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Abstract. Due to the limited space in the main paper, this supplemen-
tary material provides an expansive elucidation of the proposed method
and additional experimental results. Sec. 1 offers more details in im-
plementing our AnySeg framework. Sec. 2 presents more experimental
results, emphasizing both quantitative and qualitative assessments, and
Sec. 3 shows more ablation results.

1 Implementation Details.

1.1 Datasets.

The DELIVER dataset [2], as introduced by Zhang et al ., represents a sig-
nificant multi-modal segmentation dataset leveraging the CARLA simulator to
include a variety of data types such as Depth, LiDAR, Views, Event, and RGB
data. This dataset is notable for its dual-case offerings, which encompass diverse
environmental conditions—cloudy, foggy, night, rainy, and sunny weather—and
five specific scenarios of partial sensor failures. These environmental conditions
pose perceptual challenges through variations in sunlight positioning and inten-
sity, atmospheric diffusion, precipitation effects, and scene shading. The sensor
failure scenarios comprehensively simulate malfunctions common to RGB cam-
eras (Motion Blur, Over-Exposure, Under-Exposure), LiDAR jitter, and reduced
resolution in event cameras, thereby providing a robust platform for testing and
developing perception algorithms under a wide range of conditions. Concurrently,
MCubeS [1] offers a multi-modal dataset designed for segmentation tasks across
20 categories, featuring pairs of RGB, Near-Infrared (NIR), Degree of Linear Po-
larization (DoLP), and Angle of Linear Polarization (AoLP) images. The dataset
is divided into training, validation, and testing subsets, with 302, 96, and 102
image pairs respectively. This arrangement enables thorough evaluation and ad-
vancement of segmentation models, incorporating polarization data alongside
traditional imaging modalities.
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1.2 Implementation Details.

Our Any2Seg is trained on 8 NVIDIA GPUs, starting with a learning rate of
6 e−5, adjusted by a poly strategy (power 0.9) across 200 epochs, including an
initial 10-epoch warm-up at 0.1 times the learning rate. We use the AdamW
optimizer (epsilon 1e−8, weight decay 1e−2) with a batch size of 1 per GPU.
Data augmentation includes random resizing (0.5-2.0 ratio), horizontal flipping,
color jitter, gaussian blur, and cropping to 1024 × 1024 on [2] and 512 × 512
on [1].

1.3 Metrics.

In the evaluation of the performance of the proposed MAGIC framework, the
assessment is anchored on three pivotal metrics: Intersection over Union (IoU),
F1 score, and Accuracy (Acc), each providing unique insights into the model’s
segmentation capability.
Intersection over Union (IoU) The IoU metric, also recognized as the Jac-
card index, serves as a quantitative measure of the extent of overlap between
the predicted and the ground truth segmentation maps. It is computed as the
quotient of the intersection and the union of the predicted and ground truth
segmentation areas. The IoU metric is normalized to range between 0 and 1,
where a value closer to 1 denotes superior segmentation accuracy.
F1 Score The F1 score, a harmonic mean of precision and recall, offers a bal-
anced measure of the model’s precision (the proportion of true positive results in
all positive predictions) and recall (the proportion of true positive results among
all actual positives). This metric is designed to provide a single measure to as-
sess the precision-recall trade-off, with its value also ranging from 0 to 1, where
higher values indicate more effective segmentation performance.
Accuracy (Acc) Accuracy, expressed as a proportion, measures the fraction
of pixels in the segmentation map that are correctly classified. This metric is
calculated by dividing the tally of correctly classified pixels by the total pixel
count within the map. Like IoU and F1 score, accuracy values span from 0 to 1,
with higher values reflecting enhanced segmentation accuracy.

These metrics collectively facilitate a comprehensive evaluation of the MAGIC
framework’s performance, enabling a nuanced analysis of its segmentation effi-
cacy across diverse conditions.

2 Experimental Results

Tab. 1 shows the per-class results on DELIVER dataset, the training and vali-
dation is conducted with all four modalities. Tab. 2 gives the qualitative results
with three metrics in MISS validation. Fig. 1 presents a qualitative analysis
comparing the performance of our method with the MISS validation criterion,
employing solely depth data for inference. Fig. 2 depicts a qualitative compari-
son, utilizing the MISS validation, with the inference phase incorporating both
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depth and event data. Fig. 3 offers a qualitative comparison, following the MISS
validation framework, with inference leveraging depth, event, and LiDAR data.
Fig. 4 provides a visualization comparison under the MISS validation scheme,
utilizing RGB and depth data for inference.

Table 1: Per-class results on DELIVER dataset. The training and validation is con-
ducted with four modalities: RGB, Depth, Event, and LiDAR. (Seg-B2: MiT-B2)

Param Build. Fence Other Pede. Pole RL Road Side W.Veget. Cars Wall T. S. Sky

IoU

[2] Seg-B2 58.73 89.41 43.12 0 76.51 75.13 85.91 98.18 82.27 88.97 84.98 69.39 70.57 99.43
Ours Seg-B2 24.73 89.59 45.34 0 78.49 75.91 85.87 98.33 84.51 88.95 91.56 58.30 71.97 99.45

∆ +0.18 +2.22 0 +1.98 +0.78 -0.04 -0.15 +2.24 -0.02 +6.58 -11.09+1.40+0.02

MethodBackboneParamGroundBridgeRail T. G. R. Traffic L. Static Dynamic Water Terr. Two W. Bus Truck Mean

[2] Seg-B2 58.73 1.31 53.61 61.48 55.01 84.22 33.58 32.30 23.96 83.94 77.33 92.25 94.55 66.30
Ours Seg-B2 24.73 2.30 59.80 66.59 63.50 85.04 37.36 33.41 46.22 82.65 78.08 91.61 91.30 68.25

∆ +0.99 +6.19 +5.11 +8.49 +0.82 +3.78 +1.11 +22.26 -1.29 +0.75 -0.64 -3.25 +1.95

MetricMethodBackboneParam Build. Fence Other Pede. Pole RL Road Side W.Veget. Cars Wall T. S. Sky

F1

[2] Seg-B2 58.73 94.41 60.26 0 86.69 85.80 92.42 99.08 90.28 94.16 91.88 81.93 82.74 99.71
Ours Seg-B2 24.73 94.51 62.39 0 87.95 86.30 92.40 99.16 91.60 94.15 95.60 73.66 83.70 99.72

∆ +0.10 +2.13 0 +1.26 +0.50 -0.02 +0.08 +1.32 -0.01 +3.72 -8.27 +0.96+0.01

MethodBackboneParam Build. Fence Other Pede. Pole RL Road Side W.Veget. Cars Wall T. S. Sky

[2] Seg-B2 58.73 2.59 69.80 76.14 70.98 91.43 50.28 48.83 38.66 91.27 87.22 95.97 97.20 75.19
Ours Seg-B2 24.73 4.51 74.85 79.95 77.67 91.92 54.39 50.08 63.22 90.50 87.69 95.62 95.45 77.08

∆ +1.92 +5.05 +3.81 +6.69 +0.49 +4.11 +1.25 +24.56 -0.77 +0.47 -0.35 -1.75 +1.89

MetricMethodBackboneParam Build. Fence Other Pede. Pole RL Road Side W.Veget. Cars Wall T. S. Sky

Acc

[2] Seg-B2 58.73 98.24 57.18 0 87.58 85.25 89.70 98.95 95.36 94.19 98.65 87.98 83.33 99.75
Ours Seg-B2 24.73 98.45 61.19 0 89.77 85.52 90.05 98.95 95.35 93.94 97.32 78.65 83.21 99.75

∆ +0.21 +4.01 0 +2.19 +0.27 +0.35 0 -0.01 -0.25 -1.33 -9.33 -0.12 0

MethodBackboneParamGroundBridgeRail T. G. R. Traffic L. Static Dynamic Water Terr. Two W. Bus Truck Mean

[2] Seg-B2 58.73 2.00 61.91 75.28 56.60 88.71 35.32 50.35 24.05 93.65 86.86 96.13 97.12 73.77
Our Seg-B2 24.73 6.08 63.18 73.55 65.63 89.22 40.67 53.38 52.08 93.36 85.79 95.22 98.73 75.56

∆ +4.08 +1.27 -1.73 +9.03 +0.51 +5.35 +3.03 +28.03 -0.29 -1.07 -0.91 +1.61+1.79

3 Ablation Study

Fig. 5 shows more visualization of RGB, depth, and our obtained modality-
agnostic features. Fig. 6 presents more t-SNE visualization to ablate the effec-
tiveness of our proposed inter- and intra-modal knowledge distillation.
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Table 2: Results of system-level MISS evaluation. All methods are trained with four
modalities, and the metric is mIoU for all numbers.

M. Modality-incomplete Validation on DELIVER [2] (mIoU) Mean ∆
R D E L RD RE RL DE DL EL RDE RDL REL DEL RDEL

[2] 3.76 0.81 1.00 0.72 50.33 13.23 18.22 21.48 3.83 2.86 66.24 66.43 15.75 46.29 66.30 25.25 -
Ours 39.02 60.11 2.07 0.31 68.21 39.11 39.04 60.92 60.15 1.99 68.24 68.22 39.06 60.95 68.25 45.04 +19.79

M. Modality-incomplete Validation on DELIVER [2] (Acc) Mean ∆
R D E L RD RE RL DE DL EL RDE RDL REL DEL RDEL

[2] 53.43 67.66 5.12 4.07 72.98 53.17 52.84 67.65 67.58 4.47 72.93 72.90 52.53 67.54 72.84 52.51 -
Ours 57.82 69.06 7.06 3.90 75.57 57.84 57.66 69.90 69.05 7.06 75.59 75.54 57.67 69.87 75.56 55.28 +2.77

M. Modality-incomplete Validation on DELIVER [2] (F1) Mean ∆
R D E L RD RE RL DE DL EL RDE RDL REL DEL RDEL

[2] 45.02 67.36 3.11 2.37 74.36 45.55 45.75 67.47 67.38 2.65 74.37 74.36 46.02 67.44 74.37 50.51 -
Ours 50.35 69.98 3.80 0.60 77.06 50.58 50.50 71.26 70.01 3.66 77.08 77.06 50.67 71.28 77.08 53.40 +2.89



Abbreviated paper title 5

O
ve

r-e
xp

os
ur

e

Img CMNeXt Any2Seg GT

U
nd

er
-e

xp
os

ur
e

Fo
g 

&
 M

ot
io

n 
Bl

ur

Fig. 1: System-level Modality-Incomplete Semantic Segmentation (MISS) validation
results on DEVLIER Dataset with only depth data input.
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Fig. 2: System-level Modality-Incomplete Semantic Segmentation (MISS) validation
results on DEVLIER Dataset with depth and Event data input.
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Fig. 3: System-level Modality-Incomplete Semantic Segmentation (MISS) validation
results on DEVLIER Dataset with depth, event, and LiDAR data input.
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Fig. 4: System-level Modality-Incomplete Semantic Segmentation (MISS) validation
results on DEVLIER Dataset with RGR and depth data input.
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Depth Feature RGB Feature MA Feature

Fig. 5: Visualization of multi-modal features under different conditions on DEVLIER.
MA feature: Modality-agnostic feature.
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(a) w/o Intra-modal KD (b) w Intra-modal KD (c) w/o Inter-modal KD (d) w Inter-modal KD

Fig. 6: t-SNE visualization. Red and green points in (c) and (d) represent RGB and
Depth features, respectively. In (a) and (b), colors indicate distinct semantic classes.
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