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Overview. This document provides derivations, explanations, imple-
mentation details, algorithms, and more results supporting the content
of the paper titled “Light-in-Flight for a World-in-Motion”.

S1 I-ToF Image Formation

In this section, we provide detailed image formation models for indirect time-of-
flight (I-ToF) cameras. An I-ToF camera consists of a light source and a sensor.
The intensity of the light source is temporally modulated by a periodic modula-
tion function M(t) (M(t) ≥ 0) with a period T0. We assume that the modulation
function is normalized such that 1

T0

∫
T0
M(t) dt = 1. The light emitted by the

light source travels to the scene of interest and is reflected back toward the
sensor. The radiance of the light incident on a sensor pixel p is given as

R (p; t) = αPsM

(
t− 2Z

c

)
+ Pa, (S1)

where Z is the scene depth between the camera and the scene point imaged at
p, c is the speed of light, and Ps is the average power of the light source. α is a
scale factor encapsulating light fall-off, scene albedo, and reflectance properties.
Pa is the average power of ambient light (e.g., sunlight) incident on p. Each
sensor pixel p computes the correlation C (p) between R (p; t) and a periodic
demodulation function D(t) which has the same period as M(t):

C (p) = β

∫
T

R (p; t)D(t) dt, (S2)

where T is the integration time, and β is a sensor-dependent scale factor encapsu-
lating sensor gain and sensitivity. In order to estimate the unknowns (e.g., scene
depth, source strength, and ambient strength), several different C (p) values
should be measured by using different pairs of modulation M(t) and demod-
ulation functions D(t). For simplicity and ease of analysis, we focus on sinu-
soids [7,8,12] for M(t) and D(t). We can define two types of sinusoids for D(t):
unipolar (0 ≤ D(t) ≤ 1) and bipolar (−1 ≤ D(t) ≤ 1) demodulation functions.
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S1.1 Correlation with Unipolar Demodulation

Let us consider the sinusoidal modulation M(t) and unipolar sinusoidal demod-
ulation functions D(t):

M(t) = 1 + cos (2πf0t) , D(t) =
1

2
+

1

2
cos (2πf0t)︸ ︷︷ ︸

Eq. 1 of the main manuscript

, (S3)

where the modulation frequency f0 = 1/T0. Note thatM(t) ≥ 0, 1
T0

∫
T0
M(t) dt =

1, and 0 ≤ D(t) ≤ 1. In this case, C (p) (Eq. S2) is given as

C (p) =
T

2

(
es + ea +

es
2
cos

(
4πf0Z

c

))
, (S4)

where es = αβPs and ea = βPa. es and ea are the average number of photo-
electrons generated at the sensor per unit time by the light source and the
ambient light, respectively. Since Eq. S4 includes three unknowns es, ea, and Z,
N (N ≥ 3) number of different C (p) values should be measured to decode the
unknowns for each pixel p. One way to achieve this is to shift the phase of D(t)
N times by different amounts ψn = 2π (n− 1) /N, n ∈ {1, ..., N}:

Cn (p) =
T

2

(
es + ea +

es
2
cos

(
4πf0Z

c
− ψn

))
︸ ︷︷ ︸

Eq. 2 of the main manuscript

. (S5)

S1.2 Correlation with Bipolar Demodulation

Let us consider the sinusoidal modulation M(t) and bipolar sinusoidal demodu-
lation functions D(t) (−1 ≤ D(t) ≤ 1):

M(t) = 1 + cos (2πf0t) , D(t) = cos (2πf0t) . (S6)

In this case, C (p) is

C (p) =
Tes
2

cos

(
4πf0Z

c

)
. (S7)

Note that the unknown ea is removed as compared to Eq. S4. In order to decode
two unknowns es and Z for each pixel p, we measure N (N ≥ 2) number of
different C (p) values by shifting the phase of D(t) N times by different amounts
ψn = 2π (n− 1) /N, n ∈ {1, ..., N}3:

Cn (p) =
Tes
2

cos

(
4πf0Z

c
− ψn

)
. (S8)

3 When N = 2, however, ψn should be changed to ψn = π (n− 1) /2, n ∈ {1, 2}.



Supplementary Report for “Light-in-Flight for a World-in-Motion” 3

S1.3 Depth Estimates

When Cn (p) is given by Eq. S5 or S8, the scene depth Z for each pixel p can
be estimated by:

Ẑ (p) =
c

4πf0
tan−1

(∑N
n=1 Cn sinψn∑N
n=1 Cn cosψn

)
︸ ︷︷ ︸

Eq. (3) of the main manuscript

. (S9)

We drop p in Cn (p) for brevity. Eq. S9 holds regardless of whether we use
unipolar or bipolar sinusoidal demodulation functions. By computing Eq. S9 for
all pixels, we can get a depth map.

S1.4 Intensity Estimates

The intensity I for each pixel p can be estimated by:

Î (p) =
1

N

√√√√( N∑
n=1

Cn cosψn

)2

+

(
N∑

n=1

Cn sinψn

)2

∝ Tes︸ ︷︷ ︸
Eq. (4) of the main manuscript

. (S10)

The intensity I is proportional to the amount of incident signal photons (=
Tes), which is proportional to the scene albedo and inversely proportional to
the squared depth. By computing Eq. S10 for all pixels, we can get an intensity
image.
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S2 SNR of Depth and Intensity Estimates

In this section, we derive the standard deviations and signal-to-noise ratio (SNR)
for both depth and intensity estimates. For ease of analysis, we assume the use
of the unipolar demodulation function with N = 4. The same analysis can be
extended to the bipolar demodulation function or other values of N .

S2.1 Depth Standard Deviation

The scene depth when N = 4 can be estimated from Eq. S9:

Ẑ =
c

4πf0
tan−1

(
C2 − C4

C1 − C3

)
, (S11)

where Cn, n ∈ {1, . . . , 4} is defined as Eq. S5. The depth standard deviation σZ
can be obtained using the error propagation rule:

σZ =

√√√√ 4∑
n=1

(
∂Z

∂Cn

)2

Var (Cn) =

√√√√ 4∑
n=1

(
∂Z

∂Cn

)2

Cn, (S12)

where Var (·) is a variance operator, and Var (Cn) = Cn under a Poisson dis-
tribution (photo-electron counts follow a Poisson distribution). From Eq. S11,(

∂Z

∂C1

)2

C1 =

(
c

4πf0

)2
C1 (C2 − C4)

2(
(C1 − C3)

2
+ (C2 − C4)

2
)2 , (S13)

(
∂Z

∂C2

)2

C2 =

(
c

4πf0

)2
C2 (C1 − C3)

2(
(C1 − C3)

2
+ (C2 − C4)

2
)2 , (S14)

(
∂Z

∂C3

)2

C3 =

(
c

4πf0

)2
C3 (C2 − C4)

2(
(C1 − C3)

2
+ (C2 − C4)

2
)2 , (S15)

and (
∂Z

∂C4

)2

C4 =

(
c

4πf0

)2
C4 (C1 − C3)

2(
(C1 − C3)

2
+ (C2 − C4)

2
)2 . (S16)

By applying Eqs. S13 - S16 to Eq. S12, we get

σZ =

√√√√ 4∑
n=1

(
∂Z

∂Cn

)2

Cn

=
c

4πf0

√
(C1 + C3) (C2 − C4)

2
+ (C2 + C4) (C1 − C3)

2

(C1 − C3)
2
+ (C2 − C4)

2 .

(S17)
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Since

C1 − C3 =
Tes
2

cos

(
4πf0Z

c

)
, (S18)

C1 + C3 = T (es + ea) , (S19)

C2 − C4 =
Tes
2

sin

(
4πf0Z

c

)
, (S20)

and
C2 + C4 = T (es + ea) , (S21)

the depth standard deviation σZ is given by

σZ =
c

2πf0
√
T

√
es + ea
es

. (S22)

S2.2 Intensity Standard Deviation

From Eq. S10 and N = 4,

Î =
1

4

√
(C1 − C3)

2
+ (C2 − C4)

2
. (S23)

where Cn, n ∈ {1, . . . , 4} is defined as Eq. S5. The intensity standard deviation
σI can be obtained using the error propagation rule:

σI =

√√√√ 4∑
n=1

(
∂I

∂Cn

)2

Var (Cn) =

√√√√ 4∑
n=1

(
∂I

∂Cn

)2

Cn. (S24)

From Eq. S23, (
∂I

∂C1

)2

C1 =
1

16

C1 (C1 − C3)
2

(C1 − C3)
2
+ (C2 − C4)

2 , (S25)

(
∂I

∂C2

)2

C2 =
1

16

C2 (C2 − C4)
2

(C1 − C3)
2
+ (C2 − C4)

2 , (S26)

(
∂I

∂C3

)2

C3 =
1

16

C3 (C1 − C3)
2

(C1 − C3)
2
+ (C2 − C4)

2 , (S27)

and (
∂I

∂C4

)2

C4 =
1

16

C4 (C2 − C4)
2

(C1 − C3)
2
+ (C2 − C4)

2 . (S28)
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From Eqs. S24 - S28,

σI =

√√√√ 4∑
n=1

(
∂I

∂Cn

)2

Cn

=
1

4

√
(C1 + C3) (C1 − C3)

2
+ (C2 + C4) (C2 − C4)

2

(C1 − C3)
2
+ (C2 − C4)

2 .

(S29)

By applying Eqs. S18 - S21 to S29, we get

σI =

√
T (es + ea)

4
. (S30)

S2.3 SNR of Depth Estimate

We define the SNR of the depth estimate as the ratio between the true Z and
depth standard deviation σZ (Eq. S22):

SNRZ =
Z

σZ
=

2πf0
√
T

c

esZ√
es + ea︸ ︷︷ ︸

Eq. 6 of the main manuscript

. (S31)

S2.4 SNR of Intensity Estimate

We define the SNR of the intensity estimate as the ratio between the true I and
intensity standard deviation σI (Eq. S30). Since I = Tes

8 from Eqs. S18, S20,
and S23,

SNRI =
I

σI
=

√
Tes

2
√
es + ea︸ ︷︷ ︸

Eq. 7 of the main manuscript

. (S32)
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S3 Proof of Observation 1

In this section, we prove Observation 1 using the unipolar demodulation function.
This proof can also be extended to the bipolar demodulation function.

Observation 1 Consider two correlation image sets captured successively in
time, as shown in Fig. 3 of the main manuscript. If the scene motion is small and
linear over the two correlation image sets, the spatial gradient of the intensity
image obtained from each correlation image set (although misaligned due to
motion) preserves its pixel brightness along the true XY-motion over the two
intensity images.

Proof. Consider two neighboring sets (set 1 and set 2) of the correlation images
as shown in Fig. S1. Each set consists of N correlation images. Set 1 and 2 are
captured with the modulation frequencies f1 and f2, respectively.

5

𝐩

∆𝑋

∆𝑌

∇𝐼1 ∇𝐼2

∆𝑍 = 𝑍2 − 𝑍13D motion: ∆𝑋, ∆𝑌, ∆𝑍

𝐩

∆𝑋

∆𝑌

𝐶1,1 ⋯𝐶1,2 𝐶1,𝑁 𝐶2,1 ⋯𝐶2,2 𝐶2,𝑁

Correlation image set 1 at 𝑓1 Correlation image set 2 at 𝑓2

𝑍1
𝑍2

2D motion: ∆𝑋, ∆𝑌

∆𝑡∆𝑡

Fig. S1: XY- and Z-motion estimation with brightness-varying correlation
images. All correlation images in each set have different pixel values (depicted as
distinct colors) along the true XY-motion (∆X,∆Y ), posing a challenge for motion
estimation. However, under the small and linear motion, the spatial gradient of the
intensity image obtained from each correlation image set maintains its pixel values
(represented by the same color) along the motion, facilitating XY-motion estimation.
Two depth values (one from each set) can be obtained along the estimated XY-motion,
and the Z-motion (∆Z) can be simply derived from their difference.

Under the small and linear motion, the pixel value of the scene point on the
n-th correlation image within the set 1 is given by:

C1,n (X + (n− 1) k∆X, Y + (n− 1) k∆Y, t+ (n− 1) k∆t)

=
T (es + ea)

2
+
Tes
4

cos

(
4πf1Z

c
− ψn

)
(1 ≤ n ≤ N) ,

(S33)

where (X,Y, t) is the spatio-temporal location of the scene point on the first
correlation image within the set 1. (∆X,∆Y ) is the XY-motion between the
correlation image sets. k is the fractional coefficient to describe the finer-grained



8 J. Lee et al.

XY-motion between successive correlation images in each set. We ignore the
Z-motion (thus, the variance of es along Z) within each set for ease of analysis.

Using the Taylor approximation, the left-hand side of Eq. S33 is approxi-
mated as:

C1,n (X + (n− 1) k∆X, Y + (n− 1) k∆Y, t+ (n− 1) k∆t)

≈ C1,n (X,Y, t+ (n− 1) k∆t) +
∂C1,n (X,Y, t+ (n− 1) k∆t)

∂X
(n− 1) k∆X

+
∂C1,n (X,Y, t+ (n− 1) k∆t)

∂Y
(n− 1) k∆Y.

(S34)

Let C1,n (X,Y, t+ (n− 1) k∆t) = C1,n (the correlation values along the same
spatial location within the set 1) for brevity. Then, from Eqs. S33 and S34,

C1,n +
∂C1,n

∂X
(n− 1) k∆X +

∂C1,n

∂Y
(n− 1) k∆Y

≈ T (es + ea)

2
+
Tes
4

cos

(
4πf1Z

c
− ψn

)
(1 ≤ n ≤ N) .

(S35)

Let ∂C1,n

∂X (n− 1) k∆X +
∂C1,n

∂Y (n− 1) k∆Y = ∆C1,n for brevity. Then,

C1,n ≈ T (es + ea)

2
+
Tes
4

cos

(
4πf1Z

c
− ψn

)
−∆C1,n. (S36)

Consider the intensity value obtained from the N correlation values which
are not aligned due to small and linear scene motion:

I (X,Y, t) =
1

N

( N∑
n=1

C1,n cosψn

)2

+

(
N∑

n=1

C1,n sinψn

)2
0.5

, (S37)

where C1,n = C1,n (X,Y, t+ (n− 1) k∆t) are the correlation values along the
same spatial location (not along the true XY-motion) within the set 1. Using
Eq. S36,

N∑
n=1

C1,n cosψn =

N∑
n=1

(
T (es + ea)

2
+
Tes
4

cos

(
4πf1Z

c
− ψn

)
−∆C1,n

)
cosψn

=
NTes

8
cos

(
4πf1Z

c

)
−

N∑
n=1

∆C1,n cosψn.

(S38)

Similarly,

N∑
n=1

C1,n sinψn =
NTes

8
sin

(
4πf1Z

c

)
−

N∑
n=1

∆C1,n sinψn. (S39)
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By applying Eqs. S38 and S39 to Eq. S37,

I (X,Y, t) =
1

N

(NTes
8

cos

(
4πf1Z

c

)
−

N∑
n=1

∆C1,n cosψn

)2

+

(
NTes

8
sin

(
4πf1Z

c

)
−

N∑
n=1

∆C1,n sinψn

)2
0.5

=
1

N

((
NTes

8

)2

− NTes
4

cos

(
4πf1Z

c

) N∑
n=1

∆C1,n cosψn

−NTes
4

sin

(
4πf1Z

c

) N∑
n=1

∆C1,n sinψn

+

(
N∑

n=1

∆C1,n cosψn

)2

+

(
N∑

n=1

∆C1,n sinψn

)2
0.5

.

(S40)

I (X,Y, t) =
Tes
8

(
1− 16

NTes
cos

(
4πf1Z

c

) N∑
n=1

∆C1,n cosψn

− 16

NTes
sin

(
4πf1Z

c

) N∑
n=1

∆C1,n sinψn

+

(
8

NTes

)2
(

N∑
n=1

∆C1,n cosψn

)2

+

(
8

NTes

)2
(

N∑
n=1

∆C1,n sinψn

)2
0.5

≈ Tes
8

(
1− 8

NTes
cos

(
4πf1Z

c

) N∑
n=1

∆C1,n cosψn

− 8

NTes
sin

(
4πf1Z

c

) N∑
n=1

∆C1,n sinψn

+
32

(NTes)
2

(
N∑

n=1

∆C1,n cosψn

)2

+
32

(NTes)
2

(
N∑

n=1

∆C1,n sinψn

)2
 .

(S41)

Eq. S41 is the intensity value from set 1 under the small and linear scene motion,
which is different from I (X,Y, t) = Tes

8 when there is no motion.
Similarly, we derive the intensity value from set 2 under the small and linear

scene motion. The pixel value of the scene point on the n-th correlation image
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within the set 2 is given by:

C2,n (X +∆X + (n− 1) k∆X, Y +∆Y + (n− 1) k∆Y, t+∆t+ (n− 1) k∆t)

=
T (es + ea)

2
+
Tes
4

cos

(
4πf2 (Z +∆Z)

c
− ψn

)
(1 ≤ n ≤ N) ,

(S42)

where (X +∆X,Y +∆Y, t+∆t) is the spatio-temporal location of the scene
point on the first correlation image within the set 2. Note that f1 and Z in
Eq. S33 are changed to f2 and Z +∆Z in Eq. S42. As we derived Eq. S41 from
Eq. S33, we can derive the intensity value for set 2 from Eq. S42 under the small
and linear scene motion:

I (X +∆X,Y +∆Y, t+∆t)

≈ Tes
8

(
1− 8

NTes
cos

(
4πf2 (Z +∆Z)

c

) N∑
n=1

∆C2,n cosψn

− 8

NTes
sin

(
4πf2 (Z +∆Z)

c

) N∑
n=1

∆C2,n sinψn

+
32

(NTes)
2

(
N∑

n=1

∆C2,n cosψn

)2

+
32

(NTes)
2

(
N∑

n=1

∆C2,n sinψn

)2
 ,

(S43)

where C2,n = C2,n (X +∆X,Y +∆Y, t+∆t+ (n− 1) k∆t). Again, Eq. S43 is
different from Tes

8 , which is the value when there is no motion.
For the small and linear motion, ∂C1,n

∂X =
∂C2,n

∂X , ∂C1,n

∂Y =
∂C2,n

∂Y , and ∆C1,n =
∆C2,n = ∆Cn. As a result, we can derive the following from Eqs. S41 and S43:

I (X +∆X,Y +∆Y, t+∆t)− I (X,Y, t)

≈ 1

N

N∑
n=1

∆Cn cosψn

(
cos

(
4πf1Z

c

)
− cos

(
4πf2 (Z +∆Z)

c

))

+
1

N

N∑
n=1

∆Cn sinψn

(
sin

(
4πf1Z

c

)
− sin

(
4πf2 (Z +∆Z)

c

))
.

(S44)

As indicated in Eq. S44, the intensity value obtained from the N correlation
values at the same spatial location does not preserve its brightness even along
the true XY-motion. However, since Z, ∆Z, and ∆Cn are similar over the local
neighborhood, I (X +∆X,Y +∆Y, t+∆t)−I (X,Y, t) value is also similar over
the local neighborhood. Therefore, we can derive the following equations:

∂

∂X
I (X +∆X,Y +∆Y, t+∆t)− ∂

∂X
I (X,Y, t) = 0, (S45)

and
∂

∂Y
I (X +∆X,Y +∆Y, t+∆t)− ∂

∂Y
I (X,Y, t) = 0. (S46)
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The partial derivatives of I along X- and Y-directions do not change along the
XY-moton. Eqs. S45 and S46 can be combined to:

∂|∇I|
∂X

∆X +
∂|∇I|
∂Y

∆Y +
∂|∇I|
∂t

∆t = 0︸ ︷︷ ︸
Eq. 8 of the main manuscript

, (S47)

where ∇ =
(

∂
∂X ,

∂
∂Y

)T
denotes the spatial gradient.
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S4 Comparisons with Doppler ToF Imaging

In this section, we compare our approach with Doppler ToF imaging [4] in terms
of the standard deviation of the measured axial velocity and the number of mea-
surements. Our approach estimates the axial motion (Z-motion) from the mea-
sured depth difference along the estimated XY-motion. In contrast, Doppler ToF
imaging estimates the axial motion by measuring the Doppler frequency shift,
which is proportional to the axial velocity. In Doppler ToF imaging, two correla-
tion measurements are obtained using two bipolar demodulation functions: one
with the same frequency as the modulation frequency of the light source (homo-
dyne measurement) and the other with the orthogonal frequency (heterodyne
measurement). The axial velocity is estimated from the ratio between these two
measurements. Refer to [4] for more details.

For ease of noise analysis and fair comparisons, we impose several constraints.
First, we assume unipolar demodulation functions for both our approach and
Doppler ToF imaging. Since the correlation values are always positive with
unipolar demodulation functions, their variances are simply their mean values.
Second, we assume four correlation measurements (instead of two measurements
as in [4]) to estimate axial velocity in Doppler ToF imaging. With unipolar
demodulation functions, the correlation values include DC offset, which does
not contain useful information for velocity estimation. Thus, we need additional
measurements to remove this DC offset. For the same reason, we assume four
measurements to estimate a depth value in our approach. Additionally, we as-
sume that all correlation measurements in both cases are perfectly aligned after
the lateral motion estimation to focus on the axial motion estimation.

S4.1 New Image Formation for Doppler ToF Imaging

We derive the new image formation model for Doppler ToF imaging under the
aforementioned constraints. Refer to [4] for the original image formation model.
The received signal at the sensor is given by Eq. S1 (we also include β from
Eq. S2):

R (t) = αβPsM

(
t− 2Z

c

)
+ βPa

= esM(t− 2Z

c
) + ea,

(S48)

where es = αβPs and ea = βPa are the average number of photo-electrons
generated at the sensor per unit time by the light source and the ambient light,
respectively. With a sinusoidal modulation function M(t) = 1 + cos (2πf0t),

R (t) = es + es cos (2π (f0 +∆f) t− ϕ) + ea, (S49)

where ∆f = 2v
c f0 is the Doppler frequency shift, v is the axial velocity, and

ϕ = 4πf0Z
c is the phase shift due to the propagation distance.
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In order to estimate the Doppler frequency shift ∆f from which we can
estimate the axial velocity v, we compute the correlation values between the
received signal and the sensor’s demodulation functions with different frequencies
and phase shifts, which are defined as:

DA,n (t) =
1

2
+

1

2
cos (2πf0t− (n− 1)π) , n ∈ (1, 2) (S50)

and
DB,n (t) =

1

2
+

1

2
cos (2πfBt− (n− 1)π) , n ∈ (1, 2) . (S51)

DA,n and DB,n are the demodulation functions with the frequencies f0 and fB ,
respectively. f0 is the same frequency as the modulation frequency of the light
source. fB = f0+

1
T as defined in [4]. The correlation values between the received

signal and these demodulation functions are given as:

CA,n =

∫
T

R (t)DA,n (t) dt

=
T

2
(es + ea) +

es
8π∆f

(sin (2π∆fT − ϕ+ (n− 1)π)− sin (−ϕ+ (n− 1)π))

(S52)

and

CB,n =

∫
T

R (t)DB,n (t) dt

=
T

2
(es + ea) +

es
8π (f0 +∆f − fB)

(sin (2π (f0 +∆f − fB)T − ϕ+ (n− 1)π)

− sin (−ϕ+ (n− 1)π)) .

(S53)

From Eqs. S52 and S53,

CA,1 =
T

2
(es + ea) +

es
8π∆f

(sin (2π∆fT − ϕ) + sinϕ) , (S54)

CA,2 =
T

2
(es + ea) +

es
8π∆f

(− sin (2π∆fT − ϕ)− sinϕ) , (S55)

CB,1 =
T

2
(es + ea)+

es
8π (f0 +∆f − fB)

(sin (2π (f0 +∆f − fB)T − ϕ) + sinϕ) ,

(S56)
and

CB,2 =
T

2
(es + ea)+

es
8π (f0 +∆f − fB)

(− sin (2π (f0 +∆f − fB)T − ϕ)− sinϕ) .

(S57)
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In order to extract the velocity information, we take the following ratio from
these measurements:

CB,1 − CB,2

CA,1 − CA,2
=

∆f

f0 +∆f − fB
. (S58)

The right-hand side of Eq. S58 is the same as Eq. (14) in [4]. From Eq. S58 and
∆f = 2v

c f0, the axial velocity v∆f measured by Doppler ToF imaging is given
as:

v∆f =
c

2f0
(f0 − fB)

CB,1 − CB,2

CA,1 − CA,2 − CB,1 + CB,2
. (S59)

Using f0 − fB = − 1
T ,

v∆f =
c

2f0T

CB,1 − CB,2

CB,1 − CB,2 − CA,1 + CA,2
. (S60)

S4.2 Velocity Standard Deviation by Doppler ToF Imaging

When the axial velocity is estimated by Doppler ToF imaging, the standard
deviation of the velocity estimates is given by:

σv∆f
=

2πc

f0
√
T

√
es + ea
es

√
1

(∆f− 1
T )

2 + 1
∆f2(

1
∆f− 1

T

− 1
∆f

)2 1

| sin (2π∆fT − ϕ) + sinϕ|︸ ︷︷ ︸
Eq. 10 of the main manuscript

, (S61)

where ϕ = 4πf0Z
c , and ∆f is the Doppler frequency shift defined as ∆f = 2v

c f0.

Proof. The velocity standard deviation σv∆f
by Doppler ToF can be obtained

using the error propagation rule:

σv∆f
=

√√√√ 2∑
n=1

(
∂v

∂CA,n

)2

Var (CA,n) +
2∑

n=1

(
∂v

∂CB,n

)2

Var (CB,n)

=

√√√√ 2∑
n=1

(
∂v

∂CA,n

)2

CA,n +

2∑
n=1

(
∂v

∂CB,n

)2

CB,n.

(S62)

From Eq. S60,

∂v

∂CA,1
=

c

2f0T

CB,1 − CB,2

(CB,1 − CB,2 − CA,1 + CA,2)
2 , (S63)

∂v

∂CA,2
=

c

2f0T

− (CB,1 − CB,2)

(CB,1 − CB,2 − CA,1 + CA,2)
2 , (S64)
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∂v

∂CB,1
=

c

2f0T

− (CA,1 − CA,2)

(CB,1 − CB,2 − CA,1 + CA,2)
2 , (S65)

and
∂v

∂CB,2
=

c

2f0T

CA,1 − CA,2

(CB,1 − CB,2 − CA,1 + CA,2)
2 . (S66)

By applying Eqs. S63 - S66 to Eq. S62,

σv∆f
=

c

2f0T

√
(CB,1 − CB,2)

2
(CA,1 + CA,2) + (CA,1 − CA,2)

2
(CB,1 + CB,2)

(CB,1 − CB,2 − CA,1 + CA,2)
2 .

(S67)
Since

CA,1 − CA,2 =
es

4π∆f
(sin (2π∆fT − ϕ) + sinϕ) , (S68)

CA,1 + CA,2 = T (es + ea) , (S69)

CB,1 − CB,2 =
es

4π (f0 +∆f − fB)
(sin (2π (f0 +∆f − fB)T − ϕ) + sinϕ) ,

(S70)
and

CB,1 + CB,2 = T (es + ea) , (S71)

The velocity standard deviation by Doppler ToF is given as:

σv∆f
=

2πc

f0
√
T

√
es + ea
es

√
1

(∆f− 1
T )

2 + 1
∆f2(

1
∆f− 1

T

− 1
∆f

)2 1

| sin (2π∆fT − ϕ) + sinϕ|
. (S72)

S4.3 Velocity Standard Deviation by Depth Difference

When the axial velocity (or Z-motion) is estimated from depth difference, the
standard deviation of the velocity estimates is given by:

σv∆Z
=

c√
2πf0

√
T∆t

√
es + ea
es︸ ︷︷ ︸

Eq. 9 of the main manuscript

. (S73)

Proof. The axial velocity v∆Z measured by depth difference is given as:

v∆Z =
Z2 − Z1

∆t
, (S74)
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where Z1 and Z2 are two depth values along the scene motion, and ∆t is the
time while the scene point moves from Z1 to Z2.

Var (v∆Z) =

(
1

∆t

)2

Var (Z2 − Z1)

=

(
1

∆t

)2

(Var (Z2) + Var (Z1))

(S75)

From Eq. S22,

Var (Z2) = Var (Z1) = σ2
Z =

(
c

2πf0
√
T

√
es + ea
es

)2

. (S76)

By applying Eq. S76 to Eq. S75,

Var (v∆Z) =

(
1

∆t

)2
((

c

2πf0
√
T

√
es + ea
es

)2

+

(
c

2πf0
√
T

√
es + ea
es

)2
)

=

(
1

∆t

)2(
c√

2πf0
√
T

√
es + ea
es

)2

.

(S77)

Therefore, the standard deviation of the estimated axial velocity by depth dif-
ference σv∆Z

is given as:

σv∆Z
=
√

Var (v∆Z) =
c√

2πf0
√
T∆t

√
es + ea
es

. (S78)

S4.4 Comparisons of Number of Measurements

Comparing the required number of correlation measurements between our ap-
proach and Doppler ToF imaging [4] in a fair manner is challenging. This is
because our approach estimates depth, intensity, XY-motion, and Z-motion,
while Doppler ToF imaging primarily estimates Z-motion (although theoret-
ically, depth and intensity can also be estimated with additional correlation
measurements). With bipolar demodulation functions, as utilized in the original
image formation of Doppler ToF imaging [4], the process requires a minimum of
three correlation measurements to estimate depth, intensity, and Z-motion. In
contrast, our approach necessitates a minimum of four correlation measurements
to estimate depth, intensity, XY-motion, and Z-motion.
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S5 Depth Estimation with Multi-Frequency Coding

Our approach adopts a multi-frequency scheme [6] to achieve high depth pre-
cision with a long depth range. While a combination of low and high frequen-
cies [11] can be used to achieve this goal, we use two relatively high frequencies [6]
for two correlation image sets to achieve two high-SNR depth maps where a
high-quality Z-motion can be estimated by depth difference. In multi-frequency
schemes, two correlation image sets are captured with two different modulation
frequencies, and two interim depth maps are obtained from the two correlation
image sets. While conventional multi-frequency schemes decode one final depth
map from the two interim depth maps, our approach estimates two final depth
maps from the two correlation image sets to estimate the Z-motion as well.

For each pixel, consider two correlation sets C1,n (n ∈ {1, . . . , N}) and C2,n

(n ∈ {1, . . . , N}) which are captured with the modulation frequencies f1 and f2,
respectively. The measurable depth ranges for C1,n and C2,n are c

2f1
and c

2f2
,

respectively. Let us assume that Z1 (≤ c
2f1

) and Z2 (≤ c
2f2

) are two interim
depth values obtained from C1,n (n ∈ {1, . . . , N}) and C2,n (n ∈ {1, . . . , N}),
respectively. Z1 and Z2 are different from the true depth values, and our goal is
to recover their true depth values. The true depth for C1,n (n ∈ {1, . . . , N}) will
be N1Z1 (N1 ∈ N), and the true depth for C2,n (n ∈ {1, . . . , N}) will be N2Z2

(N2 ∈ N). We find N1 and N2 by minimizing |N1Z1 − N2Z2| under the small
Z-motion constraint.

For the multi-frequency scheme using two modulation frequencies f1 and f2,
the effective modulation frequency f0 is

f0 = GCD (f1, f2) , (S79)

where GCD is the greatest common divisor. The measurable depth range is c
2f0

.
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S6 Burst Denoising: Increasing Integration Time (and
SNR) Computationally

In this section, we describe implementation details for burst denoising with I-ToF
correlation images. Burst denoising [1–3,5,9,10] is a popular method to enhance
the SNR without introducing motion artifacts or saturation by increasing the
capture time computationally. It involves capturing a burst of images, each with
a short capture time, and aligning and merging them along the motion trajectory
to increase the SNR. Burst denoising is computationally efficient enough to be
implemented on smartphones [2]. We exploit burst imaging to enhance the SNR
of the correlation images and, thus, the resulting depth and intensity estimates.
The high-quality depth and intensity estimates obtained through burst denoising
also facilitate accurate 3D motion estimation.

S6.1 Constructing a Burst of Correlation Images

Each correlation image within a set is defined as a reference image in turn. For
each reference image, we construct a burst of correlation images from the stream
of captured frames. Each burst comprises M (M = 9 for our simulations and
experiments) number of the correlation images (including the reference image)
with the same demodulation phase shift (ψn in Eq. S5) and the same modulation
frequency to ensure consistent brightness for the same scene point.

S6.2 Finding Similar Image Patches

For each pixel of the reference image, we define a reference patch r (x, y) (1 ≤
x ≤ Nx, 1 ≤ y ≤ Ny) such that the pixel is located at the upper left corner of the
reference patch. Next, we define a Sintra×Sintra×Sinter search volume such that
the reference patch is located at the center of the first slice of the search volume.
A target patch t (x, y) (1 ≤ x ≤ Nx, 1 ≤ y ≤ Ny) with the same size slides over
the search volume to find the similar image patches. We define a distance dpatch
between the reference and target patches as:

dpatch =

Nx∑
x=1

Ny∑
y=1

|r(x, y)− t(x, y)|2. (S80)

The values of Eq. S80 over the search volume can be efficiently computed in the
frequency domain using 3D FFT. The set of similar image patches is defined as
Nsim number of image patches with the smallest dpatch values. Although only one
image patch is found for each slice in the conventional burst denoising, we find
multiple similar image patches per slice if there exists abundant spatial correla-
tion in the same slice. If strong Z-motion exists, the source strength attenuates
rapidly along the motion, and the correlation value changes even for the same
scene point. Therefore, we exploit spatial correlation as much as possible under
strong Z-motion. We use Nx = Ny = 8, Sintra = 21, and Sinter = 9 in our
simulations and experiments.
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S6.3 Wiener Filtering: Merging Image Patches

After finding similar patches for each reference patch, we merge them to get the
reconstruction of the reference patch. If we merge them in the original domain
(e.g., pixel-wise averaging over similar patches), it is not robust to motion es-
timation failure [2]. We can achieve more robust reconstruction by merging the
similar patches in the frequency domain [2]. If we define the 2D DFT of the
similar patches as Tz (fx, fy) (z ∈ {1, . . . , Nsim}) and assume T1 (fx, fy) as the
2D DFT of the reference patch, the reconstruction of T1 in the frequency domain
is given by Wiener filtering:

T̂1 (fx, fy) =
1

Nsim

Nsim∑
z=1

Tz (fx, fy)+Az (fx, fy) (T1 (fx, fy)− Tz (fx, fy)) , (S81)

where

Az (fx, fy) =
|Dz (fx, fy) |2

|Dz (fx, fy) |2 + σ2
N

, (S82)

and
Dz (fx, fy) = T1 (fx, fy)− Tz (fx, fy) . (S83)

σN is noise variance. The reconstruction in the original domain can be obtained
by inverse DFT of T̂1 (fx, fy). We repeat this for all pixels to reconstruct the
high-quality reference image.
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S7 Parameter Values for Simulations

Table 1: Parameter values used for simulations.

Figure E[es] (e−/s) E[ea] (e−/s) T (ms) f0 (MHz) f1 (MHz) f2 (MHz)
Fig.1 5× 107 3× 107 1 10 30 20
Fig.2 3× 105 104 1 20 — —
Fig.5 105 104 1 20 60 40
Fig.6 105 104 1 30 90 60

Fig.7 col1 107 106 2 10 30 20
Fig.7 col2 107 106 2 10 30 20
Fig.7 col3 107 107 2 10 30 20
Fig.7 col4 107 106 1 10 30 20
Fig.7 col5 107 106 1 10 30 20

Fig.8 2× 107 106 2 10 30 20

E[es]: average source strength over all pixels.
E[ea]: average ambient strength over all pixels.
T : integration time for each correlation image.
f0: effective modulation frequency.
f1: modulation frequency for correlation image set 1.
f2: modulation frequency for correlation image set 2.
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S8 Algorithm

The overall algorithm of our approach is as follows.

Algorithm 1: High-quality all-in-one I-ToF imaging
Input: A stream of the correlation image sets captured with two modulation

frequencies f1 and f2 alternately

Output: Streams of high-quality depth maps, intensity images, XY-motion
estimates, and Z-motion estimates

for C1,n, n ∈ {1, ..., N} and C2,n, n ∈ {1, ..., N} do
for n=1 to N do

Burst denoising;
end

I1 ← blurred intensity from C1,n, n ∈ {1, ..., N};
I2 ← blurred intensity from C2,n, n ∈ {1, ..., N};
∇I1 ← spatial gradient of I1;
∇I2 ← spatial gradient of I2;
(∆X,∆Y )← high-quality XY-motion from ∇I1 and ∇I2;
Align C1,n, n ∈ {1, ..., N} and C2,n, n ∈ {1, ..., N} along (∆X,∆Y );
Z1 ← high-quality depth from aligned C1,n, n ∈ {1, ..., N};
Z2 ← high-quality depth from aligned C2,n, n ∈ {1, ..., N};
I1 ← high-quality intensity from aligned C1,n, n ∈ {1, ..., N};
I2 ← high-quality intensity from aligned C2,n, n ∈ {1, ..., N};
∆Z ← high-quality Z-motion from Z1 and Z2;

end
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S9 Computational Efficiency

The most time-consuming parts of our approach are burst denoising and optical
flow for XY-motion estimation (we use RAFT [13] for optical flow). Currently,
comparing the runtime between modules is challenging because RAFT and other
modules are implemented in Python and Matlab, respectively. RAFT and its
lightweight version process 10 frames/s and 20 frames/s, respectively, with 1088
× 436 videos on a 1080Ti GPU [13]. There are many real-time optical flow meth-
ods that we can exploit. Although our unoptimized MATLAB implementation
of burst denoising takes about 40 s, it is inherently an efficient and parallelizable
algorithm that is now implemented on mobile devices.
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S10 More Results for All-In-One I-ToF Imaging

Figs. S2 and S3 show comparisons between conventional and proposed I-ToF
imaging for dynamic scenes through simulations and real experiments, respec-
tively. While conventional I-ToF imaging suffers from motion artifacts or low
SNR depending on the integration time, our approach can recover not only
high-quality 3D geometry and intensity but also 3D motion using a single I-ToF
camera.
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S11 Example Application: Hand Gesture Classification

Fig. S4 shows 3D motion estimation results and corresponding motion his-
tograms when a hand moves along the X-, Y-, and Z-directions. As shown in
Fig. S4, each hand gesture is represented distinctively by motion histograms,
allowing us to classify the hand gestures correctly based on the 3D motion esti-
mation results from our approach.
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Supplementary Report for “Light-in-Flight for a World-in-Motion” 25

References

1. Godard, C., Matzen, K., Uyttendaele, M.: Deep burst denoising. In: Proceedings
of the European conference on computer vision (ECCV). pp. 538–554 (2018)

2. Hasinoff, S.W., Sharlet, D., Geiss, R., Adams, A., Barron, J.T., Kainz, F., Chen,
J., Levoy, M.: Burst photography for high dynamic range and low-light imaging
on mobile cameras. ACM Transactions on Graphics (ToG) 35(6), 1–12 (2016)

3. Heide, F., Diamond, S., Nießner, M., Ragan-Kelley, J., Heidrich, W., Wetzstein,
G.: Proximal: Efficient image optimization using proximal algorithms. ACM Trans-
actions on Graphics (TOG) 35(4), 1–15 (2016)

4. Heide, F., Heidrich, W., Hullin, M., Wetzstein, G.: Doppler time-of-flight imaging.
ACM Transactions on Graphics (ToG) 34(4), 1–11 (2015)

5. Heide, F., Steinberger, M., Tsai, Y.T., Rouf, M., Pajak, D., Reddy, D., Gallo,
O., Liu, J., Heidrich, W., Egiazarian, K., et al.: Flexisp: A flexible camera image
processing framework. ACM Transactions on Graphics (ToG) 33(6), 1–13 (2014)

6. Jongenelen, A.P., Bailey, D.G., Payne, A.D., Dorrington, A.A., Carnegie, D.A.:
Analysis of errors in tof range imaging with dual-frequency modulation. IEEE
transactions on instrumentation and measurement 60(5), 1861–1868 (2011)

7. Lange, R.: 3D ToF distance measurement with custom solid-state image sensors
in cmos-ccd-technology. Ph.D. Thesis (2000)

8. Lange, R., Seitz, P., Biber, A., Lauxtermann, S.C.: Demodulation pixels in ccd and
cmos technologies for time-of-flight ranging. vol. 3965 (2000)

9. Ma, S., Gupta, S., Ulku, A.C., Bruschini, C., Charbon, E., Gupta, M.: Quanta
burst photography. ACM Transactions on Graphics (TOG) 39(4), 79–1 (2020)

10. Mildenhall, B., Barron, J.T., Chen, J., Sharlet, D., Ng, R., Carroll, R.: Burst
denoising with kernel prediction networks. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 2502–2510 (2018)

11. Payne, A.D., Jongenelen, A.P., Dorrington, A.A., Cree, M.J., Carnegie, D.A.: Mul-
tiple frequency range imaging to remove measurement ambiguity. In: Optical 3-d
measurement techniques (2009)

12. Payne, J.M.: An optical distance measuring instrument. Review of Scientific In-
struments 44(3) (1973)

13. Teed, Z., Deng, J.: Raft: Recurrent all-pairs field transforms for optical flow. In:
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part II 16. pp. 402–419. Springer (2020)


	Supplementary Report for  ``Light-in-Flight for a World-in-Motion''

