
Refine, Discriminate and Align (RDA) 1

A Supplementary Material

A.1 Elaborations on Existing Methods

In this section, we will elaborate on the three baselines considered in this paper,
namely, the conventional method [34], StolenEnoder [26], and Cont-Steal [34].

• Conventional method: Given a surrogate dataset DS = {x1,x2, . . . ,xN},
the conventional method first queries the target encoder ET once with each sam-
ple xi ∈ DS . The output embedding ET (xi), i = 1, 2, . . . , N, will be stored in a
memory bank to serve as a “ground truth” for the sample across the whole train-
ing. Next, to train the surrogate encoder ES , it feeds each sample xi ∈ DS to ES

and pulls the output embedding ES(xi) close to its corresponding optimization
objective, i.e., ET (xi).

• StolenEncoder: Similar to the conventional method, StolenEncoder first
queries the target encoder ET once with each sample xi ∈ DS and stores the
output embedding ET (xi), i = 1, 2, . . . , N, in a memory bank. Next, it not only
feeds each sample xi ∈ DS but also an augmentation x′

i of it to the surrogate
encoder ES . The output embeddings ES(xi) and ES(x

′
i) will be pulled close to

ET (xi) simultaneously for optimizing the surrogate encoder ES .
• Cont-Steal: In particular, Cont-Steal adopts an end-to-end training strat-

egy to train the surrogate encoder ES . In each epoch, Cont-Steal first augments
each image xi ∈ DS into two perspectives, denoted as x′

i,t and x′
i,s, respec-

tively. Next, x′
i,t is used to query the target encoder ET , while x′

i,s is fed to the
surrogate encoder ES . The surrogate encoder then is optimized via contrastive
learning that pulls ET (x

′
i,t) and ES(x

′
i,s) close while pushing ES(x

′
k,s), k ̸= i,

and ET (x
′
i,t) apart. Moreover, to enhance contrastive learning, Cont-Steal also

includes ES(x
′
i,s) and ES(x

′
k,s), i ̸= k, as negative pairs to train ES .

Table 7: Query cost analysis of three baseline methods.

Method Surrogate Dataset
Size Training Epoch Query Cost

Conventioanl [34] N L N
StolenEncoder [26] N L N

Cont-Steal [34] N L N × L

Query Cost Analysis. Assuming the attacker has a surrogate dataset DS =
{x1,x2, . . . ,xN} consisting of N images. To train a surrogate encoder, the at-
tacker will use DS to query the target encoder and optimize the surrogate en-
coder to mimic its outputs. Regarding the conventional method and StolenEn-
coder, each image xi ∈ Ds will be used to query only once. Therefore, the query
cost of them is N , and nothing about the number of training epochs. As for Cont-
Steal, each image in DS will be augmented into two perspectives and one is used
to query the target encoder in each epoch. Therefore, assuming the training will
last for L epochs, the query cost of Cont-Steal is N × L. Although Cont-Steal
achieves superior results, its query cost is formidable since the training typically

2 S. Wu et al.

Algorithm 1: Detailed steps of RDA
input : Surrogate dataset DS , target encoder ET , surrogate encoder ES ,

patch number n for generating prototypes and m for training.
output: A high-performance surrogate encoder ES

1 Load ET and initialize ES .
2 Prototype generation:
3 for each image xi ∈ DS do
4 augment xi into multiple patches {x′

i,t,c}nc=1 = {x′
i,t,1, . . . ,x

′
i,t,n};

5 query ET with {x′
i,t,c}nc=1 and obtain

{ET (x
′
i,t,c)}nc=1 = {ET (x

′
i,t,1), . . . , ET (x

′
i,t,n)};

6 calculate the sample-wise prototype for xi as follows:
pxi =

1
n

∑n
c=1 ET (x

′
i,t,c);

7 Training:
8 for each epoch do
9 for each image xi ∈ DS do

10 augment xi into multiple patches {x′
i,s,q}mq=1 = {x′

i,s,1, . . . ,x
′
i,s,m};

11 feed {x′
i,s,q} into ES and obtain

{ES(x
′
i,s,q)}mq=1 = {ES(x

′
i,s,1), . . . , ES(x

′
i,s,m)};

12 for each ES(x
′
i,s,1) ∈ {ES(x

′
i,s,q)}mq=1 do

13 optimize ES with L = λ1 · LD + λ2 · LA based on Eq. 2-10;
14 return: the trained surrogate encoder ES

Table 8: Results of different loss designs. The results are SAs on different downstream
datasets, with highlighting the optimal .

Loss Type CIFAR100 F-MNIST GTSRB SVHN
L (current used) 44.27 89.32 62.75 73.74

Lv2 41.99 85.45 61.92 72.88
Lv3 42.23 88.63 62.46 71.86

requires over 100 epochs to converge. We have the query cost of each method
summarized in Table 7.

A.2 Details about Our Method

Practical Formulation of the Memory Bank. In practice, we assign a
unique label to each image in the attacker’s surrogate dataset as its key in
the memory bank. Specifically, we transform Ds = {x1,x2, . . . ,xN} into a set
of image-key pairs, i.e., Ds = {(x1, 1), (x2, 2), . . . , (xn, n)}. Then we generate
a prototype for each image and get a set of key-prototype pairs that can be
expressed as P = {1 : px1

, 2 : px2
, . . . , n : pxn

}. The prototype set P is stored in
a memory bank and we do not need to query the target model during training
anymore.
Detailed Steps. Detailed steps of RDA are summarized in Algorithm 1.

Refine, Discriminate and Align (RDA) 3

Table 9: Ablation studies on the weights of Lamp and Lang. The results are SAs on
different downstream datasets, with highlighting the optimal .

Lamp : Lang CIFAR100 F-MNIST GTSRB SVHN
5 : 1 42.90 86.52 61.32 70.57
2 : 1 43.61 86.80 62.55 72.90
1 : 1 44.27 89.32 62.75 73.74
1 : 2 42.70 88.64 60.59 72.05
1 : 5 43.24 89.16 62.04 73.11

A.3 Loss Designs

Alternative Loss Designs. In this section, we consider two alternative loss
designs about LA. For simplicity, we denote them as LA,v2 and LA,v3, respec-
tively.

• LA,v2: To investigate the benefits of penalizing different deviations with
different levels, we define LA,v2 as a naive combination of L′

amp and L′
ang as

follows:

LA,v2 =
1

N

N∑

i=1

(L′
amp(xi)− L′

ang(xi)). (11)

• LA,v3: To investigate the benefits of our current penalizing regime employed
by LA, we reverse it here by an “exp”, i.e., penalizing the MSE increase from
0.8 to 0.9 more harshly than that from 0.3 to 0.4, with the same rule employed
on the reciprocal of the cosine similarity. Therefore, we formulate the LA,v3 as
follows:

LA,v3 =
1

N

N∑

i=1

(exp (L′
amp(xi)) + exp (1/L′

ang(xi))). (12)

Finally, we define:
Lv2 = LD + LA,v2, (13)

Lv3 = LD + LA,v3. (14)

We use the encoder pre-trained on CIFAR10 as the target encoder and eval-
uate the trained surrogate encoders on four different downstream datasets, i.e.,
CIFAR100, F-MNIST, GTSRB, and SVHN. Each experiment is run three times
and we report the mean value of the achieved SAs by each loss design in Table
8.

As the results show, both Lv2 and Lv3 underperform L. On the one hand,
L outperforms Lv2 indicating that incorporating our current penalizing regime
is beneficial. On the other hand, L outperforms Lv3 indicating that penalizing
a deviation from a more favorable value to a worse one more harshly is more
favorable upon the opposite penalizing regime.

4 S. Wu et al.

Fig. 10: We augment an image x into 50 patches and feed them into an encoder ET

that pre-trained on CIFAR10 (KNN Accuracy = 88.31%, tested on CIFAR10). This
figure depicts the cosine similarity between each augmentation patch’s embedding and
two different benchmarks, i.e., (1) the embedding of the original image and (2) the
prototype of the image, with the mean value over the 50 similarities marked in the
black dashed line. We can see that the prototype is significantly more similar to each
patch’s embedding, showcasing it is less biased.

(a) Target Model (b) RDA (c) Cont-Steal (d) StolenEncoder (e) Conventional

Fig. 11: t-SNE of embeddings of 2,000 images randomly sampled from CIFAR10 gen-
erated by the target encoder and surrogate encoders trained with different methods.

The Weights of Amplitude and Angle Deviations. Recall our default set-
ting that we assume the amplitude and angle deviations are of equal importance
and thus formulate LA(xi) = Lamp(xi)+Lang(xi). Here we ablate on five differ-
ent weight pairs as shown in Table 9 to investigate the importance level of each
deviation type. From the results, we can see that setting the weights of Lamp

and Lang to 1 : 1 generally achieves the best result.

A.4 Supplementary Experiments

Benifit of Using Prototypes. We augment an image x (stamped at the
upper left corner of Figure 10) into 50 patches and denote each of them as
x′
i, i = 1, . . . , 50. Next, we input each patch as well as the image’s original version

into ET , an encoder pre-trained on CIFAR10. To show the image’s prototype
(i.e., 1

50

∑50
i=1 ET (x

′
i)) is a less biased optimization objective compared to the

embedding of its original version (i.e., ET (x)), we depict the cosine similarity
between each patch’s embedding and the two different benchmarks in Figure
10. We can see that the prototype has significantly higher similarity with each
patch’s embedding, showcasing it is less biased.

Refine, Discriminate and Align (RDA) 5

Table 10: The time cost of each method over the 100 training epochs. Each result
consists of two parts, i.e., the time for training the surrogate encoder and the time for
testing after each epoch.

Method Time (min)
Conventional 3.87 + 13.18
StolenEncoder 5.53 + 13.18

Cont-Steal 4.08 + 13.18
RDA 10.65 + 13.18

Visualization of the Embedding Space. To visualize the embedding space of
the surrogate encoder trained by each method, we randomly sample 200 images
from each class of CIFAR10 (i.e., 2,000 images in total) and feed them to the
surrogate encoder. From Figure 11, we can observe that embeddings of different
classes from surrogate encoders trained by StolenEncoder and the conventional
method overlap with each other and exhibit less structural clarity. In contrast,
RDA and Cont-Steal train surrogate encoders that generate more distinguishable
embeddings for different classes. This indicates that encoder stealing benefits
from contrastive learning.

Time Cost. In particular, the total training time comprises two parts, i.e.,
the time for training the surrogate encoder and the time for testing the trained
surrogate encoder after each training epoch to choose the best one. We present
the total time cost of each method in Table 10. We can see that the testing time
is 13.18 minutes and is identical across all methods over 100 epochs, while the
training time of RDA is the longest. This is because RDA augments each image
into 5 patches by default to train the surrogate encoder, which means 5 times
forward encoding for each image. For a fair comparison, we prolong the training
for another 200 epochs for each baseline method and show that our RDA still
surpasses them by a large margin, as demonstrated by Figure 6.

Effectiveness of RDA on Different Encoder Architectures. To demon-
strate the effectiveness of our RDA against pre-trained encoders of various archi-
tectures, we further evaluate it on ResNet34, VGG19_bn [37], DenseNet121 [15],
and MobileNetV2 [14]. Table 11 shows that RDA can achieve comparable perfor-
mances with the target encoders of various architectures and even outperforms
them on multiple datasets.

Ablation Studies on the Weight of Each Part in the Loss Function. To
investigate the impact of each part in our loss function on the stealing perfor-
mance, we fix λ1 in Eq. 10 to 1 and vary the value of λ2 (i.e., the weight of the
aligning loss LA) from 0 to 10. We use the encoder pre-trained on CIFAR10 as
the target encoder and evaluate the trained surrogate encoder on three different
downstream datasets, i.e., CIFAR10, GTSRB, and SVHN. As we can observe in

6 S. Wu et al.

Table 11: Results of RDA against target encoders of different architectures. The pre-
training dataset is CIFAR10 and the architecture of the surrogate encoder is ResNet18.

Target Encoder
Architecture

Downstream
Dataset TA SA SA

TA × 100%

ResNet34

MNIST 96.42 96.19 99.76
F-MNIST 89.51 87.03 97.23
GTSRB 62.79 54.57 86.91
SVHN 61.68 70.12 113.68

VGG19_bn

MNIST 90.76 91.57 100.89
F-MNIST 68.54 74.28 108.37
GTSRB 13.27 11.25 84.78
SVHN 26.32 41.30 156.91

DenseNet121

MNIST 95.81 96.15 100.35
F-MNIST 86.75 88.79 102.35
GTSRB 54.69 52.05 95.17
SVHN 49.52 67.19 135.68

MobileNetV2

MNIST 90.56 94.53 104.38
F-MNIST 77.69 83.38 107.32
GTSRB 33.88 24.00 70.84
SVHN 27.54 58.54 212.56

0 0.1 0.2 0.5 1 2 5 10
2

70

75

80

85

90

95

100

Ac
cu

ra
cy

(a) CIFAR10

Target Encoder
RDA

0 0.1 0.2 0.5 1 2 5 10
2

50

55

60

65

70

Ac
cu

ra
cy

(b) GTSRB

Target Encoder
RDA

0 0.1 0.2 0.5 1 2 5 10
2

60

65

70

75

80

Ac
cu

ra
cy

(c) SVHN

Target Encoder
RDA

Fig. 12: Ablation studies on the weight of each part in the loss, where we fix λ1 to 1
and vary the value of λ2 from 0 to 10.

Figure 12, the surrogate encoders’ performances on CIFAR10 and SVHN pos-
itively correlate to the weight of LA, i.e., λ2. This is because CIFAR10 is the
pre-training dataset of the target encoder. As the weight of the aligning loss
LA increases, the outputs of the surrogate and the target encoder become more
aligned, and thus the trained surrogate encoder will perform better on CIFAR10.
On the other hand, a larger weight for LA will make the surrogate encoder fit
the surrogate dataset more. In this sense, since SVHN is more similar to the sur-
rogate dataset (i.e., Tiny ImageNet), the surrogate encoder naturally performs
better on it as the λ2 increases. On the contrary, as the weight of LA increases,
the surrogate encoder’s performance on GTSRB which shares little similarity
with both the pre-training and surrogate datasets becomes worse. Similar phe-
nomenons have been discussed in Section 4.4, where LD trains the surrogate
encoder that achieves the optimal performance on GTSRB. A larger weight for

Refine, Discriminate and Align (RDA) 7

Table 12: Ablations on each part of LA.

Loss Function CIAFR10 GTSRB SVHN CIFAR100 AVG
LD + LA 79.39 62.75 73.74 44.27 65.03
LD + Lamp 76.17 56.21 74.40 40.49 61.81
LD + Lang 77.70 55.85 75.81 42.78 63.03

Table 13: Ablations on the surrogate data.

Surrogate Data CIAFR10 GTSRB SVHN
CIFAR10 81.33 59.34 75.21
GTSRB 68.54 54.84 73.70
SVHN 63.63 42.00 68.78

LA will make the surrogate encoder fit the surrogate dataset more, and thus
perform worse on GTSRB.

Ablation Studies on the Effect of Each Part in LA. To investigate whether
our LA can acquire better performance compared to each part (i.e., Lamp and
Lang) of it, we do ablation experiments as presented in Table 12. All settings fol-
low the default configurations we use except the loss function. From the results,
we can observe that LD+LA achieves the best performance in three downstream
datasets among four. Averagely, LD + LA still largely surpasses the other two
loss functions. This suggests the necessity of both Lamp and Lang in our loss
design of LA.

Ablation Studies on the Choice of The Surrogate Data. To investigate
the impact of the choice of the surrogate data used by attackers, we randomly
sample 2,500 images from three different datasets, namely CIFAR10, GTSRB,
and SVHN respectively to build three different surrogate datasets. Other set-
tings follow the default setting. As Table13 shows, using images sampled from
CIFAR10 as the surrogate data offers the most effective performance. However,
comparing Table 6 and Table 13, we can find that sampling data from CIFAR10
as the surrogate data underperformance sampling from Tiny-ImageNet on GT-
SRB. We suspect the reason is that GTSRB differs much from the pertaining
data and thus using CIFAR10 as the surrogate data offers minimal benefits. Ad-
ditionally, the diversity of Tiny-ImageNet enables it to extract broader potential
representations of the target encoder.

More Complex Downstream Datasets. We have also conducted small-scale
experiments on three more complex downstream datasets: Tiny-ImageNet, CUB-
200-2011, and Food 101. For these datasets, we center-crop and resize each image
to 224 × 224, followed by training the downstream classifier for 300 epochs to

8 S. Wu et al.

Table 14: Additional experiments on more difficult datasets. The reported result is
SA
TA × 100%, which shows the attack efficacy.

Dataset Description Conventional StolenEncoder Cont-Steal RDA
Tiny-ImageNet 200 classes 34.29 79.81 92.14 94.76
CUB-200-2011 200 classes 31.35 44.58 54.88 57.37

Food101 101 classes 28.77 40.04 79.29 79.77

Table 15: Attack efficacy (SA
TA × 100%) against third-party models. These target

models can be downloaded via our code link.

Provider / Platform URL CIFAR10 CIFAR100
OpenMMLab https://github.com/open-mmlab 84.72 107.59
Hugging Face https://huggingface.co 99.53 91.41

attain relatively decent performances. The results presented in Table 14 demon-
strate that our RDA consistently delivers superior performances.

Stealing Third-Party Models. To mitigate the potential risks of violating
relevant laws, we refrain from unauthorized usage of commercial APIs for stealing
attacks. Consequently, to further validate the applicability of our method, we
provide additional results using open-sourced third-party models in accordance
with our default settings for a simulation. After deploying the target model, we
assume knowledge only of the dimension of the output embeddings. Results are
presented in Table 15, illustrating the applicability of RDA on these third-party
models.

A.5 Possible Defenses against RDA

Since our RDA augments each image into multiple semantically similar patches,
this may result in frequent similar queries at the embedding level. Therefore, a
potential defense against RDA could involve rejecting such frequent and simi-
lar queries. For instance, if a user’s recent queries exhibit high similarity, the
defender might reject subsequent queries. However, this approach has several
challenges. Determining the appropriate threshold for rejecting similar queries is
complex and requires careful consideration. Moreover, the defender might need to
dynamically adjust the threshold and rejection criteria. Additionally, if the user
distributes the queries across multiple accounts, the defense becomes even more
challenging. Effective defense strategies still require significant development.

