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1 Capture System Setup

As shown in Fig. 1 (a), our Light Stage system features 4D data capture capa-
bilities, consisting of 24 time-consistent dynamic cameras capable of capturing
multi-view videos at 60FPS with a resolution of 4096× 3000 pixels. Each cam-
era is hardware-controlled with a time error of less than 1 microsecond. The 24
cameras are precisely calibrated to obtain accurate intrinsic and extrinsic pa-
rameters. To minimize perspective errors caused by facial shadows, we employ
multiple surrounding light sources. Subjects are constrained to chairs during
performances, maintaining relatively static body movements, which aligns with
the facial capture requirements in industrial production processes.

During filming, we capture videos for 10 identities with 2 segments of videos
each, lasting approximately 20 seconds for a segment. In one segment, the sub-
jects spontaneously recite a lengthy passage to simulate natural speech con-
ditions. In the other segment, the subjects randomly change expressions, with
many expressions being extreme, involving severe facial distortions and wrinkles,
to validate the algorithm’s generality and adaptability to extreme scenarios. We
show some examples in Fig. 1 (b).

2 Implementation Details

2.1 Gaussian Normal Expansion

The Gaussian function in 3D space corresponds to an ellipsoid. Consequently,
the surface shaped by the Gaussian function differs from the geometric surface
formed by the Gaussian mean position, which the Gaussian functions generally
encase. We thus shift each Gaussian in the direction of the vertex normal to
compensate for the gap caused by Gaussian’s scale and finally obtain the final
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Fig. 1: We show (a) the diagram of our Light Stage capture system, and (b) some Raw
data for different identities.

meshes. Specifically, we offset each Gaussian’s mean position µ by its projection
distance from the surface of the ellipsoid in the vertex normal direction:
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where n is the corresponding vertex normal of each Gaussian.

2.2 UV Space Densification

When performing UV Space Densification, we insert each quadrilateral grid in
G′

t with (N × N) smaller equidistant grids. Specifically, the newly generated
Gaussian’s position, UV coordinates, and color are obtained by bilinear inter-
polation sampling the corresponding attributes of the four Gaussians (e.g. G′

0,0,
G′

0,N−1, G
′
N−1,0 and G′

N,N ) at the original grid vertices:
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where A can be color, uv coordinate, and position. Most importantly, we can
easily establish topological relationships between Gaussians. For example, Gi,j

is connected to Gi−1,j , Gi+1,j , Gi,j−1 and Gi,j+1. This process is equivalent to
subdividing the grid and inserting more sampling points in UV space.

In implementation, we only perform densification once in the first frame and
compute every Gaussian’s interpolation weights given by Eq. 3. In the texture
optimization stage of each subsquent frame, we use these weights to calculate
the attributes of each Gaussian in G′

t for dense Gaussian Mesh initialization.
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Table 1: The initialization settings and learning strategies for each Gaussian attribute.

Symbol Initialization First Frame Optimization Geometry Optimization Texture Optimization Learning Rate
µ Vertex Coordinate Fixed Learnable Fixed 0.000016
q Vertex Normal Learnable Learnable Fixed 0.001
s Half of Min Neighbour Distance Learnable Fixed Fixed 0.001
σ 1 Fixed Fixed Fixed 0.0
c Texture Color Fixed Fixed Learnable 0.0025

2.3 Texture Inverse Mapping

We perform a rasterization-based inverse mapping operation similar to the for-
ward pass in NVDiffrast [9] to render texture maps. Specifically, if the Gaussian
indices of the visible triangles for a pixel at (x, y) are denoted as i0,1,2 and the
center of mass is denoted as w0,1,2, we can calculate the color Cx,y of the pixel
at (x, y). That is:

Cx,y = w0ci0 + w1ci1 + (1− w0 − w1)ci2 . (4)

2.4 Learning Strategy

As is shown in Tab. 1, we adopt different optimizing strategies at different stages
in our pipeline. 1) When optimizing the initial Gaussian Mesh at the first frame,
we only optimize q and s, and keep others fixed. 2) During geometry optimiza-
tion, we optimize these geometry-related attributes (µ and q) to track Gaussian
motions. 3) During texture optimization, we initialize dense Gaussian Mesh by
sampling each Gaussian’s position by Eq. 3 and set their opacity to 1. Since we
only need to learn the exact color of the UV space sampling points represented
by each Gaussian, we fix the Gaussian scale to be the minimum distance with
their one-ring neighbors and only optimize Gaussian’s color.

3 Additional Experiments

In this section, we conduct more comparisons with current SOTAs toward ge-
ometries and textures.

3.1 Additional Geometry Comparisons

Fig. 2 shows additional qualitative comparisons of our method with current
SOTAs, i.e., DECA [7], HRN [5], MVFR [16], DFNRMVS [3] and traditional
multi-view stereo [12] with iterative closest point [4] (ICP) pipeline. The results
indicate that our method outperforms superiorly other approaches. Besides, our
method can achieve competitive results with manual registrations while avoiding
interpenetration that occurs in the automated ICP method.
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Fig. 2: Qualitative evaluation of meshes generated by our method and other topology-
consistent reconstruction methods. We use artist-manually registered head mesh as the
ground truth. We highlight areas that are difficult to reconstruct.

3.2 Additional Texture Comparison

Fig. 3 shows additional comparisons of rendering results of textures generated
by our method, UnsupTex [13], and HRN [5]. These pre-trained model-based
methods are unable to handle high-resolution data, and can only generate tex-
tures of lower resolution, losing details in rendering results. Benefiting from UV
Space Densification, each Gaussian that represents sampling points in UV
space can accurately learn pixel-level realistic details from high-resolution in-
puts. It’s worth mentioning since it is difficult to obtain the same lighting con-
ditions as the capture conditions in the rendering software, there is a certain
difference between the rendering results and the captured images. Nonetheless,
we also achieve identity consistency and the same details in textures as the im-
ages. Moreover, it can be observed that the generated texture maps maintain
realistic wrinkles and pore-level details.

3.3 Qualitative Comparisons with Current SOTAs

We next supply comparisons of our method with TEMPEH [6] and ReFA [11],
two state-of-the-art multi-view reconstruction methods. Due to different method
settings, the mismatch in data structures, or the inaccessibility of codes, it is
particularly difficult to compare our method with them. Therefore, we compare
them qualitatively in some reasonable settings to show the competitiveness and
extensibility of our method, which will be described detailed in the comparisons.

Comparisons with TEMPEH. The recent TEMPEH [6], trained with a large
amount of 4D head data, can directly regress dynamic topologic head models
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Fig. 3: Additional qualitative evaluation of the rendering results between our method,
UnsupTex [13] and HRN [5]. We also provide the zoom-in renderings for better obser-
vation. Our generated 8K textures and pore-level zoom-in details are demonstrated in
columns 5 and 6.

from multi-view videos, which shares a similar setting as our work. However,
2 major differences exist between TEMPEH and our Topo4D: 1) TEMPEH is
trained on its proposed dataset FaMoS, thus it is only applicable to the specific
capture system. Hence, new data are required to train the model to utilize TEM-
PEH in new capture systems. Conversely, our Topo4D is suitable for more sys-
tems with calibrated cameras including FaMoS. 2) TEMPEH can only generate
meshes while our Topo4D can generate both meshes and high-quality textures.

For fair comparisons, we compare TEMPEH and our Topo4D both on our
dataset and TEMPEH’s FaMoS dataset. Note that, due to the lack of a large
amount of registered data in our dataset as supervision, we are unable to train
TEMPEH by ourselves. Therefore, we use its publicly released pre-trained mod-
els for face reconstruction. As is shown in Fig. 4, 1) on our dataset, our method
faithfully reconstructs facial geometry and generates 8K textures that can pro-
duce realistic rendering results. However, TEMPEH fails to reconstruct mean-
ingful heads, revealing that the pre-trained TEMPEH cannot be directly ap-
plied to different capture systems. 2) FaMoS consists of 16 gray-scale and 8
color images in each frame, including 2 posterolateral color images. In the ex-
periments, we only use 6 color images containing the front face as the input of
our method, while showing TEMPEH’s best results with its publicly released
pre-trained model on 16 gray-scale views. Even though, we achieve competitive
geometric results with TEMPEH. Especially under some extreme conditions in
the 4th and 6th columns in Fig. 4, we can even better restore asymmetrical
eyebrow and pouting expressions. Additionally, our method can generate high-
fidelity textures while TEMPEH cannot. Overall, our method is more general



6 Xuanchen Li et al.

Fig. 4: Qualitative comparisons with TEMPEH [6] on our dataset and FaMoS. We
realize high-quality face reconstruction with textures in both our dataset and FaMoS.
TEMPEH achieves competitive geometry results as ours, but it fails to reconstruct
facial models in our dataset. Moreover, TEMPEH cannot generate texture maps.

across capture systems than TEMPEH [6], and we can generate high-quality
texture maps directly. Moreover, our method does not require a large amount of
registered data for training.

Comparisons with ReFA. Similar to our Topo4D, ReFA [11] can generate
face meshes from multi-view images, while it can generate 4K textures via super-
resolution modules. However, since ReFA does not release its codes, pre-trained
models, and test datasets, we borrow some results from its paper and website
for qualitative comparisons with our Topo4D toward the quality of meshes and
texture maps. In the geometric comparisons, we select some expressions similar
to ReFA’s results for better evaluation of extreme expressions. As shown in
Fig. 5, our method can more faithfully reconstruct the detailed geometric meshes
than ReFA, especially in the eyes regions, e.g ., 4th and 6th columns. As the
comparisons on textures shown in Fig. 6, our Topo4D can faithfully generate 8K
high-resolution dynamic textures, including pore-level details and individually
discernible strands of hair. Instead, ReFA relies on a super-resolution module to
obtain 4K textures, but it fails to faithfully restore the original details of the
face and leads to artifacts in the texture. Overall, our Topo4D achieves better
results than ReFA in both mesh fidelity and texture quality.
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Fig. 5: Qualitative comparison of geometries with ReFA [11]. We show examples on
our dataset similar to those expressions in ReFA’s paper. Please zoom-in for detailed
observation.

3.4 Performance on Multiface Dataset

To show our method’s robustness against different capture systems and extreme
expressions, we test our method on Multiface Dataset [15] and compare it with
other methods, as is shown in Fig. 7 and Fig. 8.

We additionally compare our method with two landmark-based optimization
methods: (1) Track + Wrap4D [2] guided by a commercial landmark detec-
tor, which is widely used in modern CG pipelines. (2) Smith et al. [14], the
tracking pipeline used in Multiface. As is shown in Fig. 9, current landmark
detection methods generally have notable errors under extreme expressions, re-
sulting in wrong correspondence during tracking. Despite using a personalized
detector, Smith et al. struggles to track dense areas like eyelids and lips. Due to
significant bias in eyelid and lip keypoints, Warp4D produces serrated eyelids,
interpenetrated mouth corners, and lips that registered to teeth. In contrast,
our method is robust against extreme expressions and outperforms others while
keeping stable dense correspondence without using landmarks.

3.5 Efficiency Comparisons with Optimization-based Methods

As is shown in Tab. 2, We compare our method with other optimization-based
methods from a perspective of computational cost. It is noteworthy that most
optimization-based algorithms are not open-sourced, thus we directly use the
time cost claimed in their papers. The traditional pipeline (Metashape [1] +
Wrap4D [2]) takes more than 5 minutes to reconstruct a mesh with texture,
and requires significant more time for manual tweaking. The optical-flow based
method Fyffe et al. [8] reconstructs meshes without MVS but is still more than
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Fig. 6: Qualitative comparison of textures with ReFA [11]. We show examples of tex-
tures generated on our dataset. Please zoom-in for detailed observation.

Fig. 7: Qualitative evaluation of meshes generated by our method and other topology-
consistent reconstruction methods on Multiface [15] dataset. We use artist-manually
registered head mesh as the ground truth. We frame areas that are difficult to recon-
struct.

Table 2: Time required per frame of different optimization-based reconstruction meth-
ods.

Method Mesh Texture MVS Manual

MVS + ICP (Metashape [1]+Wrap4D [2]) ≈4min ≈80s ✓ ✓
Fyffe et al. [8] ≈25min - × ×

Ours ≈30s ≈30s × ×

20 minutes slower than us when reconstructing a coarse mesh due to its time-
consuming volumetric Laplacian solve. Our geometry tracking and 8K texture
learning stage both takes only 30 seconds, which is fully automatic and not
require any additional supervision such as scans, landmarks, optical flow, etc.
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Fig. 8: Qualitative evaluation of textures generated by our method and other topology-
consistent reconstruction methods on Multiface [15] dataset. Noting that the images
in Multiface dataset are 2K resolution, our method still generates 8K textures.

Fig. 9: Comparisons on Multiface Dataset. Challenging areas are highlighted in red
boxes. Please zoom-in.

3.6 Gaussian Mesh Rendering Results

Fig. 10 (a) shows an example of the Gaussian rendering results of Gaussian Mesh
and Dense Gaussian Mesh under the extreme expression. Our Gaussian Mesh
contains only 8280 points for geometry optimization and is learned on 512× 375
images. Although using such a small number of Gaussian points may cause
some degree of blurring in the rendering results, it is sufficient to represent facial
geometry and is photometric enough for tracking. Our Dense Gaussian Mesh
contains around 5 million points and is learned on raw 4000 × 3000 images. A
Gaussian point corresponds to about 5 pixels in the facial UV region, which is
nearly enough for 8K texture. It can be observed from the rendering result that
such a level of Gaussian density is sufficient to capture pore-level details.

4 Limitation Discussion

Topo4D is designed to achieve 4D facial registration without MVS reconstruction
and artists’ manual intervention. Although it can efficiently and automatically
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Fig. 10: (a) Rendering examples of Gaussian Mesh and Dense Gaussian Mesh. (b) An
example of tracking failure caused by severe occlusion.

reconstruct 4D facial meshes with pore-level texture details, it still has some lim-
itations. First, our method fails when heavy overlapping occurs due to the lose of
tracking, such as sticking out the tongue as is shown in Fig. 10 (b), which is com-
monly solved by artists’ manual operations [10]. Second, our method inevitably
trade-offs between topology quality and surface accuracy, leading to smooth re-
sults. We will model detailed geometry by reconstructing displacement maps in
future work. Last, due to limited camera angles and the absence of information
on polarized light, our method primarily focuses on facial reconstruction and is
limited to texture capture only. We aim to extend our method to PBR assets
reconstruction in the future.

5 Ethics Discussion

In this work, all subjects have signed agreements authorizing us to use the col-
lected data for scientific research on 4D facial reconstruction. We will make every
effort to safeguard the original data from disclosure. Our method relies heavily
on visual capture systems similar to the Light Stage for data collection, which
can mitigate the risk of misuse to some extent. We are committed to privacy pro-
tection, preventing the misuse of 4D face reconstruction for criminal purposes.
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