted by bold in Fig. 22b and Fig. 22d.

Layout-Corrector 39

(a) Example1: LayoutDM (b) Example1: LayoutDM + Corrector

(c) Example2: LayoutDM (d) Example2: LayoutDM + Corrector

Fig. 23: Comparison of unconditional generation process for Crello. Left: the results
of LayoutDM. Right: the results of LayoutDM in conjunction with Layout-Corrector.
The timestep is denoted at the top of each layout visualization, and the timesteps when
the corrector is applied are highlighted by bold in Fig. 23b and Fig. 23d.

40 Iwai et al.

(a) Example1: LayoutDM (b) Example1: LayoutDM + Corrector

(c) Example2: LayoutDM (d) Example2: LayoutDM + Corrector

Fig. 24: Comparison of unconditional generation process for PubLayNet. Left: the
results of LayoutDM. Right: the results of LayoutDM in conjunction with Layout-
Corrector. The timestep is denoted at the top of each layout visualization, and the
timesteps when the corrector is applied are highlighted by bold in Fig. 24b and
Fig. 24d.

Layout-Corrector 41

(a) LayoutDM (FID = 6.38, Precision = 0.750)

(b) LayoutDM + Corrector t = {10, 20, 30} (FID = 4.79, Precision = 0.811)

(c) LayoutDM + Corrector t = {10, 20, 30, . . . , 90} (FID = 19.90, Precision = 0.914)

(d) Real data

Fig. 25: Visualization of unconditional generation on the Rico dataset. This figure dis-
plays outputs from LayoutDM and LayoutDM + Layout-Corrector under two distinct
corrector scheduling scenarios. Fig. 25b illustrates the results of our default schedule
(t = {10, 20, 30}), which produces high-quality and diverse layouts. In contrast, Fig. 25c
shows that increasing the frequency of Layout-Corrector application leads to layouts
with more elements centered along the horizontal axis, indicating reduced diversity.

42 Iwai et al.

(a) Category

(b) X-center

(c) Y-center

(d) Height

Fig. 26: Histogram of the category (Fig. 26a), X-center (Fig. 26b), Y-center (Fig. 26c),
and height (Fig. 26d) of elements on the Rico dataset on different corrector schedules.

Layout-Corrector 43

(a) Left: LayoutDM.

Right: LayoutDM + Corrector

(b) Left: LayoutDM.

Right: LayoutDM + Corrector

Fig. 27: Typical failure cases on the unconditional task on PubLayNet dataset. We
show the outputs from LayoutDM with and without Layout-Corrector. In Fig. 27a, al-
though Layout-Corrector resolves overlapping elements found in the LayoutDM output,
it leads to unnatural blank spaces in the LayoutDM + Corrector output. In Fig. 27b,
while Layout-Corrector rectifies an overlap in the bottom-right of the LayoutDM out-
put, a new overlap appears in the top-left in the LayoutDM + Corrector output.

	Layout-Corrector: Alleviating Layout Sticking Phenomenon in Discrete Diffusion Model

