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Fig. 1: Our instance segmentation of moveable parts, with semantic labels, on real-world photos.
Comparison is made with OPDFormer-C (OPD = openable part detection), the current state of
the art, where small red ×s indicate erroneous or missed labels. With generalization to non-
openable parts, e.g., on lamps and bottles (top right). As an application of accurate moveable part
segmentation, we can manipulate 3D reconstructions of articulated objects (bottom right).

Abstract. We introduce the first active learning (AL) model for high-accuracy
instance segmentation of moveable parts from RGB images of real indoor scenes.
Specifically, our goal is to obtain fully validated segmentation results by humans
while minimizing manual effort. To this end, we employ a transformer that utilizes
a masked-attention mechanism to supervise the active segmentation. To enhance
the network tailored to moveable parts, we introduce a coarse-to-fine AL ap-
proach which first uses an object-aware masked attention and then a pose-aware
one, leveraging the hierarchical nature of the problem and a correlation between
moveable parts and object poses and interaction directions. When applying our
AL model to 2,000 real images, we obtain fully validated moveable part segmen-
tations with semantic labels, by only needing to manually annotate 11.45% of
the images. This translates to significant (60%) time saving over manual effort
required by the best non-AL model to attain the same segmentation accuracy. At
last, we contribute a dataset of 2,550 real images with annotated moveable parts,
demonstrating its superior quality and diversity over the best alternatives.

1 Introduction

Most objects we interact with in our daily lives have dynamic movable parts, where the
part movements reflect how the objects function. Perceptually, acquiring a visual and

https://orcid.org/0009-0000-3379-6103
https://orcid.org/0000-0003-1429-3804
https://orcid.org/0000-0003-1591-4668
https://orcid.org/0000-0003-1991-119X


2 R. Wang et al.

Pose-aware Masked Decoder

		𝐿! 		𝐿" 		𝐿#

surfaces feature 
query embeddings

Fine stage

input image

object bbox 𝑏$

Detector 
Backbone

𝑓

object query 
embeddings

FC

MLP ×2

MLP

class label

6 DoF
pose

object 
maskMLP

interaction 
direction

interaction 
surface

refined mask 𝑚%

part masks
part bbox
part labels

image features 𝑓&'

Pixel 
Decoder

Coarse stage

Attention
E & D

drawer

drawer

drawer

Fig. 2: Overview of our pose-aware masked attention network for moveable part segmentation
of articulated objects in real scene images. Utilizing a two-stage framework, we first derive a
coarse segmentation by predicting the object mask, its 6 DoF pose, and the interaction direction,
subsequently isolating the interaction surface of the objects. In the fine segmentation stage, we
combine the object mask and interaction surface to form a refined mask, enabling the extraction
of fine-grained instance segmentation of moveable parts.

actionable understanding of object functionality is a fundamental task. In recent years,
motion perception and functional understanding of articulated objects have received
increasing attention in vision, robotics, and VR/AR. Aside from per-pixel or per-point
motion prediction, the detection and segmentation of moveable parts plays a vital role
in embodied AI applications involving robot manipulation and action planning.

In this paper, we tackle the problem of instance segmentation of moveable parts in
one or more articulated objects from RGB images of real indoor scenes, as shown in
Figure 1. Note that we use the term articulated objects in a somewhat loose sense to
refer to all objects whose parts can undergo motions; such motions can include opening
a cabinet door, pulling a drawer3, and the movements of a lamp arm. Most prior works
on motion-related segmentations [11, 17, 39] operate on point clouds, which are more
expensive to capture than images while having lower resolution, noise, and outliers.
Latest advances on large language models (LLMs) and vision-language models (VLMs)
have led to the development of powerful generic models such as SAM [16], which
can excel at generating quality object masks and exhibit robust zero-shot performance
across diverse tasks owing to their extensive training data. However, these methods
remain limited in comprehensive understanding of moveable object parts.

To our knowledge, OPD [14], for “openable part detection", and its follow-up, OPD-
Multi [28], for “openable part detection for multiple objects”, represent the state of the
art in moveable part segmentation from images. However, despite the fact that both
methods were trained on real object/scene images, there still remains a large gap be-
tween synthetic and real test performances: roughly 75% vs. 30% in segmentation ac-
curacy [28]. The main reason is that manual instance segmentation on real images to
form ground-truth training data is too costly. As a remedy, OPD and OPDMulti both
opted to manually annotate 3D mesh or RGB-D reconstructions from real-world ar-
ticulated object scans and project the obtained segmentation masks to 2D. Thus, for

3 Strictly speaking, articulations are realized by “two or more sections connected by a flexible
joint,” which would not include drawer sliding. However, as has been done in other works in
vision and robotics, we use the term loosely to encompass more general part motions.
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each reconstructed 3D scene, there is only a one-time annotation, in 3D, required, after
which thousands of annotated images can be rendered. Clearly, such an indirect anno-
tation still leaves a gap between rendered images of digitally reconstructed 3D models
and real photographs, with both reconstruction errors and re-projection errors due to
view discrepancies hindering the annotation quality on images.

To close the aforementioned gap by addressing the annotation challenge, we present
an active learning (AL) [2, 24, 40] approach to obtain high-accuracy instance segmen-
tation of moveable parts, with semantic labels, directly on real scene images containing
one or more articulated objects. AL is a semi-supervised learning paradigm, relying on
human feedback to continually improve the performance of a learned model.

Specifically, our goal in this work is to obtain fully validated segmentation results by
humans while minimizing manual segmentation efforts. In other words, we would like
the human to manually segment as few images as possible while ensuring that all the
images in our dataset have been segmented accurately, either by a neural segmentation
network that is trained by available ground-truth data or by human. To this end, we
employ a transformer-based [7] segmentation network that utilizes a masked-attention
mechanism [6]. To enhance the network for moveable part segmentation, we introduce
a coarse-to-fine AL model which first uses an object-aware masked attention and then
a pose-aware one, leveraging the hierarchical nature of the problem and a correlation
between moveable parts and object poses and interaction directions.

As shown in Figure 2, in the coarse annotation stage, our AL model with object-
aware attention predicts object masks, poses, and interaction directions, so as to help
isolate interaction surfaces on the articulated objects. In the fine annotation stage, we
combine the object masks and interaction surfaces to predict refined segmentation masks
for moveable object parts, also with human-in-the-loop. Unlike prior works on active
segmentation [29,37] which mainly focused on the efficiency of human annotations us-
ing point- or region-based supervision for fast labeling, we optimize the human-in-the-
loop pipeline to reduce AL iterations and samples required for manual annotation. Our
network learns the regions-of-interests (ROIs) from the pose-aware masked-attention
decoder for better segmentation sampling in AL iterations in the second stage, where
we categorize samples in different branches for further training, testing, and annotation.

In summary, our main contributions include:

– We introduce the first AL framework for instance segmentation of moveable parts
from RGB images of real indoor scenes. When applying our AL model to 2,000
real images, we obtain fully validated moveable part segmentations with semantic
labels, by only needing to manually annotate 11.45% of the images. This translates
to significant (60%) time saving over manual effort required by the best non-AL
model, i.e., OPDFormer-C [28], to attain the same segmentation accuracy.

– Our coarse-to-fine AL model, with both object- and pose-aware masked-attention
mechanisms, lead to reduced human effort and improved accuracy in moveable part
segmentation over state-of-the-art (SOTA) methods: OPD [14] and OPDMulti [28].

– Our scalable AL model allows us to accurately annotate a dataset of 2,550 real
photos of articulated objects in indoor scenes. We show the superior quality and
diversity of our new dataset over current alternatives [14, 28], and the resulting
improvements in segmentation accuracy.



4 R. Wang et al.

2 Related Works

Articulated objects dataset. The last few years have seen the development of articu-
lation datasets on 3D shapes. Of the many, ICON [10] build a dataset of 368 moving
joints corresponding to various parts of 3D shapes from the ShapeNet dataset [5]. The
Shape2Motion dataset [33] provides kinematic motions for 2,240 3D objects across
45 categories sourced from ShapeNet and 3D Warehouse [1]. The PartNet-Mobility
dataset [36] consists of 2,374 3D objects across 47 categories from the PartNet dataset [21],
providing motion annotations and part segmentation in 3D.

All these datasets are obtained via manual annotations and are synthetic in na-
ture. Since sufficient training data is made available by these synthetic datasets, models
trained on them can be used for fine-tuning on real-world 3D articulated object datasets
with limited annotations. However, models trained exclusively on synthetic data cannot
generalize well under real-world scenarios. Bridging the synthetic-real data gap remains
a reoccurring challenge; see the supplementary material for details.

Recently, OPD [14] and its follow-up work OPDMulti [28], provide two 2D image
datasets of real-world articulated objects: OPDReal and OPDMulti. In OPDReal, im-
ages are obtained from frames of RGB-D scans of indoor scenes containing a single
object. OPDMulti, on the other hand, captures multiple objects. Both datasets come
with 2D segmentation labels on all openable parts along with their motion parame-
ters. However, due to the nature of annotation process, the 2D part segmentation masks
obtained via 3D-to-2D projection do not fully cover all openable parts in the image.
Also, in OPDReal, objects are scanned from within a limited distance range. Practical
scenarios and use cases are likely going to have large camera pose and distance varia-
tions. Although OPDMulti incorporates such viewpoint variations, a large portion of it
contains frames without any articulated objects, which directly affects trained models.

To overcome these limitations, we contribute a 2D image dataset of moveable ob-
jects present in the real world (furniture stores, offices, homes), captured using iPhone
12, 12 Pro and 14. We then use our coarse-to-fine AL framework (Figure 3 and Section
4) to learn generalized 2D segmentations for moveable object parts.

Part segmentation in images. Early approaches [31, 32, 35] to 2D semantic part seg-
mentation developed probabilistic models on human and animal images. While not ad-
dressing the 2D semantic part segmentation problem as such, [3, 12, 15, 20, 22] tackled
the problem of estimating 3D articulations from human images, which requires an un-
derstanding of articulated regions in the input image.

Recently, the development of large visual models, such as SAM [16], has addressed
classical 2D vision tasks, such as object segmentation, surpassing all existing models.
Such large pre-trained models can be directly employed for zero-shot segmentation on
new datasets. Follow-up works [8, 43] to SAM aim at multi-modal learning by gen-
eralizing to natural language prompts. For the task of moveable part segmentation in
real scene images, we observe an unsatisfactory performance using such models. This
is expected since they were never trained on any moveable parts datasets, and there-
fore, lack an understanding of articulated objects. To our knowledge, OPDMulti [28]
is the SOTA model that can segment moveable parts in an input image, and is built on



Active Coarse-to-Fine Segmentation of Moveable Parts from Real Images 5

coarse AL: interaction direction fine AL: part mask

initial
train set

FC

MLP ×2

MLP

MLP

+𝑧

+𝑦

predicted 
interaction direction

+𝑧

+𝑦

correct

wrong

+𝑧

refined mask

Pose-aware 
Masked Decoder 

perfect

fair

missed / bad

next iteration

annotation 
module

test set

Fig. 3: Our coarse-to-fine Active Learning (AL) training pipeline. The coarse AL applys on in-
teraction directions and retains high-quality predictions while manually rectifying the rest. These
rectified predictions form a constructive prior for refined mask prediction. Subsequently, the fine
AL stage utilizes these refined masks, employing an iterative training method with continuous
human intervention for accurate part mask annotation.

the Mask2Former architecture [6]. In our work, we use a transformer architecture in a
coarse-to-fine manner to obtain moveable part segmentation (Section 4).

Active learning for image segmentation. Active learning (AL) is a well-known tech-
nique for improving model performance with limited labeled data. This, in turn, allows
the expansion of labeled datasets for downstream tasks. Prior works [4,25–27,38] have
presented different AL frameworks to acquire labels with minimum cost for 2D seg-
mentation tasks. There exist AL algorithms for such tasks [23, 34] that are specifically
designed to reduce the domain gap by aligning two data distributions. We cannot bor-
row such methods to reduce the domain gap between synthetic and real scene images of
moveable objects because of the large feature differences: our synthetic images contain
a single object without background or texture, and most objects have an empty interior.

More recently, [29,37] employed AL to refine initial 2D segmentation masks through
key point or region selection, requiring little human guidance. These works focus on
minimize labeling efforts over the prediction results, whose supervisions effectively
correct prediction errors in object masks. However, due to potentially multiple move-
able parts, such point/region selection is ambiguous for articulated objects. As such, we
design an AL framework based on our two-stage network that reduces manual effort
by focusing on: (a) using an improved part segmentation model for generating better
samples (Section 4.1), and (b) employing a coarse-to-fine strategy to optimize the AL
working flow (Section 4.2).

3 Problem Statement

Given a set of images D captured from the real-world scene, our input is a single RGB
image I ∈ D containing one or more articulated objects oi from one or more categories
ci ∈ {cabinet, dishwasher, fridge,microwave, oven,washer}. We assume that each ob-
ject oi has more than one moveable parts P = {p1, . . . , pk} according to its func-
tionality. Our first goal is to predict the 2D bounding box bi, the segmentation mask
mi represented by a 2D polygon and the semantic label li ∈ {door, drawer} for each
moveable part. Extending the above goal, we also aim to build a labeled image dataset
that provides accurate 2D segmentation masks and labels for all pi’s, for all I ∈ D.
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4 Method

To address the above problem, we propose an active learning setup that consists of
a transformer-based learning framework coupled with a human-in-the-loop feedback
process. To this end, we present an end-to-end pose-aware masked-attention network
(Fig 2) that works in a coarse-to-fine manner for part segmentation and label prediction.
By making use of coarse and fine features from the network, segmentation masks are
further refined by humans in the AL setup (Fig 3), resulting in precise moveable part
masks, while minimizing human efforts spent on manual segmentation.

4.1 Pose-aware masked-attention network

Fig 2 provides a comprehensive depiction of our network architecture, encompassing
two distinct stages. In the coarse stage, the network processes a single RGB image
and computes a refined mask based on outputs from multiple heads, which accurately
pinpoints the region containing moveable parts. This stage filters out noise predictions
on background and extraneous portions of the object. Subsequently, fine stage takes the
refined mask and image features to generate part masks, bounding boxes, and semantic
labels for all moveable parts of all articulated objects in the images.

Coarse stage. There are three steps in coarse stage. First, the input image is passed
through a backbone object detector network based on MaskRCNN [9], producing multi-
scale feature maps f and 2D object bounding boxes bo. A pixel decoder [42] upsamples
f for subsequent processing in the fine stage. Second, we use a modified version of the
multi-head attention-based encoder and decoder [42] to process f . Inspired by [13], we
replace the original object query embedding module in [42] by our new object query
embedding with normalized centre coordinates (cx, cy), width and height (w, h) from
the detected 2D bounding box, enabling the decoder to generate new object query em-
beddings containing both local global information and estimate 6DoF pose from the 2D
bounding box. Third, the decoded queries are passed into multiple task-specific MLP
heads for (a) object class prediction, (b) 6DoF object pose estimation, (c) object inter-
action direction prediction and (d) object mask prediction.

We obtain the object class with a fully connected network with 3 layers followed
by a softmax activation. For 6DoF pose estimation, we use two identical MLP heads
with 3 linear layers with ReLU activation and different output dimensions – one for
estimating camera translation t̃ =

(
t̃x, t̃y, t̃z

)
, and the other for estimating the camera

rotation matrix R̃ ∈ SO(3) as described in [41].
The MLP head for interaction direction prediction outputs a set of 6 possible in-

teraction directions d ∈ {±x,±y,±z} corresponding to the 6DoF coordinates. Using
bo and the estimated 6DoF object pose, we can obtain the corresponding 3D oriented
bounding box Bo, which tightly fits the bo. From among the eight vertices in Bo, we
select vertices of the face along the interaction direction as the representative 2D box
for the interaction surface, and use it to crop the input image. This cropped image is
further multiplied with the object 2D binary mask to filter out background pixels, ob-
taining the refined binary object mask mr, which guides the subsequent fine stage to
focus exclusively on the relevant features of the articulated object.
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Fine stage. There is just one component to this stage, which is the masked-attention
decoder from Mask2Former [6] (see Figure 2). It is made up of a cascade of three
identical layers, Li’s. L1 takes as input image features fpd and the refined mask, mr,
and outputs a binary mask which is fed to the next layer. Eventually, the binary mask at
the output of L3 is multiplied with fpd resulting in moveable part segmentation in the
RGB space. We call this our pose-aware masked-attention decoder.

Loss functions. We formulate the training loss as below

L = Lclass + Ldir + Lom + Lpos + Lfine (1)

where Lclass is the binary-cross entropy for object class prediction, Ldir is the cross-
entropy loss for interaction direction prediction, Lom is the binary mask loss for object
mask prediction. We define the loss for pose estimation as Lpos = λtLt + λrotLrot,
where Lt is the L2-loss of the translation head and Lrot is the geodesic loss [19] of the
rotation head. We set λt and λrot to 2 and 1 respectively. We use a pixel-wise cross-
entropy loss for the fine stage.
When pre-training, we jointly train our two-stage network in an end-to-end fashion
(see Section 6). During fine-tuning on real images with part annotations, we fix MLP
weights since ground truth poses and object masks are not available.

4.2 Coarse-to-fine active learning strategy

Our active learning setup, consisting of human-in-the-loop feedback, unfolds in a coarse-
to-fine manner (see Figure 3). We independently run AL workflow on outputs of both
coarse and fine stages from Section 4.1.

In coarse AL part, Coarse stage generates predictions for the test set. In our ex-
periment setup, the test set is the enhancement set. During this phase, users validate
interaction direction predictions and rectify inaccuracies. With ground-truth interaction
directions established, refined masks mr are computed and input into the fine stage.

In fine AL part, part segmentation mask and label outcome from the Fine stage are
subject to user evaluation, categorized as perfect, missed, or fair. Specifically: i) A per-
fect prediction implies coverage of all moveable parts in the final segmentation masks,
without any gaps, as well as accurate class labels for each segmented part; ii) A missed
prediction effectively refers to a null segmentation mask, and/or erroneous class labels;
iii) A fair prediction denotes an output segmentation mask that may exhibit imperfec-
tions such as gaps or rough edges, and/or may have inaccuracies in some part class la-
bels. We provide extensive examples of these scenarios in our supplements. During the
AL process, perfect predictions are directly incorporated into the next-iteration training
set. For all wrong predictions, we employ the labelme [30] annotation interface to man-
ually annotate the part mask polygons, and include such images in the next-iteration
training set. Fair predictions, on the other hand, remain in the test set for re-evaluation.

The AL workflow on the fine stage continues iteratively until all images within the
test set transition to the training set, becoming well-labeled and eventually leaving the
test set vacant. Benefiting from the verified ground-truth interaction direction estab-
lished in the coarse AL part, the Fine stage hones in on features of the target surface,
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Table 1: Dataset statistics across six articulated object categories for OPDReal, OPDMulti and
our datasets. Microwave and Oven categories are merged due to their co-occurrence in real
scenes. Compared to OPDReal, our dataset is relatively more balanced in terms of sample distri-
bution of different categories. OPDMulti does not provide category-wise information, and only
19K out of 64K total images are valid with target and annotation. Parts/img shows the average
parts annotated for each image. Our dataset exhibits the most object and part diversity.

Category Total Parts/img

Storage Fridge Dishwasher Mic.&Oven Washer

OPDReal [14]

Objects 231 12 3 12 3 284

2.22
Images 27,394 1,321 186 823 159 30K

image % 91.67% 3.93% 0.62% 2.75% 0.53% 100%
Parts 787 27 3 13 3 875

OPDMulti [28]
Objects - - - - - 217

1.71Images - - - - - 19K/64K
Parts - - - - - 688

Ours

Objects 176 51 31 62 13 333

4.33
Images 925 370 315 775 175 2550

image % 36.27% 14.51% 12.35% 30.39% 6.8% 100%
Parts 896 159 31 62 13 1161

omitting noisy object parts. This streamlined focus notably expedites the annotation
process. Further insights into the human verification and annotation procedures will be
provided in our supplementary materials.

5 Datasets and Metrics

Datasets. We use three real image datasets in our experiments: (1) OPDReal [14], (2)
OPDMulti [28], and (3) our dataset. Our dataset images are obtained from the real world
by taking photographs of articulated objects in indoor scenes from furniture stores, of-
fices, and homes, captured using iPhone 12, 12Pro and 14. Images are captured with
varying camera poses and distances from the objects, and an image can contain more
than one object, with multiple moveable parts per object. Differences to OPD and OPD-
Multi datasets are explained in Section 2.

We consider six object categories: Storage, Fridge, Dishwasher, Microwave, Washer,
and Oven. A comparison of dataset statistics is presented in Table 1. OPDReal com-
prises of ∼30K images, with each image depicting a single articulated object. OPD-
Multi contains ∼64K images. Among these, only 19K images are considered “valid",
containing at least one articulated object. Our dataset has a total of 2,550 images, with
each image showcasing objects from several categories. We organize our dataset ac-
cording to the primary object depicted in each image. Our dataset stands out by offering
the highest diversity of objects and parts among the compared datasets, including 333
different articulated objects and 1,161 distinct parts.

In terms of the moveable part annotation, both OPDReal and OPDMulti generate
annotations on a 3D mesh reconstructed from the RGB-D scans, and project these 3D
annotations back to the 2D image space to get 2D part masks. This process is prone to
reconstruction and projection errors. We, on the other hand, create annotations on the
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captured images directly using our coarse-to-fine active learning framework. See the
supplementary material for annotation quality comparisons.

Table 1 shows that the majority (91.67%) of data samples in OPDReal belong to the
Storage category, with the rest distributed among the remaining categories. In contrast,
our dataset offers a more uniform data distribution across all six categories.

Metrics. To evaluate model performance and AL efficiency, we use the following:

– Mean Average Precision (mAP): We report mAP@IoU=0.5 for correctly predict-
ing the part label and 2D mask segmentation with IoU ≥ 0.5. This metric, which
is applied to 2D mask segmentation, is more precise for evaluating segmentation
quality than BBox mAP used by OPD [14], which only assesses boundary accuracy
and overlooks finer details such as mask edges and internal holes.
The ground-truth (GT) segmentations over an image dataset to measure mAP are
obtained by applying AL over the dataset with full validation by humans.

– AL iterations: We report the number of iterations required during active learning.
This metric represents the efficiency of the overall AL pipeline.

– Annotated images: We report the numbers of images and corresponding parts re-
quired for manual annotation for each iteration during AL. This metric helps us
evaluate the efficiency of the AL sampling process.

– Total lab time: We report the total lab time required for labeling a dataset. For
methods which employ AL, it includes time spent on compulsory sampling after
each iteration and manual annotation in each iteration. For methods without AL, it
calculates the time spent on manual annotation of all failed predictions. This metric
provides an overview of human effort required for all methods. See Section 3.4 in
the Supplementary Materials for details of human efforts in our AL process.

6 Experiments

We start our experiments by rendering synthetic images from the PartNet-Mobility
dataset [36] with diverse articulation states, enabling us to obtain sufficient annota-
tions for training 2D segmentation networks and support transfer learning applications.
The synthetic dataset contains ∼32K images, evenly distributed across categories, and
randomly partitioned into training (90%) and test sets (10%).

We implement our network in PyTorch on two NVIDIA Titan RTX GPUs. All im-
ages are resized to 256×256 for training. For pre-training on PartNet-Mobility, we use
the Adam optimizer with an initial learning rate (lr) of 2.5e-4, reducing it by γ = 0.1
at 1K and 1.5K epochs separately over a total of 2K epochs. When fine-tuning on real
images, we use the same lr and γ at 3.5K and 4K epochs over a total of 4.5K epochs.

6.1 Competing methods

We compare our active coarse-to-fine part segmentation model with three 2D segmen-
tation methods and also analyze two variants of our proposed approach.
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Table 2: Comparing segmentation accuracy against competing methods and variants of our
method on the unseen test set of 2,000 real images. In the table, “AL” indicates whether the
method uses active learning. All methods take the train set as the training data, and are evaluated
on the test set. Methods in the last two columns perform AL on the enhancement set. The “Time”
row represents the total lab time metric described in Section 5, only for methods using AL.

Method

Grounded-SAM [8] OPD-C [14] OPDFormer-C [28] Oursw/oAL Oursf−AL Ours

AL - - - - ✓ ✓
segm mAP ↑ 23.1 45.2 68.4 77.3 91.2 91.3
Time (hr) ↓ - - - - 1.675 1.6

– Grounded-SAM [8], which combines Grounding-DINO [18] and Segment Any-
thing [16], is a foundational vision-language model that can be used for zero-shot
2D object detection and segmentation, and supports text prompts. In our experi-
ments, we set the text prompt as [door, drawer] for segmentation results.

– OPD-C [14], which is the first work for detecting openable parts in images based
on MaskRCNN [9]. This is the base variant without camera pose for training.

– OPDFormer-C [28], a follow-up of OPD-C based on Mask2Former [6], is the
SOTA for openable part detection of multiple articulated objects in images.

– Oursw/oAL is a variant that does not use human feedback – it infers part segmen-
tation results based only on the transformer-based model.

– Oursf−AL is variant of our approach that uses only the fine stage of the AL frame-
work. That is, verification and annotation of just the part masks is done.

6.2 Evaluation on Our Dataset

We perform two key evaluations on our dataset, one for segmentation accuracy and one
for annotation efficiency, while comparing to SOTA alternatives, with or without AL.

We work on 2,550 images with a split of 50/500/2000 into train/enhancement/test
sets. The train set has been fully annotated manually and it is used by all methods,
except for Grounded-SAM, for fine-tuning. The enhancement set, initially unlabeled,
is employed by AL models to progressively improve the learning. The test set of 2,000
images is unseen by all methods, including AL, when evaluating segmentation accuracy.
When assessing annotation efforts, we apply the methods on both the 500-image set and
the 2,000-image set to examine how the efficiency achieved by our AL model scales.

Segmentation accuracy on test set. Table 2 compares four non-AL and two AL meth-
ods. Among four non-AL methods (columns 1-4), Grounded-SAM is without fine-
tuning and has the lowest performance. This demonstrates that current generic large
foundational models are still limited in understanding object parts without adequate
training on well-labeled data. Despite the small (50-image) train set, models fine-tuned
on it produce significant improvements. Specifically, Oursw/oAL model surpasses all
competing methods with over 75% segmentation mAP, while OPDFormer-C falls short
of 70%, and OPD-C scores below 50%. This discrepancy stems from the architectural
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Table 3: Comparison of manual segmentation efforts required for different methods in annotating
segmentation masks for two sets of images of different sizes. In the table, “AL” indicates whether
the method uses active learning for labeling. All methods are trained on the original 50-image
train set, when annotating the 500-image set, When annotating the 2,000-image set, we add the
500 images with ground-truth segmentations to the train set (50+500=550 images).

Dataset size Row ID Method AL Iterations #Images / Parts. Time (hr) ↓

500 images

1 Grounded-SAM - - 479 / 1,711 7.54
2 OPD-C - - 483 / 1,720 7.58
3 OPDFormer-C - - 324 / 1,248 5.62
4 Oursw/oAL - - 210 / 762 3.58
5 OPD-C ✓ 7 261 / 887 5.7
6 OPDFormer-C ✓ 7 158 / 560 3.9
7 Oursf−AL ✓ 3 83 / 239 1.675
8 Ours ✓ 3 64 / 184 1.6

2,000 images

1 Grounded-SAM - - 1,888 / 8,119 35.5
2 OPD-C - - 1,420 / 6,391 28.3
3 OPDFormer-C - - 792 / 3,511 16.3
4 Oursw/oAL - - 625 / 2,815 13.4
5 Oursf−AL ✓ 4 289 / 983 7.5
6 Ours ✓ 4 229 / 158 6.5

designs of OPD-C and OPDFormer-C, which were built on vanilla MaskRCNN and
Mask2Former for general segmentation tasks but fail to capture the nuances of artic-
ulated objects, where movable parts are closely tied to object pose and interaction di-
rections. In contrast, our network effectively leverages the hierarchical structure of the
scene, objects, and parts therein, resulting in a much better performance.

As seen in the last two columns of Table 2, by performing AL on the enhance-
ment set, the performance is significantly boosted over non-AL methods, reaching over
90% accuracy, with less than 1.7 hours spent on manual segmentation. Figure 6 shows
qualitative results of different methods on our test set.

The segmentation accuracy of our two AL alternatives is close since they share the
identical network architecture. But they differ in AL training strategies, which impacts
labeling efficiency. On the 500-image enhancement set, our coarse-to-fine AL strategy
leads to a slight improvement (only 4.5%) on human annotation effort. We show next
that on a larger set to perform AL, the improvement becomes more significant.

Annotation efficiency comparison. Table 2 shows that with 1.6 hours of manual seg-
mentation to process images with missed predictions, our AL model is able to fully
validate the moveable part segmentations and semantic labels for the 500-image en-
hancement set. To obtain the same GT annotations on this set, with respect to an non-AL
method such as Grounded-SAM, one must manually correct all images with erroneous
or imperfect segmentations. Specifically, Grounded-SAM could only yield less than 5%
perfectly annotated images, with the rest (479) needing manual processing.

In Table 3 (top), we compare manual efforts, including number of images, parts,
and lab times, required across different methods to obtain GT for the 500-image set.
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Table 4: Ablation study on our key components.

Row ID Mask Pose Interaction direction AL segm mAP ↑ Time (hr) ↓

1 - - - - 68.4 -
2 ✓ - - - 74.9 -
3 ✓ ✓ ✓ - 77.3 -
4 - - - ✓ 87.3 3.9
5 ✓ - - ✓ 89.1 3.1
6 - ✓ ✓ ✓ 90.8 2.4
7 ✓ ✓ ✓ ✓ 91.3 1.6

Table 5: Quantitative comparison against com-
peting segmentation methods and our model
variant on OPDReal, OPDMulti test set.

segm mAP (↑)

Grounded-SAM OPD-C OPDFormer-C Oursw/oAL

OPDReal 16.5 44.5 46.3 51.6
OPDMulti 8.0 25.6 27.6 31.5

Oursw/oAL shows the best efficiency among non-AL methods, but it still takes 3.58
hours to annotate 210 images with 762 parts. Rows 5-8 underscore the benefits of AL
for annotation efficiency. By employing AL, in rows 5 & 6, OPD-C and OPDFormer-
C demonstrate marked improvements over their non-AL versions. However, they still
require 5.7 and 3.9 hours, respectively. Due to their tendency to generate noisy predic-
tions on irrelevant parts of the object or background, most predictions are categorized
as fair as described in Section 4.2, leading to more iterations in AL and additional time
spent on sampling. In contrast, as shown in rows 7 & 8, both variants of our AL model
complete in 3 iterations, with our coarse-to-fine AL methods requiring the least images
for labeling and minimum time efforts.

In Table 3 (bottom), we report all the numbers to obtain GT annotations for a larger
set of (2,000) images. What is most notable is that the efficiency gain in manual anno-
tation time by our coarse-to-fine AL strategy has improved from less than 5%, for the
smaller image set of 500, to more than 13% (6.5 hours vs. 7.5 hours). This demonstrates
that our coarse-to-fine AL approach is particularly beneficial for large-scale annotation
tasks, where the time saved on annotation significantly outweighs the extra time spent
on sampling. Please check our supplement for detailed AL iterations.

Ablation study. Table 4 highlights the need and contributions of key components of
our method on improving prediction accuracy and minimizing human efforts. Columns
2-5 respectively indicate the presence of: Mask object mask head; Pose object pose
estimation head; Interaction direction interaction direction prediction head; AL active
learning. Row 4 and 5 uses the fine AL stage on part mask alone due to the absence of
pose and interaction direction prediction module. Row 6 and 7 use our coarse-to-fine
AL strategy. Results in Table 4 clearly justify the coarse-to-fine design in our method,
which gives the best performance (see row 7).

6.3 Evaluation on OPDReal and OPDMulti

In addition, we assess the performance of different models on the OPDReal and OPD-
Multi dataset, using their respective train and test splits.

As shown in Table 5, Oursw/oAL method outperforms the rest. However, with more
than 70% training data, all methods still fail to achieve >55% accuracy on OPDReal.
This limitation primarily stems from data skewness towards the Storage category in
OPDReal, which constitutes more than 90% of total samples, and results in poor gen-
eralization across other object categories. See category-wise results in the supplement.
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OPDRCNN-C OPDFormer-C Oursw/o AL GTGrounded-SAM

OPDReal OPDMulti

OPDRCNN-C OPDFormer-C Oursw/o AL GTGrounded-SAM

Fig. 4: Qualitative results on OPDReal and OPDMulti test set. See supp. for more results.

input part 
reconstruction

part 
manipulation input part 

reconstruction
part 

manipulation

Fig. 5: Part-level reconstruction and manipulation of the bottle and dishwasher

Performance on OPDMulti is further compromised by an abundance of noisy data
in its test set [28]. From the qualitative results in Figure 4, we observe that some open-
able parts are cluttered or missed in the GT annotation, while our method accurately
segments these parts. This discrepancy also contributes to the low accuracy.

7 Application

Our work demonstrate practical applications in part based reconstruction and manipu-
lation of articulated objects from images. Given a set of multi-view RGB images of an
articulated object, our model predicts precise segmentation masks of moveable parts in
each image. This enables part based 3D reconstruction using masked images for both
moveable parts and the main body of the object. The resulting 3D models of parts allow
for easy manipulation of moveable parts to unseen states in 3D as shown in Figure 5.

8 Conclusion

We present the first active segmentation framework for high-accuracy instance segmen-
tation of moveable parts in real-world RGB images. Our active learning framework,
integrating human feedback, iteratively refines predictions in a coarse-to-fine manner,
and achieves close-to-error-free performance on the test set. By leveraging correlations
between the scene, objects, and parts, we demonstrate that our method can achieve
state-of-the-art performance on challenging scenes with multiple cross-categories ob-
jects, and significantly reduce human efforts for dataset preparation.

Additionally, we contribute a high-quality and diverse dataset of articulated objects
in real-world scene, complete with precise moveable part annotations. We will expand
it further to support the vision community for understanding scene from images. We
also hope our work catalyzes future motion- or functionality-aware vision tasks.
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OPDRCNN-C OPDFormer-C ours GTinput Grounded-SAM Oursw/o AL

Fig. 6: Qualitative results on test set from our dataset. We visualize predictions results on different
object categories using 3 competing methods and our final model. Our method outputs better seg-
mentation masks over moveable parts across multiple objects in the image with clear separation
of parts and small parts segmentation (Row 1, 4, 5). Our results also show that the coarse-to-fine
segmentation framework can effectively reduce segmentation errors from unwanted objects (Row
2) and object side surfaces (Row 2, 3, 6, 8). More results in the supplementary materials.
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