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Abstract. Recent significant advances in high-quality face reconstruc-
tion have been made, but challenges remain in 4D face asset reconstruc-
tion. 4D head capture aims to generate dynamic topological meshes
and corresponding texture maps from videos, which is widely utilized
in movies and games for its ability to simulate facial muscle move-
ments and recover dynamic textures in pore-squeezing. The industry
often adopts a method involving multi-view stereo and non-rigid align-
ment. However, this approach is prone to errors and heavily relies on
time-consuming manual processing by artists. To simplify this process,
we propose Topo4D, a novel framework for automatic geometry and tex-
ture generation that optimizes densely aligned 4D heads and 8K texture
maps directly from calibrated multi-view time-series images. Specifically,
we first represent the time-series faces as a set of dynamic 3D Gaussians
with fixed topology in which the Gaussian centers are bound to the
mesh vertices. Afterward, we optimize geometry and texture frame-by-
frame alternatively for dynamic head capture while maintaining tempo-
ral topology stability. Finally, we can extract dynamic facial meshes in
regular wiring arrangement and high-fidelity textures with pore-level de-
tails from the learned Gaussians. Extensive experiments show that our
method achieves superior results than the current SOTA face reconstruc-
tion methods in the quality of both meshes and textures. Project page:
https://xuanchenli.github.io/Topo4D/.

Keywords: 4D Face Modeling · High Resolution Texture Generation

1 Introduction

4D head capture requires obtaining temporal-continuous topological facial assets,
including facial geometries and textures. It has been widely used in entertain-
ment media, such as games, movies, and interactive AR/VR, to create dynamic
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Fig. 1: Example results of our Topo4D . Our method can produce temporal-consistent
topological head meshes with high-fidelity 8K textures from calibrated multi-view
videos. Captured 4D models can be applied to retargeting and relighting applications.

faces with realistic and immersive quality. The main challenges of 4D head cap-
ture are: 1) representing faces with a fixed topology and a regular UV, and 2)
maintaining temporal stability among different frames.

To produce captivating and lively 4D facial assets, the industrial pipeline
typically employs professional equipment, e.g ., Light Stage [19], to capture high-
quality multi-view videos. Then multi-view stereo (MVS) [27,47] is used to com-
pute the facial scan of each frame, followed by a non-rigid registration [9] process
to superimpose the topologically aligned faces onto the scans. To achieve tem-
poral consistency and obtain usable assets, this process requires marking on the
subject’s face and a manual post-process by artists. To eliminate the need for
manual operations, some methods [8,14,24,65] employ optical flow or other tech-
niques as supervision to automatically warp template models at the expense of
processing time. Additionally, they necessitate careful parameter tuning for dif-
ferent subjects to achieve optimal results. Therefore, there is an urgent demand
to develop more automated workflows to accelerate the 4D asset reconstruction.

To achieve automatic and efficient facial reconstruction, researchers have de-
veloped deep-learning models for topological facial asset generation frame-by-
frame, which can be divided into two categories. The first line of work [2–4,
7, 21, 26, 28, 36, 52, 57, 59, 60] utilizes parametric models to fit the facial im-
ages for mesh creation, where parametric texture or inverse rendering is em-
ployed for corresponding texture generation. These methods are highly efficient,
but due to their limited expressive abilities, they struggle to produce high-
quality textures with diverse identities and complex expressions. Another line of
works [3,12,37,43,60,62] proposes to directly regress face models from multi-view
images, where a large amount of expensive pre-processed 3D data are utilized for
training. Typically, these methods can capture consistent features across multiple
views to predict accurate geometry, while several recent works [34,43] successfully
generate high-resolution textures with a super-resolution module. Nevertheless,
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super-resolution modules often introduce artifacts and fail to faithfully recover
the details of faces. Furthermore, these two kinds of aforementioned methods
encounter the same predicament in that they are designed to reconstruct each
frame individually without directly applying frame continuity, thereby struggling
to maintain the temporal coherence between frames.

The recent progress in 3D Gaussian Splatting (3DGS) [31] and its advance-
ments in 4D scene representation [40, 46, 61, 66, 67] bring us inspiration. These
methods of high-fidelity 4D scene representation fully take into account the con-
tinuity among frames and achieve temporal-consistent reconstruction. More-
over, thanks to its advanced rendering pipeline, it can achieve ultra-high resolu-
tion texture learning and fast perspective rendering in a memory-efficient man-
ner. Considering their success in 4D scene representation, it would be highly
desirable if we could extract high-fidelity facial meshes and textures in the pre-
defined topology from these 3DGS-inspired representations. However, it is non-
trivial since the Gaussians in these representations are random and uncontrol-
lable, making it difficult to perfectly register geometries with a fixed topology.

To overcome these challenges, we propose a novel optimization framework,
Topo4D, to obtain high-fidelity 4D meshes and temporal-stable textures. 1) To
maintain the quality of photo-realistic rendering in 3DGS and also extract meshes
and textures with fixed topology, we first explicitly link 3D Gaussians to the
pre-defined topological facial geometry, named Gaussian Mesh. Hence, it strikes a
balance between high expressive power and geometric structure fixedness to help
learn topology-constrained meshes and photo-realistic textures. 2) Considering
that the topology may be destroyed during dynamic optimization, we design
physical and geometric prior constraint terms on topological relationships dur-
ing the optimization process to ensure temporal topological stability and
regular mesh arrangement. Moreover, inheriting the advantages of 3DGS, the
optimization process is computationally fast and memory-efficient. 3) Once op-
timized, we align the Gaussian surface with the rendered surface using geometric
normal prior to extracting high-quality meshes. In addition, we design the UV
densification module to learn ultra-high-resolution textures with pore-level de-
tails by inversely mapping the Gaussian colors into UV space.

Our approach’s effectiveness has been validated through extensive experi-
ments. To our knowledge, Topo4D is the first method to implement the genera-
tion of high-fidelity 4D facial models with native 8K texture mapping, demon-
strating the potential of Gaussian for dynamic face reconstruction and ultra-
high-resolution tasks. In summary, our contributions include:

– We propose a novel optimization framework, Topo4D, for the reconstruction
of high-quality 4D heads and photo-realistic textures with pore-level details
from multi-view videos.

– We propose the Gaussian Mesh with UV densification to better represent
facial models in the pre-defined topology and fixed UV.

– We design the alternative geometry and texture optimization process to en-
sure temporal topology stability and regular mesh arrangement during the
optimization process.
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2 Related Works

2.1 Registered Facial Model Acquisition

Acquiring high-fidelity facial models in pre-defined topologic structures has been
a long-standing research challenge. Beginning with 3D Morphable Models [11],
many methods [2–4,7,21,26,36,52,57,59,60] employ parametric models to achieve
face reconstruction with single- or multi-view images. However, such methods
struggle to faithfully reconstruct faces. Non-rigid ICP [9,13,15,29] methods de-
form canonical models to fit scans reconstructed by MVS methods with high
quality. However, naively extending these methods to 4D videos will result in
temporal instability, leading to texture drift. To maintain temporal stability,
high-precision models are re-topology frame-by-frame in existing CG pipelines
using professional software, e.g ., Wrap4D [1], which demands extensive time and
expertise from experienced artists. To solve this, some methods [8,14,24] utilize
optical flow or other techniques as supervision to deform the template models.
However, numerous hyper-parameters need to be carefully tuned in these meth-
ods, making it difficult to generalize to different identities, and they are com-
putationally slow. Another category of methods [10,12,37,43] directly regresses
models from images. while these methods are constrained by a large number of
training data and face difficulties in extending to other capture systems. Besides,
out-of-domain expressions may be limited by insufficient training data. In this
paper, we propose a novel approach for acquiring registered facial models with
the quality typically achieved by artists manually, but in significantly less time.

2.2 Facial UV-Texture Recovery

Traditional CG pipelines predominantly use inverse rendering on reconstructed
meshes to acquire textures from images at a computationally slow speed. To
accelerate the process, many methods [4, 10, 20, 34, 35, 55, 56, 69] directly ex-
tract features from images to generate textures, where the quality is limited by
resolution. Despite employing super-resolution networks [34, 43], they may still
arise artifacts on the texture, and cannot accurately replicate pore-level details.
Moreover, the aforementioned approaches are primarily designed for static tasks,
and thus may not ensure the temporal stability of textures. Notably, Zhang et
al. [69] can achieve video-level texture generation. However, it can only produce
wrinkle maps that can be composited with natural high-resolution textures to
represent varied expressions, rather than directly generating textures with high-
frequency details, limiting its availability. Compared to these approaches, our
method ensures temporal topological consistency in texture recovery and can
directly generate textures in native 8K resolution with pore-level details.

2.3 Scene Representation

Neural Radiance Fields (NeRF) [49] has garnered significant attention for its re-
markable capability to faithfully preserve both geometric and texture details



Topo4D 5

of objects. Subsequent advancements in training speed [16, 23, 50], inference
speed [18,41,44], geometric quality [48,58,68], rendering quality [5,6,30], and dy-
namic scene representation [22,25,38,64] have considerably enhanced the appli-
cability of NeRF. Furthermore, 3D Gaussian splatting (3DGS) [31] has achieved
SOTA results in scene representation due to its high-fidelity rendering, efficient
training, and inference speeds, as well as memory efficiency. This technique has
been further extended to 4D scene reconstruction [40,46,61,66,67], with notable
applications in representing dynamic heads [17, 53, 63] and bodies [39, 54, 70].
However, these methods typically utilize continuous neural networks or random
Gaussians to represent objects, posing challenges in extracting meshes with fixed
topological structures, thus limiting their integration with existing industrial
processes. To address these issues, we propose a meticulously improved 3DGS
framework that can extract dynamic high-quality meshes and photo-realistic tex-
tures in constrained topology and UV from multi-view videos. Additionally, our
method can be directly applied to current computer graphic industrial processes.

3 Methods

Our method aims to achieve temporally stable head mesh reconstruction and
texture recovery from calibrated multi-view videos. Specifically, given sets of
multi-view image sequences {Iji ∈ Rh×w×3|0 ≤ i ≤ F − 1}Kj=1 in the resolu-
tion of h×w, encompassing F frames captured from K different viewpoints, all
with known camera calibrations, our method can extract head meshes {Si :=
(V i, T )|V i ∈ Rnv×3}F−1

i=0 in the pre-defined fixed topology T together with tex-
ture maps {Mi ∈ R8192×8192×3}F−1

i=0 , where nv represents the number of vertices.
To begin with, we give a brief review of 3D Gaussian Splatting [31] (Sec. 3.1).

Our method first builds a Gaussian Mesh by initializing a topology-integrated
Gaussian set based on the facial priors in the first frame (Sec. 3.2). Then, for each
subsequent frame, we alternatively perform geometry optimization and texture
optimization, to learn dynamic high-fidelity geometries and textures (Sec. 3.3).
Finally, we introduce how to extract geometries from Gaussian Mesh and recover
ultra-high-resolution textures (Sec. 3.4). The full pipeline is illustrated in Fig. 2.

3.1 Preliminary

3D Gaussian Splatting (3DGS) [31] is proposed as a competitive solution for
photo-realistic rendering. Different from other implicit methods, 3DGS explic-
itly maintains a set of Gaussian distributions to model a scene. In 3DGS, each
ellipsoidal Gaussian features a learnable color component c and an opacity com-
ponent σ, and is described by a covariance matrix Σ and its mean position µ:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ), (1)

where Σ is further decomposed into rotation matrix R, parameterized with a
quaternion q, and scaling matrix S :

Σ = RSSTRT . (2)
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Fig. 2: Overall pipeline of our framework. (a) We initialize Gaussian attributes and
establish topological correspondence with the startup mesh. (b) Take one frame as
an example, geometry-related attributes in the Gaussian Mesh of the last frame are
optimized by this frame under a set of topology-aware loss items. (c) We align the
Gaussian surface with the rendering surface by Gaussian normal expansion to extract
more precise meshes. (d) To learn pore-level detailed colors and generate ultra-high
resolution texture, we build a dense mesh by densifying Gaussians in UV space.

In rendering, the color C of a pixel is acquired by sampling and blending all
Gaussians that overlap the pixel in depth order:

C =
∑
i=1

ciαi

i−1∏
j=1

(1− αj), (3)

where the blending weight αi is given by evaluating a 2D Gaussian with its
covariance multiplied by its opacity.

However, 3DGS is designed for realistic rendering instead of 3D reconstruc-
tion. Gaussians lack inherent topological relationships, thus unconstrained op-
timization of their attributes may only yield irregular geometry. As a result,
directly extracting topologically sound meshes becomes unfeasible.

3.2 Gaussian Mesh for Topology Integrated Gaussians Initialization

Extracting topologically consistent meshes from Gaussians is challenging due to
the lack of geometric constraints during optimization. To this end, we propose
Gaussian Mesh, which uniquely incorporates the topological prior into vanilla
Gaussian and will not affect its high-fidelity rendering quality. We define 4D
Gaussian Meshes as Gi = {Gi,j}nv

j=1 for the i-th frame, where Gi,j covers some
learnable parameters, i.e., {µi,j ∈ R3, qi,j ∈ R4, si,j ∈ R3, ci,j ∈ R3,σi,j ∈ R}
for the position, rotation, scaling, color, and opacity separately of the j-th vertice
in pre-defined topology T .

Different from 3DGS [31] using SFM-generated messy sparse points for ini-
tialization, to directly obtain pre-defined topological information, we first ini-
tialize Gaussian Mesh with head mesh and texture of the first frame, which is
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acquired by automatic MVS and ICP algorithms. Specifically, we set the mean
positions µ0 of Gaussians to the corresponding 3D coordinates of vertices in
topological order. Furthermore, to better align Gaussians with the surface, we
initialize the orientation q0 of each Gaussian with the normal direction of ver-
tices. It is worth noting that recent GaussianAvatars [53] also rigs Gaussians
to face model. It aims at driving Gaussians with parametric models for photo-
realistic rendering, where meshes are obtained by optimizing FLAME [36] pa-
rameters with the utilization of landmarks, personal displacements, and other
additional supervision. In contrast, our goal is to extract high-quality topologic
meshes and textures from multi-view videos by directly tracking the sequences
without preprocessing registration and tracking.

After initializing the shape-related attributes (µ0 and q0) of Gaussians, we
then optimize their rendering-related attributes (s0, c0 and σ0). Concretely, we
initialize the scales s0 as half of the minimum distance between each Gaussian
and its one-ring neighbors and set opacity σ0 to 1, to avoid color blending
between multiple Gaussians. To faithfully represent the color, we also initialize
the color c0 of each Gaussian by sampling the corresponding pixel on the texture
map according to the UV coordinate. Finally, to learn more details in dense parts,
e.g ., eyes and mouth, we optimize Gaussian’s rotation q0 and scale s0 between
the first frames and rendered images I′0 with the same loss function as 3DGS:

Limage = (1− λimage)L1(I0, I
′
0) + λimageLD−SSIM (I0, I

′
0), (4)

Also, Gaussians have volume, leading to a certain gap between the center of
Gaussians and the true surface. Therefore, the thickness of the Gaussian in the
normal direction should be as small as possible. Therefore, we propose a scale
loss to encourage the minimum value of every Gaussian’s scale close to 0 and
penalize Gaussians with a scale exceeding λinit times than its initial value sinit,i:

Lscale =
∑
i∈G

(∥s0,i∥−∞ +max(0, s0,i − λinitsinit,i)). (5)

Overall, the final loss to initialize Gaussian Mesh can be formulated as:

Linit = Limage + λscaleLscale. (6)

3.3 Alternative Geometry and Texture Optimization

After initializing Gaussian Mesh G0, we propose an Alternative Geometry
and Texture Optimization method to acquire Gaussian Mesh geometry and
learn dense texture colors. Specifically, at frame t, we first optimize Gaussians Gt

by tracking Gt−1 under the regularization of topology and physics. Afterward,
dense texture color can be learned based on the tracked geometry. We perform
such an alternative optimization process once per frame.
Geometry Optimization. Naively optimizing Gaussian Mesh causes topolog-
ical confusion. To maintain the topology within Gaussians and regular mesh ar-
rangement, we extend 3DGS [31] by introducing physical and topological priors.
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Specifically, we propose physical loss item Lphy that constrain local rigidity and
topological loss Ltopo that improve the mesh quality. Overall, the loss functions
for geometry optimization are constructed in three parts:

Lgeo = Limage + Lphy + Ltopo, (7)

Physical Prior Loss. Solely utilizing color as supervision to optimize Gaussians
is disastrous since low-frequency texture details, e.g ., forehead and cheek, lead
to point mistracking, thus breaking the facial topology. To better regularize the
motion of Gaussians and maintain topologic information, we modify the loss
functions in Luiten et al. [46] with the constraints by one-ring neighbors as:

Lrot =
1

2ne

∑
i∈G

∑
j∈Ki

wi,j∥q̂t,j q̂−1
t−1,j − q̂t,iq̂

−1
t−1,i∥2, (8)

where q̂ is the normalized quaternion, ne is the number of edges, and Ki means
the one-ring neighbours of Gt,i. The loss weighing factor w takes into account
the edge length of the Gaussian Mesh at the first frame:

wi,j = exp(−λw∥µ0,j − µ0,i∥22). (9)

In addition to the rotation similarity calculated between adjacent frames, we
find that long-term physical loss is important for maintaining long-term stable
dense correspondence:

Liso =
1

2ne

∑
i∈G

∑
j∈Ki

wi,j |∥µ0,j − µ0,i∥2 − ∥µt,j − µt,i∥2|. (10)

Finally, our physical loss items is the weighted sum of these two loss functions:

Lphy = λrotLrot + λisoLiso. (11)

Topology Prior Loss. Physical constraints achieve long-term tracking of the cor-
responding Gaussians, but they will lead to irregular wiring and unsmooth sur-
faces. To realize regular wiring, we calculate the L2 loss between the position of
each vertex and the average position of its neighbors:

Lpos =
1

nv

∑
i∈G

(µt,i −
∑

j∈Ki
µt,j

|Ki|
)2. (12)

To maintain the stable topology and smooth surface, we further apply mesh
flattening loss to the angles between adjacent faces in optimization:

Lflat =
∑
θi∈ei

(1− cos(θt,i − θ0,i)), (13)

where θt,i is the angle between the faces that have the common edge ei at frame
t. Overall, our topological prior loss servers are as:

Ltopo = λposLpos + λflatLflat. (14)
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Texture Optimization. After obtaining the geometry with the coarse texture,
we continue to learn high-detailed dense texture. Compared to representing ge-
ometry, generating an 8K texture map with pore-level details requires more
Gaussians to learn from high-resolution images. Different from vanilla 3DGS,
which adopts an adaptive densification process that results in a messy topology,
we propose a novel densification method, i.e., UV Space Densification, which
allows for topologically densified Gaussians corresponding to the UV space of
the texture map. Specifically, at frame t, we first initialize the dense Gaussian
Mesh G′

t with the Gaussians in Gt. Then, we insert each quadrilateral grid in G′
t

with (N ×N) smaller grids by bi-linear interpolation, with each new Gaussian
on each inserted vertex. The attributes and UV coordinates of these new Gaus-
sians are also bi-linear interpolated with Gaussians in Gt. We optimize dense
Gaussian Mesh G′

t by Eq. 4 and follow the same practice as Sec. 3.2 to learn
high-frequency texture with sub-micron details.

3.4 Extracting Geometry and Texture from Gaussians

After completing the geometry and texture optimization, we can extract 4D
meshes from {Gi}F−1

i=0 and 8K texture maps from {G′
i}

F−1
i=0 .

Geometry Extraction. Despite special regularization for the scale of Gaus-
sian, it still has volume, resulting in a slight decrease in geometry reconstructed
by directly extracting Gaussians’ positions. Therefore, we propose Gaussian Nor-
mal Expansion to make surfaces derived from Gaussian surfaces resemble real
surfaces more closely. As illustrated in Fig. 2 (c), we offset each Gaussian in
the direction of the vertex normal by its projection scale in normal direction to
obtain the final meshes {Si}F−1

i=0 .
Texture Extraction. To generate 8K texture maps from a dense Gaussian mesh
{G′

i}
F−1
i=0 , we map Gaussians’ colors to UV space based on their UV coordinates.

Since our Gaussian meshes are topologized, we can triangulate them and map
learned dense texture colors to texture maps {Mi}F−1

i=0 by a rasterization-based
forward rendering method [33].

4 Experiments

4.1 Dataset and Implementation Details

Data Preparation. We collect a dynamic multi-view head dataset using a Light
Stage [19] with 16 calibrated color cameras. In the dataset, images are captured
at a resolution of 4096 × 3000 and a rate of 60 fps. We capture multi-view
videos for 10 identities. Each identity should perform an expression sequence
and a talking sequence separately, with each expression sequence containing
diverse expressions, including extreme and asymmetric ones. Each sequence lasts
between 400 to 600 frames and is required to begin from a neutral expression.
Implementation Details. We implement our method based on PyTorch [51]
and NVIDIA 3090 GPUs. The mesh topology consists of nv = 8280 vertices and
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Table 1: Quantitative evaluation for different face reconstruction methods on our
prepared dataset. We measure the percentage of vertices within different error levels
and calculate the mean error and variance.

Type Methods <0.2mm(%)↑ <0.5mm(%)↑ <1mm(%)↑ <2mm(%)↑ <3mm(%)↑ Mean(mm)↓ Med.(mm)↓

Single-view DECA [21] 2.055 5.136 10.264 20.075 29.046 8.104 5.929
HRN [10] 5.170 12.786 20.734 44.692 60.263 2.871 2.429

Multi-view
MVFR [62] 4.139 10.130 19.407 34.629 43.661 7.800 4.357

DFNRMVS [3] 3.447 8.579 17.064 33.479 48.356 3.649 3.214
Ours 22.485 52.856 87.376 94.379 97.697 0.686 0.471

nf = 16494 faces. Since our Light Stage can provide uniform lighting, we use
RGB rather than SH in 3DGS to represent view-consistent colors, which is more
efficient and easier to optimize. We use Adam [32] for optimization. The geometry
optimization stage includes 1000 iterations at each timestamp, with all images
resized to 512×375. We mask out the inner mouth using a face parsing model [42]
to prevent the vertices around the lips from learning incorrect colors. The texture
optimization stage consists of 300 iterations at each timestamp and is learned at
the original 4K resolution without preprocessing, with a dense number N = 30.
We set λimage = 0.2, λscale = 10, λrot = 20, λiso = 20, λpos = 1e3, and
λflat = 2e − 4. We employ an MVS method [45] to reconstruct 4D head scans
for evaluation and use an automatic iterative closest point (ICP) [9] algorithm to
obtain a roughly accurate mesh in the first frame for initialization. The texture
outside the facial area is obtained by alpha blending with the template textures.
All hyper-parameters remain the same for all experiments. Please refer to the
Supplementary Material for more details.

4.2 Face Reconstruction

Baseline. We evaluate our method on our collected dataset and compare it to
three types of SOTA topology-consistent face reconstruction methods: (1) single-
view methods DECA [21], and HRN [10]; (2) multi-view methods MVFR [62] and
DFNRMVS [3]; (3) a traditional MVS and ICP pipeline w/wo facial landmark
guidance. For single-view methods, we input the front-view image. For multi-
view methods, we use all 16 views. Note that, we follow DFNRMVS‘s setting
that uses a front view and an oblique side view image to produce the best results.
Quantitative Comparisons. We evaluate facial reconstruction accuracy us-
ing mesh-to-scan distances. To minimize inconsistencies among different models,
we only compute metrics on the facial region, excluding the ears, back of the
head, and neck. In Tab. 1, our method significantly outperforms other topology-
consistent methods in all metrics. Notably, the majority of vertices are located in
high-precision ranges, with 52.8% more vertices within 0.5 mm precision. This
improvement is attributed to the introduction of reliable geometry and color
priors during Gaussian initialization.
Qualitative Comparisons. Fig. 3 shows a visual comparison between meshes
reconstructed using different methods. We manually register the faces as the
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Fig. 3: Qualitative evaluation of meshes generated by our method and other topology-
consistent reconstruction methods. We use artist-manually registered head mesh as the
ground truth. We highlight areas that are difficult to reconstruct.

ground truth. Our method can faithfully capture both asymmetric extreme ex-
pressions and minor facial changes, outperforming other pre-trained methods.
Additionally, we compare our approach with the traditional optimization-based
MVS [45] + ICP [9] pipeline, guided by landmarks. Notably, even the advanced
landmark detectors produce significant errors under extreme expressions, result-
ing in semantically incorrect registration, and fine areas are prone to serration
and interpenetration. In contrast, our method reconstructs comparable details
with correct correspondence.

4.3 Ultra-High Resolution Texture Generation

We qualitatively compare our generated textures with state-of-the-art facial tex-
ture estimation models: UnsupTex [56] and HRN [10]. Fig. 4 shows the rendering
results of different methods, including the generated 8K textures. In the com-
parisons, UnsupTex and HRN are limited to producing low-resolution textures
that lack realistic details. In contrast, our method directly generates high-quality
8K textures without up-sampling, faithfully capturing facial wrinkles, hair, and
pores, and achieving noticeably superior rendering quality.

4.4 Temporal Stability Comparisons

We compare the temporal stability of the generated meshes and textures with
other methods. For meshes, We measure geometry consistency by calculating
the RMSE between adjacent frames. Fig. 5 (a) shows the curve of each method
over an expression sequence. Our method achieves much more temporally stable
vertex tracking with extreme expressions, whereas other methods exhibit consid-
erable performance fluctuations. We notice that, in some cases, the inter-frame
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Fig. 4: Qualitative evaluation of the rendering results between our method, Unsup-
Tex [56] and HRN [10]. The generated 8K textures and pore-level details are demon-
strated in columns 5 and 6.

difference of DECA [21] is lower than ours. This is because DECA fails to cap-
ture some extreme expressions or minor facial changes, as shown in Fig. 3, and
therefore tends to keep the meshes unchanged. Instead, our method can faith-
fully capture facial motions while maintaining temporal consistency. From the
perspective of texture, we measure stability by comparing the PSNR of textures
between consecutive frames. As shown in Fig. 5 (b), our method has the highest
mean and lowest variance, indicating superior temporal stability. In conclusion,
our method demonstrates better temporal consistency compared to other meth-
ods in both geometry and texture.

4.5 Ablation Studies

In this section, we assess the impacts of the crucial designs and parameters used
in our method. For geometry reconstruction, we ablate all loss items, the number
of input views, and the Gaussian normal expansion operation. Regarding texture
estimation, we explore the impact of UV densification density on texture quality,
along with the influence of Lscale.
Analysis of Loss Items. We remove each loss function and keep other settings
constant in the ablation study. Fig. 6 shows the qualitative results. 3DGS’s [31]
powerful rendering ability allows Gaussians to render similar images with entirely
different geometry. We find that it’s essential to physically constrain Gaussians’
rotation and distance to achieve correct dense correspondence, especially in ob-
structed areas and areas with dense vertices like lips and nostrils. Although
constraining the Gaussian’s scale seems to have a limited impact on geometry
accuracy (an increase of around 0.1mm), it is crucial for maintaining pore-level
texture details and avoiding blurring, as shown in Fig. 7. The topology prior
losses Lpos and Lflat effectively maintain the stability of invisible areas, such as
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Fig. 5: Comparisons of temporal stability on a sequence in our dataset, and our method
is bolded and indicated by red arrows. (a) The curves of log(RMSE) (lower is better)
of several topology-consistent face reconstruction methods. (b) The curves of PSNR
(higher is better) are calculated between textures of adjacent frames.

Fig. 6: Visualization of the reconstructed mesh after ablating loss items, Gaussian
normal expansion operation, and view numbers. The second row displays the color-
coded point-to-surface distance between the reconstructed mesh and the scan as a
heatmap on the mesh’s surface. Please zoom-in for detailed observation.

inner sockets, and significantly prevent exaggerated extrapolation or interpene-
tration. Ablating these mesh smoothing terms may result in lower mesh-to-scan
errors, but it compromises the quality of the grid and wiring.
Analysis of Normal Expansion. Since we constrain the orientation and scale
during initialization and optimization, Gaussians should display a small scale in
the surface normal direction. As illustrated in Fig. 6, by using Gaussian normal
expansion, we can marginally reduce the overall error.
Analysis of Input Views. We evaluate the effect of the number of input views
on mesh quality, as shown in Fig. 6. It’s obvious that even with half of the
input views, our method can still yield competitive results, demonstrating its
applicability to capture systems with fewer cameras. However, when the view
number decreases to 4, the reconstruction mesh exhibits significant distortion.
Analysis of Gaussian Density. Fig. 7 depicts the impact of different density
levels on texture quality in UV space densification. As the density decreases,
the texture becomes blurred and loses detail. Our method can generate textures
of any resolution directly. However, higher resolutions require denser Gaussians,
more memory overhead, and longer optimization time.
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Fig. 7: Comparisons of texture quality under different settings.

Fig. 8: We showcase the results of our method applied to retargeting the other face
model(columns 3 and 6) and relighting results (columns 4 and 7).

4.6 Application

Driving digital characters by real performance is widely applied in industry work-
flows. Our method can retarget the captured expression sequence of an actor
faithfully to other characters. Besides, relighting is also a widespread applica-
tion in the CV and CG pipelines. Fig. 8 shows the results of retargeting extreme
expressions and wrinkled texture maps learned by our methods to another facial
model, as well as relighting rendering results.

5 Conclusion

In this paper, we propose Topo4D, an efficient framework that can extract tem-
poral topology-consistent meshes and 8K textures from calibrated multi-view
videos. Under the regularization of a set of topology-aware geometrical and
physical loss items, we achieve topology-preserving Gaussian optimization while
faithfully capturing the subject’s expressions. By densifying Gaussians in UV
space, we learn realistic pore-level details at high resolution and extract high-
fidelity 8K texture maps. To sum up, our method provides a brand new way
to reconstruct high-fidelity facial meshes and 8K texture maps, opening up new
avenues for capturing 4D digital humans in an efficient and low-cost manner.
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