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Abstract. Layout generation is a task to synthesize a harmonious lay-
out with elements characterized by attributes such as category, position,
and size. Human designers experiment with the placement and modi-
fication of elements to create aesthetic layouts, however, we observed
that current discrete diffusion models (DDMs) struggle to correct inhar-
monious layouts after they have been generated. In this paper, we first
provide novel insights into layout sticking phenomenon in DDMs and
then propose a simple yet effective layout-assessment module Layout-
Corrector, which works in conjunction with existing DDMs to address
the layout sticking problem. We present a learning-based module capable
of identifying inharmonious elements within layouts, considering overall
layout harmony characterized by complex composition. During the gen-
eration process, Layout-Corrector evaluates the correctness of each token
in the generated layout, reinitializing those with low scores to the un-
generated state. The DDM then uses the high-scored tokens as clues to
regenerate the harmonized tokens. Layout-Corrector, tested on common
benchmarks, consistently boosts layout-generation performance when in
conjunction with various state-of-the-art DDMs. Furthermore, our ex-
tensive analysis demonstrates that the Layout-Corrector (1) success-
fully identifies erroneous tokens, (2) facilitates control over the fidelity-
diversity trade-off, and (3) significantly mitigates the performance drop
associated with fast sampling.
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1 Introduction

Creating a layout is one of the most crucial tasks involving human labor when
designing [1], and there are a wide variety of applications, including academic
papers [50], application user interfaces [8], and advertisements [45]. Layout gen-
eration has been formulated as a task that determines a set of elements that
consist of categories, positions, and sizes [33,40]. In response, layout-generation
methods on deep learning have shown remarkable performance, and in partic-
ular, discrete generative models such as masked language modeling [9]-based
⋆ This work was done during the first author’s internship at LY Corporation.
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methods [5, 26, 43] and discrete diffusion models (DDMs) [13, 20, 21, 47] are the
current state-of-the-art (SoTA).

To create an aesthetically pleasing layout, human designers typically modify
layouts through trial and error. However, we found that even SoTA DDMs can
not update elements in layouts once they have been generated, i.e., layout stick-
ing. An intuitive example of the sticking behavior is depicted in Fig. 1, where
inharmonious elements that arose during generation persist until the final gen-
erated result. While former studies [6,24,35,36] tried to refine these elements in
the post-processing phase that minimizes the rule-based costs such as alignment,
they could not capture higher-order senses that determine layout aesthetics.

Initial State Sticked ...👎

Reset 👍 Correct 👍

Undesirable
generation💥

w/o Layout Corrector

Layout-Corrector
(ours)

Sticked ...👎

Discrete Diffusion Model
Mask-and-Replace

Non-autoregressive Model
Parallel Decoding

Discrete Generative Model

Generated layout

Fig. 1: Intuitive overview of Layout-
Corrector. Conventional generative models
cannot modify the elements once they have
been generated. Layout-Corrector works in
conjunction with DDMs to identify inhar-
monious elements in the generative process
and initialize them to enhance regeneration
towards a harmonized layout.

In the image generation domain,
non-autoregressive (Non-AR) decod-
ing methods with an external critic
have demonstrated remarkable perfor-
mance [29, 30]. The module identi-
fies deviated visual tokens from the
real distribution and reset them to re-
sample. Reviewing the success of the
masked image modeling [16], a few vi-
sual clues can provide plenty of infor-
mation to identify erroneous tokens.
On the other hand, the layout domain
has different characteristics; (i) unlike
images with a fixed and enough num-
ber of tokens (e.g ., 16 × 16 patches),
the number of layout elements is small
and varies across samples (e.g ., 1 to
25 elements), and (ii) as the element
composed of multiple attributes, then
partially observed tokens do not provide enough clues. Thus, it is non-trivial
whether the technique in the vision can apply to the layout generation.

In this paper, we propose a simple yet effective approach, named Layout-
Corrector, to address the layout sticking problem. It works as an external module
that evaluates each token’s correctness score in a learning-based manner, aiming
to identify erroneous tokens in a layout. As shown in Fig. 1, during the generation
process, tokens with low correctness scores are reset to the ungenerated state
(i.e., [MASK]). Then, a DDM regenerates them using the remaining high-scored
tokens as clues. Additionally, to deal with the characteristics of the layout tokens
mentioned above, we propose a new objective and application schedule that
accommodates variable numbers of elements while providing reliable layout cues.

We conducted extensive experiments on Layout-Corrector using three bench-
marks [8, 45, 50]. When in conjunction with strong baselines [5, 13, 21], Layout-
Corrector significantly enhanced their performance in both unconditional and
conditional generation tasks. Both quantitative and qualitative evaluations con-
firmed that our approach effectively corrects inharmonious layout elements, ad-
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dressing the challenge present in SoTA DDMs. By adjusting the application
schedule of the corrector, we also achieved enhanced control over the fidelity-
diversity and speed-quality trade-offs, demonstrating Layout-Corrector’s versa-
tility across different application scenarios.

Our contributions are summarized as follows: (1) We empirically demon-
strate that current SoTA DDMs struggle to correct inharmonious elements in
layouts; however, they can effectively correct them when erroneous elements are
initialized to the ungenerated state, [MASK]. (2) We propose Layout-Corrector
for evaluating the correctness score of each element and resetting the element
with a lower score to [MASK], enabling DDMs to regenerate improved layouts.
(3) We confirm consistent improvements by applying Layout-Corrector to vari-
ous DDMs. We also analyze the behavior of Layout-Corrector and demonstrate
that it enhances fidelity-diversity and speed-quality trade-offs.

2 Related Works

Layout Generation. Automatic layout generation [33, 40] is a task involving
the assignment of positions and categories to multiple elements, which has di-
verse applications in design areas like application user interfaces and academic
papers [8, 14,19,45,46,48–51]. This task includes unconditional and conditional
generation, considering user constraints, e.g ., partially specified elements.

Early layout generation research explored classical optimization [36, 37] and
generative models such as GAN [12]-based models [31,49,51] and VAE [10]-based
models [23,45]. Following the success in NLP, Transformer-based approaches [44]
were proposed. Auto-regressive (AR) models [2,15] iteratively generate layouts,
however, struggle with conditional generation [26]. Non-AR models [5, 26, 43]
overcome this difficulty by using a bidirectional architecture, where user-defined
conditions serve as clues to complete blank tokens. Recently, diffusion model-
based [18, 41] layout generation methods in both continuous [4, 28] and discrete
spaces [20,21,47] have been developed. To enable unconditional and conditional
generation within a single framework, it is essential for models to process both
discrete and continuous data present in elements. DDMs can accommodate both
data types by quantizing geometric attributes into a binned space.
Discrete Diffusion Models. D3PM [3] introduces the special token [MASK],
where regular tokens are absorbed into [MASK] through a forward process. Based
on this, Non-AR models, such as MaskGIT [5], can be understood as a subclass
of DDMs. MaskGIT introduces a scheduled masking rate, akin to the diffusion
process in D3PM. It also adopts the parallel decoding [11] based on the token
confidence, serving as a deterministic denoising process. To address the issue
of non-regrettable decoding strategy, DPC and Token-Critic [29, 30] introduce
an external module to mitigate discrepancies between training and inference
distributions. VQDiffusion [13] facilitates transitions between regular tokens in
addition to [MASK], while LayoutDM [21] advances the diffusion process to allow
transitions within the same modality. LayoutDiffusion [47] introduces a mild
corruption process that considers the continuity of geometric attributes. For
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the layout generation, we explore the potential of the correction during the
generation process to alleviate layout token sticking problem.
Layout Correction. There are several studies aimed at layout modification. In
optimization-based methods [24, 35, 36], layouts are refined to minimize hand-
crafted costs, such as alignment score. RUITE [38] and LayoutFormer++ [22]
learn to restore the original layout from noisy input. LayoutDM [21] proposes a
logit adjustment under the constraints of noisy layouts. While previous research
has focused on layout refinement, our method aims to correct layouts during the
generation process. Compared to rule-based optimization, our approach achieves
superior performance while preserving the distribution of the generated results.
Please refer to the supplementary material for details.

3 Method

In Sec. 3.1, we first provide a brief overview of DDMs for layout-generation [21]
and examine the potential for layout correction in Sec. 3.2. We then present
Layout-Corrector in Sec. 3.3 and explain its application across diverse layout-
generation tasks in Sec. 3.4.

3.1 Layout Generation Models

A layout is represented as a set of elements, where an element consists of category,
position, and size. Following previous studies [2, 15, 26], we use the quantized
expression for geometric attributes. Defining li = (ci, xi, yi, wi, hi), a layout l
with N ∈ N elements is expressed as lN = (l1, · · · , lN ), where ci ∈ {1, · · · , C}
denotes the category (e.g ., text, button), (xi, yi, wi, hi) ∈ {1, · · · , B}4 represents
the center position and size of i-th element, and B ∈ N denotes the number
of bins. Under this representation, we review DDMs to gain insight into the
behavior of the generation process, as discussed in Sec. 3.2.

Let T represent the total number of timesteps in the corruption process. We
consider a scalar variable zt with K ∈ N classes at t, where zt ∈ {1, . . . ,K}.
Here, zt substitutes an attribute of an element. Following LayoutDM [21], we
include the special tokens [PAD] and [MASK], resulting in (K +2) classes. Here,
[PAD] token is employed to fill the empty element, achieving variable length
generation. [MASK] token denotes the absorbing state, to which tokens converge
through the diffusion process. Using a transition matrix Qt ∈ [0, 1](K+2)×(K+2),
we can define a transition probability from zt−1 to zt as follows:

q(zt|zt−1) = v(zt)
⊤Qtv(zt−1), (1)

where v(zt) ∈ {0, 1}K+2 is a one-hot vector of zt. Due to the Markov property, a
transition from z0 to zt is similarly written as: q(zt|z0) = v(zt)

⊤Q̄tv(z0), where
Q̄t =QtQt−1 · · ·Q1. Applying the Markov property q(zt−1|zt, z0) = q(zt−1|zt),
we can obtain the posterior distribution q(zt−1|zt, z0) (Eq. (5) in [13]).

For the reverse process, we compute a conditional distribution pθ(zt−1|zt) ∈
[0, 1]N×(K+2). Categorical variable zt−1 is sampled from this distribution. As
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Fig. 2: Results of preliminary experiments on Rico test set [8]. (a) While β̄t,K =
(K+1)β̄t = ϵ (≪ 1) is affected by token-sticking, β̄t,K > ϵ alleviates it. (b) The results
indicate that LayoutDM can restore the original tokens from [MASK]; however, recovery
from regular tokens proves challenging. Please refer to Supp. for further results.

proposed in a previous study [3], we use the re-parametrization trick and obtain
a posterior distribution as pθ(zt−1|zt) ∝

∑
z̃0

q(zt−1|zt, z̃0) p̃θ(z̃0|zt), where
p̃θ(z̃0|zt) is a neural network that predicts the noiseless token distribution at t =
0. Following previous studies [3,13,21], we employ the hybrid loss of variational
lower bound and auxiliary denoising loss.

The design of transition matrix Qt is pivotal in defining the corruption pro-
cess. The token transition is categorized into three types: (1) keeping the current
token, (2) replacing the token with other tokens, and (3) replacing the token
with [MASK]. For each, we employ the probabilities (αt, βt, γt). Hence, using
Q′

t = αtI+ βt11
⊤ ∈ [0, 1](K+1)×(K+1), Qt ∈ [0, 1](K+2)×(K+2) is defined as:

Qt =

[
Q′

t 0
γt · · · γt 1

]
. (2)

The cumulative transition matrix Q̄t can be computed in the closed form as
Q̄tv(x0) = ᾱtv(x0) + (γ̄t − β̄t)v(K + 2) + β̄t, where ᾱt =

∏t
i=1 αi, γ̄t =

1 −
∏t

i=1(1 − γi), β̄t,K = (K + 1)β̄t = 1 − ᾱt − γ̄t, and v(K + 2) denotes
the one-hot representation of [MASK]. A transition with β̄t > 0 introduces a
layout inconsistency. Since the corresponding DDM is trained to correct such
mismatches, we expect that it can update erroneous tokens caused in the gen-
eration process. However, in the following section, we will demonstrate that the
scheduling of β̄t is suboptimal for layout correction.

3.2 Preliminary: Potential of Token Correction in DDM

We explore token correction with DDMs, specifically focusing on LayoutDM [21],
by assessing the impact of the β̄t schedule. For ϵ ≪ 1 and β̄t,K = ϵ for any t,
pθ(zt−1|zt) struggles to correct tokens, due to the diffusion process not facilitat-
ing token replacement, except for [MASK]. This limitation is analogous to those
seen with parallel decoding methods used in MaskGIT [5]. A possible solution is
to increase β̄t,K > ϵ to promote transition between regular tokens. To verify the
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Fig. 3: The details of Layout-Corrector. Top: training procedure of Layout-Corrector,
where the pre-trained DDM is fixed. Bottom: sampling process with Layout-Corrector.
We execute the generation and correction process in the purple box iteratively.

effect of β̄t,K , we compare the token-sticking-rate (TSR) in the reverse process,
which measures the proportion of tokens at z0 that remain unchanged from zt.
As depicted in Fig. 2a, β̄t,K = ϵ leads to TSR ≃ 100% at most t, indicating token
sticking. In contrast, when β̄t,K > ϵ, the TSR is reduced below 100%, indicating
that pθ(zt−1|zt) can update tokens during generation process.

We next evaluate the DDM’s error-correction capability by simulating re-
placements of three randomly selected tokens in a sequence with either [MASK]or
other tokens, and then observing the model’s ability to restore the original to-
kens. These methods are referred to as Mask-replace and Token-replace, respec-
tively. In this setup, LayoutDM executes the reverse step from timestep t = 10
to 1. Our metric is the success rate of token recovery, which is deemed successful
if recovery is complete, and we assess this across different β̄t schedules. Fig. 2b
demonstrates that Token-replace with β̄t,K > ϵ is moderately more effective than
when β̄t,K = ϵ. However, Mask-replace exhibits significant improvements over
Token-replace. This finding motivated us to develop Layout-Corrector, which
resets inharmonious tokens to [MASK].

3.3 Layout-Corrector

To enhance the replacement of the erroneous tokens with [MASK], we introduce
Layout-Corrector. Functioning as a quality assessor, Layout-Corrector evaluates
the correctness of each token in a layout during the generation process. The
tokens with lower correctness scores are replaced with [MASK], and the updated
tokens are fed back into the DDM. Therefore, Layout-Corrector can explicitly
prompt the DDM to modify the erroneous tokens.
Architecture. Evaluating the correctness of each token requires Layout-Corrector
to consider the relationships between elements in a layout. To this end, we use a
Transformer [44] encoder to capture global contexts, as shown in Fig. 3. We first
apply a multi-layer perceptron (MLP) to fuse five tokens (c, x, y, w, h) of each
element, obtaining N element embeddings. These embeddings are processed by a
transformer encoder, producing five-channel outputs. Each channel corresponds
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to the correctness score of each token in the element. Since the layout elements
are order-agnostic, we eliminate positional encoding to avoid unintended biases.
Training. The objective of Layout-Corrector is to detect erroneous tokens dur-
ing the generation process. To achieve this, we train Layout-Corrector as a binary
classifier with a pre-trained DDM, which is frozen during training, as shown in
Fig. 3. Given an original layout z0 and t, a forward process is applied to obtain a
distribution q(zt|z0), and DDM estimates the distribution pθ(zt−1|zt). Then, for
a [MASK]-free token sequence ẑt−1 sampled from pθ(zt−1|zt), Layout-Corrector
evaluates the correctness score pϕ(ẑt−1, t) ∈ [0, 1]5N for each token in ẑt−1. Un-
like existing assessors [29, 30], which are trained to detect tokens in ẑt−1 that
are originally masked in zt, we train Layout-Corrector to predict whether each
token in ẑt−1 aligns with the corresponding original token in z0, as in [7]. It en-
courages the Layout-Corrector to evaluate the correctness of each token directly.
Specifically, we use binary cross-entropy (BCE) loss:

LCorrector = BCE(m, pϕ(ẑt−1, t)), (3)

where m(i) = 1 if ẑ(i)t−1 = z
(i)
0 , otherwise m(i) = 0. Through the training, Layout-

Corrector learns to identify erroneous tokens that disturb the layout harmony.

3.4 Generating Layout with the Layout-Corrector

Unconditional Generation. As shown in Fig. 3, all tokens zT are initialized
with [MASK], and the final output is obtained at t = 0. At timestep t, a DDM
predicts the distribution pθ(zt−1|zt), from which we sample a [MASK]-free token
sequence ẑt−1. Layout-Corrector then assesses the correctness scores pϕ(ẑt−1, t).
We add Gumbel noise to pϕ(ẑt−1, t) to introduce randomness into the token
selection. Then, we mask tokens whose scores are lower than a threshold θth.
Another possible way is to choose tokens with the lowest 5N · γ̄t scores, similar
to [29, 30], where γ̄t is the mask ratio at t (see Sec. 3.1). However, it may mask
high-quality tokens when the majority have higher scores, leading to diminished
cues for the DDM. The threshold mitigates this issue by selectively masking only
those tokens with lower scores, thus preserving reliable cues for regeneration.
Conditional Generation. Layout-Corrector is versatile and can be seamlessly
used for various conditional generation tasks without specialized training or fine-
tuning. Given a set of partially known tokens, e.g ., element categories or sizes,
the goal of conditional generation is to estimate the remaining unknown tokens.
Following LayoutDM [21], we utilize the known condition tokens as an initial
state for the generation process and maintain these tokens at each t. When
Layout-Corrector is applied, a correctness score of 1 is assigned to the conditional
tokens. In this way, Layout-Corrector encourages the DDM to modify erroneous
tokens while ensuring that the known tokens are preserved.
Corrector Scheduling. Layout-Corrector can be applied at any t during the
generation process. Unlike existing methods [29, 30], which apply the external
assessor at every t, we selectively apply Layout-Corrector at specific timesteps.
Remarkably, alongside LayoutDM [21], Layout-Corrector enhances generation
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Table 1: Performance comparison of baseline models with/without external assessor
on unconditional generation. Arch. represents the architecture of the discrete generative
model. Metrics improved by the external module are highlighted in bold.

Rico [8] Crello [45] PubLayNet [50]

Model Arch. FID↓ Precision↑ Recall↑ FID↓ Precision↑ Recall↑ FID↓ Precision↑ Recall↑

MaskGIT [5] Non-AR 70.37 0.793 0.437 35.32 0.802 0.376 34.23 0.587 0.460
+ Token-Critic [29] 15.65 0.682 0.843 7.59 0.735 0.815 17.55 0.579 0.825
+ Corrector (ours) 14.40 0.814 0.744 11.17 0.839 0.696 13.74 0.501 0.883

VQDiffusion [13] DDMs 7.83 0.716 0.907 5.57 0.740 0.884 12.38 0.567 0.925
+ Token-Critic [29] 15.22 0.842 0.731 10.05 0.834 0.657 17.53 0.812 0.628
+ Corrector (ours) 5.29 0.809 0.898 4.70 0.793 0.842 9.89 0.699 0.903

LayoutDM [21] DDMs 6.37 0.759 0.906 5.28 0.768 0.875 13.72 0.557 0.919
+ Token-Critic [29] 17.97 0.884 0.670 9.01 0.844 0.678 22.27 0.836 0.582
+ Corrector (ours) 4.79 0.811 0.891 4.36 0.822 0.851 11.85 0.711 0.890

quality with just three applications, effectively reducing additional forward oper-
ations during inference. Moreover, by adjusting the schedule of Layout-Corrector,
we can modulate the fidelity-diversity trade-off of the generated layouts. Specifi-
cally, more frequent corrector applications enhance fidelity by removing a larger
number of inharmonious tokens, while a more sparse schedule improves diversity.
The experimental section provides a more detailed analysis on the schedules.

4 Experiments

4.1 Experimental Settings

Datasets. We evaluated Layout-Corrector on the following three challenging
layout datasets over different domains: Rico [8] contains user interface designs
for mobile applications. It contains 25 element categories such as text, button,
and icon. Crello [45] consists of design templates for various formats, such as
social media posts and banner ads. PubLayNet [50] comprises academic papers
with 5 categories, such as table, image, and text. We follow the dataset splits
presented in a previous study [21] for Rico and PubLayNet and use the official
splits for Crello. We excluded layouts with more than 25 elements as in [21].
Evaluation Metrics. We used the following evaluation metrics: Fréchet In-
ception Distance (FID) [17] evaluates the similarity between distributions of
generated and real data in the feature space using the feature extractor [24].
Alignment (Align.) [32] measures the alignment of elements in generated lay-
outs. This metric is normalized by the number of elements, as in [24]. Maximum
IoU (Max-IoU) [24] evaluates the similarity of the elements in bounding boxes
of the same category, comparing the generated layouts to the ground truth. For
fidelity and diversity, we used Precision and Recall [27].
Layout-generation Tasks. We evaluated our Layout-Corrector across three
tasks: Unconditional generates a layout without any constraints. Category →
size + position (C → S + P) generates a layout given only the category of each
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element. Category + size → position (C + S → P) generates a layout given the
category and size of each element.
Implementation Details. We used DDMs, i.e., LayoutDM [21] and VQDiffu-
sion [13], as well as a non-AR model i.e., MaskGIT [5], as baseline models, and
applied Layout-Corrector to them. Since non-ARs can be understood as a sub-
class of DDMs as discussed in Sec. 2, we can seamlessly apply Layout-Corrector
to them. We used the publicly available pre-trained LayoutDM on Rico and
PubLayNet, while we trained other models using LayoutDM implementation.
Unless otherwise specified, the total timesteps T for LayoutDM and VQDif-
fusion were set to 100, and Layout-Corrector was applied at t = {10, 20, 30},
leading to a total of 103 forward operations. In MaskGIT [5], T = 10 and
Layout-Corrector was applied at every t. For the threshold θth, we set it to
0.7 for LayoutDM and VQDiffusion, and 0.3 for MaskGIT. To train Layout-
Corrector, we used AdamW [25, 34] with an initial learning rate of 5.0 × 10−4

and (β1, β2) = (0.9, 0.98). Refer to supplementary material for more details.

4.2 Effectiveness of Layout-Corrector

To evaluate the applicability and effectiveness of Layout-Corrector with various
discrete generative models, we applied our corrector and Token-Critic [29] to
MaskGIT [5], VQDiffusion [13], and LayoutDM [21]. The results in Tab. 1 show
that Layout-Corrector consistently improved FID across all tested models, con-
firming its effectiveness. In contrast, while Token-Critic [29] enhanced FID when
applied to MaskGIT, its application to VQDiffusion and LayoutDM resulted in
diminished performance. These results demonstrate that the direct application
of Token-Critic can lead to suboptimal performance in layout generation, high-
lighting the importance of tailored approaches. Regarding fidelity and diversity,
evaluated using Precision and Recall [27], we observed different trends between a
non-AR model and DDMs. For MaskGIT, Layout-Corrector boosted both diver-
sity and fidelity. The parallel decoding in MaskGIT keeps high-confidence tokens
and rejects low-confidence ones. It often leads to stereotypical token patterns,
resulting in high fidelity but low diversity. Layout-Corrector resets such patterns
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Fig. 6: FID-Precision trade-off on un-
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rector schedules.
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boxes on the Rico dataset on different correc-
tor schedules.

while considering the overall harmony, thereby improving diversity without sac-
rificing fidelity. In the case of VQDiffusion and LayoutDM, Layout-Corrector
increased fidelity while maintaining diversity. While the stochastic nature of
DDMs promotes diversity, it can produce low-quality tokens. Layout-Corrector
mitigates this issue by resetting these tokens, thereby enhancing fidelity.

4.3 Analysis

Intrinsic Evaluation of Corrector. We assess Layout-Corrector’s ability to
detect erroneous tokens. To this end, we randomly replace three tokens in the
ground truth with alternate ones using the test set of Rico dataset. The goal
is for the corrector to identify these altered tokens. For Layout-Corrector and
Token-Critic trained with the same LayoutDM, we evaluate the detection accu-
racy of these altered tokens, selecting the three tokens with the lowest corrector
scores for comparison. Fig. 4 shows that Layout-Corrector outperforms Token-
Critic due to the objective that directly estimates the correctness of tokens,
underscoring its effectiveness in layout assessment.

Furthermore, we analyze the correlation between the degree of layout cor-
ruption and the correctness scores. To modulate the extent of disruption, we
limit the maximum transition step for the geometric attributes when replacing.
Fig. 5 depicts the average correctness scores for the three replaced and the other
clean tokens within the corrupted layouts. We observe that a greater deviation
from the original token leads to a lower correctness score against clean tokens.
These results suggest that the corrector can measure the degree of discrepancy
between the ideal and the actual layouts.
Corrector Scheduling: Impact on Fidelity and Diversity. We applied
Layout-Corrector to LayoutDM with various schedules. Specifically, it is ap-
plied at t = [{10}, {10, 20}, . . . , {10, 20, . . . , 90}], yielding nine distinct schedules.
Fig. 6 shows the FID-Precision trade-offs with and without Layout-Corrector. It
can be observed that varying the schedule effectively adjusts the FID-Precision
trade-off. More frequent corrector applications enhance fidelity (i.e., Precision),
while decreasing diversity (i.e., FID). These results align with Layout-Corrector’s
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Fig. 9: Average correctness scores on
intermediate generated layouts of Lay-
outDM at each t across different total
timesteps T ′ on Rico dataset.

role of resetting poor-quality tokens. Its frequent use leads to high-fidelity out-
puts; however, this also reduces the stochastic nature of DDMs, thus diminishing
diversity. Moreover, it shows that our default schedule t = {10, 20, 30} yields
preferable FID, confirming the effectiveness of our schedule.

To further explore the impact of the corrector schedule, we analyzed the
distribution of tokens’ width attribute on Rico dataset. Fig. 7 compares the
histograms of real and generated tokens under various corrector schedules. It
reveals that more frequent correction amplifies the frequency trends of the orig-
inal distribution. Concretely, values that are already common in the real data
(e.g ., w = 1.0 in Fig. 7) become more prevalent, while the occurrence of rarer
values further diminishes. This observation aligns with the trend in Fig. 6, where
frequent correction leads to higher fidelity but at the cost of reduced diversity.
Speed-Quality Trade-off. Since generation speed is crucial in practical ap-
plications, we examined the speed-quality trade-off. To adjust the runtime of
LayoutDM, we used the fast-sampling technique [3], which uses modulated dis-
tribution pθ(zt−∆|zt) instead of pθ(zt−1|zt). ∆ is a step size, and the total
steps are reduced to T ′ = T/∆. Regardless of ∆, Layout-Corrector is applied at
t = {10, 20, 30}. Fig. 8 presents the results on T ′ = {20, 30, 50, 75, 100}. Com-
pared with LayoutDM alone, Layout-Corrector improves the FID score with
only a minimal increase in runtime, offering a superior trade-off. While the orig-
inal LayoutDM’s performance significantly degrades with a smaller T ′, Layout-
Corrector effectively mitigates this issue by rectifying the misgenerated tokens,
demonstrating the robustness in smaller T ′. Notably, Layout-Corrector attains a
competitive FID to that of the original LayoutDM (T ′ = 100) with just T ′ = 20.

To further analyze the benefits of Layout-Corrector for smaller T ′, we ex-
amined the correctness scores pϕ(ẑt−1, t) across different T ′. Fig. 9 presents the
average scores for intermediate tokens ẑt at each t on T ′ = {20, 50, 100}. We
include the scores of real layouts for reference. Note that pϕ(ẑt−1, t) is affected
by the input t because of the training procedure. For example, at smaller t, the
corrupted tokens zt become closer to z0; therefore, most tokens in ẑt−1 align
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Table 2: Comparison with SoTA models on unconditional task. For Align.→, values
that more closely match those of real data are preferred, and we scale the values 100×
for visibility. Best and second-best results are in bold and with underline, respectively.

Rico [8] Crello [45] PubLayNet [50]
Task Model FID↓ Align.→ FID↓ Align.→ FID.↓ Align.→

DLT [28] 6.20 0.386 4.71 0.484 7.87 0.121
LayoutTransformer [15] 7.63 0.068 5.93 0.305 13.90 0.127
LayoutDM [21] 6.39 0.223 5.28 0.279 13.69 0.185
LayoutDM + Corrector 4.79 0.167 4.36 0.232 11.85 0.172

Large models
LayoutDiffusion [47] 3.84 0.092 6.61 0.228 7.57 0.077
LayoutDM* [21] 4.93 0.146 4.40 0.315 10.92 0.158
LayoutDM* + Corrector 4.23 0.127 4.11 0.278 9.85 0.122U

nc
on
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on
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Real data 1.85 0.109 2.32 0.338 6.25 0.0214
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Fig. 10: Comparison of unconditional and conditional generation. In LayoutDM*
+ Corrector, Layout-Corrector is applied to the same intermediate states of Lay-
outDM* [21] at t = {10, 20, 30} during generation process. Consequently, generation
processes of both methods are identical from t = 100 to 30. While LayoutDM* gener-
ates unnatural elements, as highlighted in . . . .the. . . . . .blue . . . . . . . . . . . . .dashed-line. . . . . . . .boxes, they are rectified
by Layout-Corrector in LayoutDM* + Corrector. Refer to Supp. for more results.

with z0. Thus, the corrector learns to predict higher pϕ(ẑt−1, t) at smaller t. For
the original LayoutDM (solid lines), there is a gap between scores at T ′ = 100
and smaller T ′. As indicated in Fig. 5, a lower pϕ(ẑt−1, t) suggests a greater
discrepancy, resulting in inferior FID in Fig. 8. Conversely, by applying Layout-
Corrector (dashed lines), low-scored tokens are reset, mitigating the gap in cor-
rectness scores at the smaller T ′. It allows LayoutDM to leverage high-quality
tokens as clues, effectively avoiding the deterioration in FID.

4.4 Comparison with State-of-the-Arts

Tabs. 2 and 3 present comparisons of Layout-Corrector with SoTA approaches
for unconditional and conditional generation tasks, respectively. Following [21],
we used FID and Alignment for the unconditional task, and Max IoU alongside
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Table 3: Comparison with SoTA models on conditional tasks. Best and second-best
results are in bold and with underline, respectively.

Rico [8] Crello [45] PubLayNet [50]
Task Model FID↓ Max-IoU↑ FID↓ Max-IoU↑ FID↓ Max-IoU↑

LayoutGAN++ [24] 6.84 0.267 - - 24.00 0.263
DLT [28] 3.97 0.288 4.29 0.212 4.30 0.345
LayoutTransformer [15] 5.57 0.223 6.42 0.203 14.10 0.272
LayoutDM [21] 3.51 0.276 4.04 0.197 7.94 0.309
LayoutDM + Corrector 2.39 0.283 3.39 0.202 5.84 0.319

Large models
LayoutNUWA [42] 2.52 0.445 - - 6.58 0.385
LayoutDiffusion [47] 1.13 0.357 4.68 0.253 3.09 0.351
LayoutDM* [21] 2.12 0.302 3.04 0.206 6.25 0.322

C
→

S+
P

LayoutDM* + Corrector 1.71 0.305 2.84 0.210 5.01 0.329

LayoutGAN++ [24] 6.22 0.348 - - 9.94 0.342
DLT [28] 3.28 0.385 3.68 0.278 1.53 0.425
LayoutTransformer [15] 3.73 0.323 3.87 0.258 16.90 0.320
LayoutDM [21] 2.17 0.390 3.55 0.248 4.22 0.380
LayoutDM + Corrector 1.91 0.398 3.32 0.253 2.93 0.390

Large models
LayoutNUWA [42] 2.87 0.564 - - 3.70 0.483
LayoutDM* [21] 1.29 0.460 2.71 0.269 2.69 0.408

C
+

S→
P

LayoutDM* + Corrector 1.22 0.463 2.69 0.271 2.05 0.415

FID for the conditional tasks. For the comparison, we chose the combination
of LayoutDM and Layout-Corrector since it achieves the best performance in
Tab. 1. For comparison with larger models [42, 47], we trained enlarged Lay-
outDM with 12 transformer layers, which is denoted as LayoutDM*. Note that
the architecture of the Layout-Corrector remains the same for LayoutDM*.

As shown in Tabs. 2 and 3, our approach achieves superior or competitive
FID scores compared with SoTA methods. While LayoutDiffusion [47] outper-
formed our approach on PubLayNet and Rico, Layout-Corrector achieves the
best FID on Crello. On conditional tasks, although LayoutNUWA [42] achieved
a notably higher Max IoU by using the substantially larger Code Llama 7B [39]
and additional pre-training data, our method showed superior FID across the
board. Overall, the consistent high performance of Layout-Corrector across a
variety of tasks and datasets underscores its versatility and practical utility.

4.5 Qualitative Evaluation

Fig. 10 illustrates the layouts generated by different models under two tasks on
the Rico and PubLayNet datasets. To demonstrate Layout-Corrector’s impact,
the results of LayoutDM* [21] and LayoutDM* + Corrector in the figure share
the same intermediate states zt in the generation process until the t when the
corrector is first applied. While the overall structures of their outputs are similar,
the enhancements from Layout-Corrector are clearly recognizable. For example,
in the Rico dataset, Layout-Corrector successfully fixes the misalignments in
LayoutDM’s output. Moreover, the corrector rearranges overlapping elements
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in the PubLayNet. Compared with the other layout-generation methods, our
approach consistently generates high-quality layouts, indicating its effectiveness.

Table 4: Ablation study on Rico [8]
with unconditional generation.

T ′ = 100 T ′ = 20

FID↓ Align.→ FID↓ Align.→
Layout-Corrector 4.79 0.167 6.84 0.159

w/o self-attention 5.54 0.151 9.11 0.213
Mask estimation 5.22 0.148 9.66 0.232
Lowest-K 10.6 0.263 11.5 0.359
Correct at every t 97.4 0.002 70.1 0.006

Real Data 1.85 0.109 1.85 0.109

4.6 Ablation Study

To validate each strategy in Layout-
Corrector, we trained and tested the cor-
rector with LayoutDM [21] under the
following configurations. In w/o self-
attention, the corrector uses only MLPs,
lacking the ability to consider the global
harmony of the layout. In Mask esti-
mation, as in [29], the corrector pre-
dicts whether each token was originally
masked rather than estimating if it aligns with the original one. In Lowest-K,
we mask tokens with the lowest 5N · γ̄t scores instead of using the threshold. In
Correct at every t, the corrector is applied at every t during the reverse process.
Except for this setting, the corrector was applied at t = {10, 20, 30}.

Tab. 4 shows the results in unconditional generation for T ′ = {100, 20}.
Layout-Corrector achieved the best FID across different T ′. In contrast, w/o self-
attention resulted in inferior performance, showing the importance of capturing
the relationship between elements. The results also demonstrate that the differ-
ences between Layout-Corrector and existing modules, i.e., Token-Critic [29] and
DPC [30], contribute to higher performance. As described in Sec. 3, the primary
distinctions are (1) the training objective, (2) introducing threshold, and (3)
selective scheduling. The results of Mask estimation, Lowest-K, and Correcting
at every t indicate the effectiveness of each modification, respectively.

5 Conclusion

We introduced Layout-Corrector, a novel module working with a DDM-based
layout-generation model. Our preliminary experiments highlighted (1) the token-
sticking problem with DDMs and (2) the importance of masking mis-generated
tokens to correct them. Based on these insights, we design Layout-Corrector
to assess the correctness score of each token and replace the tokens with low
scores with [MASK], guiding the generative model to correct these tokens. Our
experiments showed that Layout-Corrector enhances the generation quality of
various generative models on various tasks. Additionally, we have shown that it
effectively controls the fidelity-diversity trade-off through its application schedule
and mitigates the performance decline associated with fast sampling.
Limitations and Future Work. While Layout-Corrector adds marginal run-
time, it increases memory usage and total parameter count. Our future work
will aim to incorporate layout-specific mechanisms, e.g., element-relation em-
beddings [20], to improve Layout-Corrector’s layout understanding capabilities.
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