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We present additional results, both qualitative and quan-
titative, here in the supplementary material. We begin by
showcasing differences in examples of real scene images
from our dataset and compare them with the kind of real
images from OPDReal [1]] dataset and OPDMulti[3] dataset
(Section[T). We then present additional qualitative and quan-
titative results (Section[2). We conclude the supplementary
material by providing the details of our human-in-the-loop
framework (Section [3). We also attach a video in the supple-
mentary package that demonstrates human feedback in the
active learning setup.

1. Dataset Visualization

We show more visualizations of raw images as well as
annotated segmentation masks from OPDReal dataset, OPD-
Multi dataset and ours, in Fig|[T} respectively.

We can observe from the visualization that the segmenta-
tion masks for parts in OPDReal are not correctly annotated,
with clear misalignments at part boundaries, as shown in
Fig[T](a). Similarly, OPDMulti also suffers from annotation
inaccuracies, as both of them obtain the 2D segmentation
masks from projection of 3D annotations, a process prone
to reconstruction and re-projection errors; see Fig[2](b). In
addition, some images are labeled with noisy annotations,
especially on objects with reflective surface such as the glass
door in Fig[T] (a) row 4, 8, 9 and Fig 2] (b) row 5. As men-
tioned in our paper, OPDReal focus on images that contain
a single articulated object. Therefore, although there are
multiple articulated objects in an image, only one type of
them will be annotated as seen in Fig[I] (b). Specifically,
some parts of the single object in images are missed such
as Fig|l|(b) row 5, where only 2 drawers of the 4-layered
cabinet are annotated. Again, OPDMulti has the same issue.
Although it claims to be generalized on multiple articulated
objects in images, some objects and parts are still unlabeled
as shown in Fig[2] (a).

Apart from annotation quality, both OPDReal and OPD-
Multi datasets are not guaranteed to have high-resolution
images with appropriate viewpoints. Image data of both
datasets are captured through video frames, so some images
have motion blur as seen in Fig[T](c) row 7, 8 and Fig[2](c)

Table 1: Quantity comparison of models pre-trained on syn-
thetic data only. Results on test set of different datasets.

segm mAP(T)
Dataset | / Method — OPD-C  OPDFormer-C ~ Oursy, /o1,
OPDReal 1.6 2.0 3.0
OPDMulti 2.3 3.0 4.2
Ours 12.7 18.8 234

row 10. Many images in OPDReal and OPDMulti are not
captured from clean viewing angles, which makes the target
part look obscure, as shown in Fig([T](c), (d) and Fig[2] (c).

In our dataset, images data are captured from photograph
and directly labeled in 2D. Hence, we have a rich image
dataset quality and contain clear annotations of moveable
parts for multiple articulated objects presented in an im-
age. In addition, in the images of our dataset, objects are
comprehensively displayed with their main structures fully
contained, ensuring that more than just a fragmentary part is
visible. We present visualization of individual categories of
objects in our dataset in Fig[3]

2. More Visualizations w/o Active Learning

As mentioned in our paper, bridging the synthetic-real
data gap in our task is a significant challenge. To address
this, we introduce a coarse-to-fine active learning approach,
specifically designed to achieve high-accuracy segmentation
on real images. Table|l|shows the performance of different
methods trained exclusively on synthetic data, and test on
the test set of different datasets. Despite using extensive
training data from rendered images of 3D synthetic models,
the accuracy on all real datasets does not exceed 25%. This
underscores the necessity and relevance of our work.

In our paper, we assert that the data skewness in OP-
DReal leads to low overall performance on its test set. From
category-wise results on OPDReal test set in Table 2] accu-
racy on storage category is significantly higher than others,
reflecting its predominance with more than 90% of the data.
Conversely, on our dataset, the category-wise results are
more evenly distributed, as shown in Table[3] The only ex-
ception is the oven and microwave category, which exhibits



Table 2: Category-level results on OPDReal test set with
training with OPDReal train set.

segm mAP (1)
Grounded-SAM ~ OPD-C  OPDFormer-C =~ Ours,,/oar
storage 17.0 70.2 73.9 79.5
dishwasher 22.3 43.4 45.8 49.3
fridge 229 424 434 49.6
oven&micro 94 35.1 36.2 39.5
washer 10.7 314 322 40.2

Table 3: Category-level results on our dataset, with 80% as
training data and 20% as test data.

segm mAP (1)
Grounded-SAM  OPD-C  OPDFormer-C  Ours,, o4z
storage 25.8 76.5 81.4 89.5
dishwasher 36.7 78.3 84.0 93.2
fridge 25.3 71.5 75.0 86.8
oven&micro 16.6 65.3 71.8 74.1
washer 3.8 89.4 92.6 98.0

lower performance. This is attributed to scenes containing
both microwaves and ovens being more complex and typi-
cally featuring a variety of different category objects.

We provide additional qualitative results on OPDReal,
OPDMulti and ours dataset across different methods in Fig[4]
[5]and [f]respectively. We also show qualitative comparison of
Oursy 41 and our final model with coarse-to-fine active
learning in Fig

3. More Results with Active Learning
3.1. Comparison with other AL methods

Different from previous papers using AL to improve the
segmentation results through giving minimum guidance on
correcting the predictions, our work optimizes the entire AL
pipeline, especially, the sampling process in a coarse-to-fine
manner. In this section, we will explain why we did not
evaluate our task on other AL methods.

As mentioned in our paper, previous works such as [4] [6]
employed AL to refine initial 2D segmentation prediction
through key point or region selection. However, [6] use re-
gion impurity and prediction uncertainty for domain adaptive
semantic segmentation, while we focus on instance segmen-
tation without learning from synthetic data, making them
not really comparable. [4] does perform instance segmenta-
tion, via point supervision, but only a preliminary code was
released to “help you understand how it works". Therefore,
we cannot use their implementation for a meaningful com-
parison. Other AL methods aim to close the domain gap,
and we explained in the main paper that we cannot borrow
such methods on our task due to the large feature differences
between current synthetic and our real data.

We notice that Segment Anything Model (SAM) [2] also
supports “click" guidance for segmenting parts. In the below

figure, we show several examples of such point-supervised
segmentation on our data.

In the top row, segmenting moveable parts such as a door
from a cabinet often requires multiple “add" and “remove"
clicks. However, these clicks are insufficient for segmenting
the door of the fridge with light reflections in the middle row.
In real-world scenarios, segmentation accuracy from clicks
is compromised by scene noise, such as a rag on an oven
handle in the bottom row. We show more examples of using
click-assisted labeling tool in the supplementary video.

The main reason why AL using point-supervision is diffi-
cult in our tasks is that the texture separation around move-
able parts is often far less pronounced than those encountered
in “bird-in-sky" or “bee-over-flower" segmentation tasks.
Therefore, traditional AL methods reducing the labeling ef-
forts cannot apply on our task with a lot of uncertainties
(e.g. point selection for best guidance in labeling). All these
limitations motivated our coarse-to-fine AL approach in op-
timizing the AL sampling process, instead of the labeling.

3.2. Details of our AL sampling

In our active learning (AL) setup where we use feedback
from humans in the loop, one of the major tasks is to judge
the quality of annotations output from the model used in
the setup. In coarse AL, we verify the prediction of inter-
action direction, which is intuitive to be correct or wrong.
In fine AL, as mentioned in the main paper, we categorize
the outputs into three types, and based on this categorization,
images are then moved to respective parts of the pipeline as
described below.

e Perfect: If the prediction precisely segments all
moveable parts of articulated objects in the image, the
prediction will be considered as perfect. It will be
automatically moved to the training set for the next
iteration. Note that not all articulated objects will be
segmented in our task — if the object is too small or
only partly shown in the image, it will be ignored as
they are not meaningful in future downstream tasks.



Table 4: Different data and efficiency statistics over each
iteration of the active learning process on our 500-image set
using OPDRCNN-C (OPD-C). Columns represents iteration,
amount of training data, amount of test data, amount of
perfect predictions, amount of bad predictions (numbers of
images and annotations), and time required for human efforts
in hours (metric total lab time described in the main paper).

Iter.  Train Test Perfect Bad (img/anno) Time (hr)
0 50 500 - - -
1 129 421 17 62 /211 1.435
2 207 343 36 4217143 1.064
3 293 257 46 40/ 145 0.985
4 384 166 52 39/128 0.819
5 450 100 32 34/108 0.634
6 512 38 35 271795 0.507
7 550 - 21 17757 0.280
Total: 261 /887 5.724

e Fair: If the prediction outputs partial segmentation
masks with some minor mistakes (such as holes in
the mask, noisy boundary, or wrong prediction on the
background/side face of the object), the prediction will
be considered as fair. It will remain in the test set for
the next iteration. Note that we keep most of outputs
as fair aside from perfect since we aim to minimize
the amount of bad predictions which require manual
annotation.

* Bad: If the prediction fails to segment moveable parts
or incorrectly segments a non-moveable part (such as
combing two moveable parts together, wrong segmen-
tation boundary, or completely missing too many move-
able parts), the prediction will be considered as bad. It
will be manually annotated and merged to the training
set for the next iteration. Note than at every iteration,
completely missed predictions (no predictions with >
75% confidence) will be automatically selected as bad
prediction. In addition, as we aim to minimize the
amount of bad predictions to save human efforts, when
humans review the predictions, we try to select bad
predictions from different scenes and not all bad predic-
tions from the same scenes will be selected.

Fig[§]shows a comparison of perfect, fair and bad predictions
based on our model employed in the fine AL setup.

3.3. Data and efficiency statistics

We present data and efficiency statistics over each iter-
ation of AL process in annotating segmentation masks for
our 500-image set using OPD-C (Table [4), OPDFormer-C
(Table[5), Oursy_ 47, (Table[6) and ours (coarse-to-fine AL)
(Table[7).

Table 5: Different data and efficiency statistics over each
iteration of the active learning process on our 500-image set
using OPDFormer-C.

Iter.  Train Test Perfect Bad (img/anno) Time (hr)

0 50 500 - - -
1 256 294 176 30/ 106 0.997
2 339 211 58 25788 0.693
3 398 152 32 27195 0.630
4 437 113 27 12742 0.344
5 471 79 15 19/68 0.409
6 505 45 14 20/171 0.384
7 550 - 20 251790 0.425

Total: 158 /560 3.882

Table 6: Different data and efficiency statistics over each
iteration of the active learning process on our 500-image set
using Oursy_47..

Iter.  Train Test Perfect Bad (img/anno) Time (hr)
0 50 500 - - -
1 340 210 260 30/97 0.824
2 445 105 82 23/53 0.385
3 550 - 75 30/89 0.466
Total: 83/239 1.675

Table 7: Different data and efficiency statistics over each
iteration of the active learning process on our 500-image
set using ours (coarse-to-fine AL). Columns represent itera-
tion, amount of training data, amount of test data, amount
of correct and wrong (c/w) predictions of interaction direc-
tion, amount perfect predictions, amount of bad prediction
(numbers of images and annotations), and time required for
human efforts in hours.

Iter.  Train Test Posecheck (c/w) Perfect Bad (img/anno) Time (hr)
0 50 500

367/133 305 23/64 0.964

1 382 168

2 490 60 - 93 15/43 0.315

3 550 - - 38 22 /64 0.321
Total: 64 /184 1.6

We observe that OPD-C and OPDFormer-C take 7 itera-
tions in the AL setup, whereas both variants of our model
takes only 3 iterations. Among the two competing methods,
OPDFormer-C consumes less time over OPD-C, indicat-
ing that the predictions from OPDFormer-C are superior to
OPD-C. The only difference between these two methods is
the inclusion of an additional pose check (interaction direc-
tion check) in the first iteration of ours. As a result, our
coarse-to-fine AL requires more time in iteration 1 for this
extra verification step on all 2000 predictions. However,
the total time taken by our method is still less than that of
Oursf — AL.



Table 8: Different data and efficiency statistics over each
iteration of the active learning process on our 2000-image
set using Oursy_ 47..

Iter.  Train Test Perfect Bad Time (hr)
0 550 2000 - - -
1 1811 739 1143 118/392 3.856
2 2305 245 392 102 /341 2.242
3 2449 101 102 42 /156 0.922
4 2550 - 74 27/94 0.504
Total: 289 /983 7.524

Table 9: Different data and efficiency statistics over each
iteration of the active learning process on our 2000-image
set using ours (coarse-to-fine AL)

Iter.  Train  Test
0 550 2000

Pose check (c/w) Perfect Bad (img/anno) Time (hr)

8717285 3.97

1 2073 477 1457/543 1436

2 2368 182 - 214 85/276 1.55

3 2515 35 - 106 41/135 0.71

4 2550 - - 19 16/62 0.29
Total: 2297758 6.52

We present data and efficiency statistics over each itera-
tion of AL process in annotating segmentation masks for our
2000-image set using Ours_ 47, (Table [8)) and ours (coarse-
to-fine AL) (Table @ We observe that the the benefits of
employing the coarse-to-fine AL become increasingly appar-
ent when handling extensive amounts of unlabeled data. The
coarse-to-fine AL reduces the number of bad predictions of
final moveable part segmentation in the fine stage, and the
time for verifying interaction directions is significantly less
than that required for manual annotation of bad predictions.
This is because the time invested in verifying interaction
directions is considerably less than what would be required
to annotate bad predictions manually. We provide details of
time spent for each operation in Section [3.4]

3.4. User study

We conduct an in-lab user study to (i) obtain timing in ver-
ifying and correcting the prediction of interaction direction
in the first iteration, (ii) obtain timing in reviewing the final
moveable mask segmentation predictions after each iteration,
and (iii) obtain timing for manually annotating the bad pre-
dictions. We selected 7 users with basic computer operating
skills. We provided them with the same tools and instruc-
tions as used for the justification of predictions and labeling
of moveable parts in the AL process. They were asked to
verify the predicted interaction directions from visualization
of pose coordinates and value (£x, £y, %), and distinguish
perfect, fair and bad predictions from visualization of the
final results. Finally, they need to annotate moveable parts
for all bad predictions. In our AL setup, each sample image

will only be labeled by one user.

We use labelme [3] as the labeling tool. The average times
taken by human for different tasks in our AL model are as
follows: time to verify and correct the interaction direction
Tenk—dir = 1.4s, time to click the corresponding selection
button in our interface 7.;;.x = 0.65, time to identify whether
the prediction is perfect, fair or bad T.px—msk = 2.4, with
same time for selection 7., = 0.6s, and average per-
annotation labeling time 7,,,, = 14.8s. We also attach
a video in the supplementary material showing the inter-
face of our AL setup for sample selection, correction and
annotation.

We show the user interface for verification in both coarse
and fine stage, as well as the manual annotation in Fig[9]

[[T] separately.
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OPDReal

Figure 1: Visualizations of dataset annotations of OPDReal.



OPDMulti

Figure 2: Visualizations of dataset annotations of OPDMulti.
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Figure 3: Visualizations of dataset annotations of our dataset.
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Figure 4: Qualitative results of different methods on OPDReal test set. "Miss" represents the absence of part segmentation

with > 75% confidence.
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Figure 5: Qualitative results of different methods on OPDMulti test set. "Miss" represents the absence of part segmentation

with > 65% confidence. Note than we lower the confidence threshold for OPDMulti as most scores for predictions are below
75%.
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Figure 6: Qualitative results of different methods on our test set.
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Figure 7: Qualitative results of Ours,, /, 47, and our final model on our test set.
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Figure 8: Comparison of perfect, fair, and bad predictions. We use red circle to highlight those segmentation with minor
mistakes(small holes or noisy boundaries) and red x to indicate erroneous or missed segmentation.
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Method: coarse-to-fine active learning strategy
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Figure 9: Pipeline and user interface of the coarse-stage verification.
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Figure 10: Pipeline and user interface of the fine-stage verification.
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