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Abstract. Although time-of-flight (ToF) cameras are becoming the sensor-
of-choice for numerous 3D imaging applications in robotics, augmented
reality (AR) and human-computer interfaces (HCI), they do not explic-
itly consider scene or camera motion. Consequently, current ToF cameras
do not provide 3D motion information, and the estimated depth and in-
tensity often suffer from significant motion artifacts in dynamic scenes. In
this paper, we propose a novel ToF imaging method for dynamic scenes,
with the goal of simultaneously estimating 3D geometry, intensity, and
3D motion using a single indirect ToF (I-ToF) camera. Our key obser-
vation is that we can estimate 3D motion, as well as motion artifact-free
depth and intensity by designing optical-flow-like algorithms that oper-
ate on coded correlation images captured by an I-ToF camera. Through
the integration of a multi-frequency I-ToF approach with burst imaging,
we demonstrate high-quality all-in-one (3D geometry, intensity, 3D mo-
tion) imaging even in challenging low signal-to-noise ratio scenarios. We
show the effectiveness of our approach through thorough simulations and
real experiments conducted across a wide range of motion and imaging
scenarios, including indoor and outdoor dynamic scenes.

Keywords: Time-of-flight imaging · 3D imaging in challenging condi-
tions · 3D motion recovery · Imaging in dynamic scenes

1 A 3D World-in-Motion
Understanding a dynamic 3D world is a complex task, demanding an integrated
grasp of geometry, intensity, and motion. While 3D geometry and intensity in-
form us about the identities and locations of scene objects, 3D motion provides
insight into their actions. For instance, for a self-driving car, it is essential not
only to detect neighboring vehicles, but also to estimate their motion for safe
navigation. For a head-mounted camera on an AR headset, tracking the intri-
cate 3D motion of fingers could enable seamless manipulation of virtual objects.
Broadly, the ability to measure dense 3D motion, along with depths and inten-
sities has several applications in robotics, AR, computer vision, and HCI.

Time-of-flight (ToF) cameras [3–5] are a popular sensing technology used to
perceive the 3D world. They emit temporally coded light onto the scene and
measure its depth and intensity from the reflected light, as shown in Fig. 1.
Due to their low cost, low computational complexity, and compact form factors,
ToF cameras have rapidly become a method of choice for many commercial 3D
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Fig. 1: High-quality all-in-one imaging with a single I-ToF camera. Conven-
tional I-ToF cameras can recover correct 3D geometry and intensity, only for static
scenes. For dynamic scenes, the depth and intensity estimates suffer from motion arti-
facts. Although the artifacts can be reduced with the short integration time, this results
in noisy estimates. Our approach can estimate not only high-quality 3D geometry and
intensity but also 3D motion of the dynamic scenes using a single I-ToF camera.

applications, including autonomous vehicles, cell phones (e.g., Apple iPhone),
and HCI and AR/VR devices (e.g., Microsoft Azure Kinect and Hololens).

However, conventional ToF cameras do not explicitly account for scene or
camera motion during capture. As a result, for dynamic scenes, the depth and
intensity estimates often suffer from motion artifacts especially under rapid mo-
tion. Although the motion artifacts can be reduced with short capture times,
it results in low signal-to-noise ratio (SNR). This raises the following questions:
Is it possible to overcome this noise-vs-motion tradeoff and estimate artifact-
free depth and intensity? Going further, although motion is often considered as
nuisance due to motion-related artifacts, can we design techniques to actually
recover high-resolution (both lateral and axial) 3D motion? To summarize, can
we estimate high-quality 3D geometry, intensity, and 3D motion simultaneously
with a single ToF camera for broader applications in the dynamic 3D world?

In this paper, we address these questions using indirect ToF (I-ToF) cam-
eras. I-ToF cameras capture a set of correlation images sequentially to estimate
depth and intensity (Sec. 3). For dynamic scenes, the correlation images are not
aligned due to motion, leading to motion artifacts in the depth and intensity es-
timates (Fig. 1). Although several approaches [17,20,25,27] have been proposed
to reduce these motion artifacts, they typically require two out-of-phase correla-
tion images to be captured simultaneously for motion compensation, which are
not always available. Modern learning-based approaches for high-quality I-ToF
imaging remove depth errors caused by shot noise and multi-path interference,
assuming static scenes [6, 7, 10,30,34] or no motion between the correlation im-
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ages for dynamic scenes [8], which leads to motion artifacts in dynamic scenarios.
In contrast, our approach achieves motion artifact-free, high-quality depth and
intensity estimates for the dynamic scenes without needing out-of-phase images
captured simultaneously. Furthermore, our method allows for 3D motion esti-
mates, which, to the best of our knowledge, is the first of its kind.
Motion and I-ToF imaging: The fundamental technical challenge in model-
ing and estimating motion in I-ToF imaging is that the raw correlation images
are spatio-temporally coded, and thus do not preserve brightness constancy, an
inherent assumption for classical optical flow methods [9]. All images within a
correlation image set have different pixel values even for the same scene point
because they are captured with different demodulation functions (Sec. 3). Our
key observation is if we consider two correlation image sets captured sequentially
in time, the spatial gradient of the intensity image estimated from each correla-
tion image set (although misaligned due to motion) still preserves its brightness
along the true motion. This observation requires an important motion constraint
– the motion should be small and linear across a correlation image set – which
can be satisfied with short integration times3, albeit at the cost of low SNR.
To overcome this noise-vs-motion tradeoff, we propose a novel multi-frequency
I-ToF burst imaging method that computationally (not optically) increases the
integration time of correlation images, thereby preventing motion artifacts. Ob-
taining high-quality depth and intensity estimates from the high-SNR correlation
images then further improves the accuracy of motion estimates.
Implications: “All-in-one” imaging with a single I-ToF camera. Our ap-
proach achieves high-quality 3D geometry, intensity, and 3D motion with a single
I-ToF camera by incorporating motion in I-ToF image-formation model from first
principles, thereby addressing motion artifacts and low SNR, which have long
been the limiting factors of I-ToF cameras. We demonstrate, via thorough sim-
ulations and hardware experiments, that our approach can reliably recover 3D
geometry and intensity of both indoor and outdoor scenes in challenging imaging
scenarios (strong ambient light, low scene albedo, high-speed non-rigid motion),
and estimate dense and high-resolution 3D (both lateral and axial) motion. The
proposed methods could enable holistic 3D inference in future vision systems by
integrating geometry, intensity, and motion information.

2 Related Work
Optical flow and scene flow: Optical flow [18,28] is a classical technique for
measuring dense 2D XY-motion across images. Scene flow [37] is a dense 3D
motion field (2D XY-motion + 1D Z-motion) for 3D scene points. Conventional
scene flow approaches [21, 26, 35] typically use RGB-D cameras, where color
information is used for XY-motion estimation and depth information is used
for Z-motion estimation. However, these approaches assume that accurate depth
information is available from the depth camera, which is not always true in the
case of the dynamic scenes. Our goal is to recover correct depth, intensity, and
motion with a single I-ToF camera for dynamic scenes.
3 A short integration time is also required for instantaneous motion estimation.
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Motion artifact reduction in I-ToF imaging: To reduce motion artifacts in
I-ToF imaging, several methods [17,20,25,27] capture two out-of-phase correla-
tion images at the same time and get the brightness-conserving images from their
sum. After obtaining the lateral (XY) motion between all temporally neighboring
correlation images from the correlation-sum images, a depth map is recovered by
warping the correlation images along the XY-motion. Unfortunately, these ap-
proaches are not applicable when the out-of-phase images are not available at the
same time, and when the sum of these images could introduce sensor-dependent
artifacts, which is the case for most commercial I-ToF cameras.
Axial motion estimation using I-ToF cameras: A few approaches [15, 19]
have been proposed to estimate the axial (Z) motion using I-ToF cameras. These
approaches measure the Doppler frequency shift, which is proportional to the ob-
ject’s radial velocity [15]. Although theoretically feasible, these approaches have
limited scope in most practical conditions, where the Doppler shift is negligibly
small as compared to the modulation frequency of the light source, making it
challenging to robustly measure the Z-motion.
Burst imaging: Burst imaging methods [12–14,16,29,31] create a high-quality
image from a burst of underexposed noisy images by aligning and merging them
along the pixel motion. This way, burst denoising can increase the capture time
computationally without motion blur. We draw inspiration from burst imaging
methodology for increasing the SNR of the I-ToF correlation images. High SNR
correlation images result in high-quality depth and intensity estimates, even in
challenging scenarios including low scene albedo and strong ambient light.
Multi-frequency schemes: In I-ToF imaging, higher modulation frequency
increases depth accuracy but decreases measurable depth range (Sec. 3). Multi-
frequency schemes overcome this trade-off by using two different frequencies [22,
32]. However, they often fail to recover a correct depth map in very low SNR
imaging conditions. Our approach overcomes this limitation by integrating the
multi-frequency scheme with burst denoising to recover high-quality depth even
in these challenging imaging scenarios.

3 I-ToF Image Formation Model
An I-ToF camera consists of a light source and a sensor. The intensity of the
light source is temporally modulated by a periodic modulation function M(t)
with period T0. The light emitted by the light source travels to the scene of
interest and is reflected back toward the sensor. Each sensor pixel p computes
the correlation C (p) between the radiance of the light incident on p and a
periodic demodulation function D(t) which has the same period as M(t). Several
modulation M(t) and demodulation functions D(t) can be used to compute
C (p). One example is to use sinusoids for M(t) and D(t)4 [23, 24,33]:

M(t) = 1 + cos (2πf0t) , D(t) =
1

2
+

1

2
cos (2πf0t) , (1)

4 We assume a unipolar demodulation function (0 ≤ D(t) ≤ 1) for ease of noise
analysis. The same analysis can be extended to a bipolar demodulation function
(−1 ≤ D(t) ≤ 1). See the supplementary report.
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where the modulation frequency f0 = 1/T0. In this case, C (p) is

Cn (p) =
T

2

(
es + ea +

es
2
cos

(
4πf0Z

c
− ψn

))
, (2)

where T is the integration time, c is the speed of light, and Z is the scene
depth between the camera and the scene point imaged at p. es and ea are
the average number of photo-electrons generated at the sensor per unit time
by the light source and the ambient light (e.g., sunlight), respectively. ψn =
2π (n− 1) /N, n ∈ {1, ..., N} is the phase shift of D(t) by N (≥ 3) times to
decode three unknowns es, ea, and Z from the N measured Cn (p). See the
supplementary report for the derivation of Eq. 2. It is important to note that
the value of Cn changes according to ψn even for the same scene point.

Given a set of N correlation values (Eq. 2), the estimated scene depth Z and
intensity I for the pixel p are given by:

Ẑ =
c

4πf0
tan−1

(∑N
n=1 Cn sinψn∑N
n=1 Cn cosψn

)
, (3)

and

Î =
1

N

√√√√( N∑
n=1

Cn cosψn

)2

+

(
N∑

n=1

Cn sinψn

)2

∝ Tes. (4)

We drop p in Cn (p) for brevity. The intensity I is proportional to the amount of
incident signal photons, which is proportional to the scene albedo and inversely
proportional to the squared depth. By computing Eqs. 3 and 4 for all pixels, we
get a depth map and an intensity image. Since Cn is periodic, the measurable
depth range Zmax without ambiguity is limited by

Zmax =
c

2f0
. (5)

Fig. 2 (a) shows the set of correlation images of a static scene and the resulting
depth map and intensity image.
SNR of depth and intensity estimates: Since Cn (Eq. 2) suffers from Poisson
noise, the estimated Z and I by Eqs. 3 and 4 differ from the true Z and I. We
can measure the quality of the Z and I estimates by the SNR, which is given as

SNRZ
5 =

Z

σZ
=

2πf0
c

√
TesZ√
es + ea

(6)

and

SNRI =
I

σI
=

√
Tes

2
√
es + ea

, (7)

for the Z and I estimates, respectively, when N = 4 (see the supplementary
report for the derivations). σZ and σI are standard deviations of the Z and I

5 We assume Z ̸= 0.
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Fig. 2: I-ToF imaging. I-ToF cameras capture a set of correlation images of the
scenes to estimate their depth and intensity images. Although I-ToF cameras provide
correct depth and intensity information for (a) static scenes, they suffer from motion
artifacts for (b) dynamic scenes due to misalignment between the correlation images.

estimates due to noise. Higher quality depth and intensity estimates are possible
by increasing the integration time T and source strength es, and decreasing the
ambient strength ea. Increasing the modulation frequency f0 enhances the SNR
of depth estimates at the cost of a shorter measurable depth range (Eq. 5).

Artifacts due to motion: In addition to Poisson noise in the correlation im-
ages, scene or camera motion also prevents correct depth and intensity estimates.
Eqs. 3 and 4 assume there is no motion while capturing theN correlation images.
If the correlation images are not aligned due to motion, the depth and intensity
images estimated by Eqs. 3 and 4 suffer from motion artifact, as shown in Fig. 2
(b). The motion artifacts are exacerbated with larger motion or longer integra-
tion time. One could reduce the motion artifacts by decreasing the integration
time T , but it results in lower SNR, as indicated in Eqs. 6 and 7.

4 Resolving 3D Geometry, Intensity, and 3D Motion
with a Single I-ToF Camera

Modeling motion in I-ToF imaging faces a fundamental challenge: the raw corre-
lation images Cn (n ∈ {1, ..., N}) are spatio-temporally coded, and thus do not
preserve brightness constancy, a widely used assumption for motion computation
in conventional camera images. Since all correlation images in each set have dif-
ferent brightness values even for the same scene point (Fig. 2), it is challenging
to accurately estimate the lateral XY-motion using traditional optical flow.

4.1 XY-Motion Estimation with Brightness-Varying Images

Our key observation is that if we consider two neighboring correlation image sets6
under small and linear motion, we can estimate XY-motion precisely based on
brightness conservation:

6 Most I-ToF cameras provide a temporal stream of the correlation image sets.
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Fig. 3: XY- and Z-motion estimation with brightness-varying correlation
images. All correlation images in each set have different pixel values (depicted as
distinct colors) along the true XY-motion (∆X,∆Y ), posing a challenge for motion
estimation. However, under the small and linear motion, the spatial gradient of the
intensity image obtained from each correlation image set maintains its pixel values
(represented by the same color) along the motion, facilitating XY-motion estimation.
Two depth values (one from each set) can be obtained along the estimated XY-motion,
and the Z-motion (∆Z) can be simply derived from their difference.

Observation 1 Consider two correlation image sets captured successively in
time, as shown in Fig. 3. If the motion is small and linear over the two correla-
tion image sets, the spatial gradient of the intensity image obtained from each
correlation image set (although misaligned due to motion) preserves its pixel
brightness along the true XY-motion over the two intensity images.

See the supplementary report for the proof. Observation 1 holds regardless of
whether unipolar or bipolar demodulation functions are used. Observation 1 says
that even if all correlation images in each set have different brightness values
along the true XY-motion, the spatial gradient of an intensity image (Eq. 4)
obtained from each set preserves its value along the motion if the motion is
small and linear (Fig. 3).7 Note that the intensity image is blurred due to the
motion. Observation 1 can be mathematically expressed as:

∂|∇I|
∂X

∆X +
∂|∇I|
∂Y

∆Y +
∂|∇I|
∂t

∆t = 0, (8)

where I (Eq. 4) is the blurred intensity image8 and ∇ =
(

∂
∂X ,

∂
∂Y

)T
denotes the

spatial gradient. ∂
∂X (·), ∂

∂Y (·), and ∂
∂t (·) are the partial derivatives with respect

to X, Y , and time, respectively. ∆X, ∆Y , and ∆t are the X-motion, Y-motion,
and time step between the blurred intensity images as shown in Fig. 3.

Observation 1 is powerful because it allows us to exploit any off-the-shelf
optical flow algorithm to estimate dense XY-motion by operating on spatial gra-
dients of intensity images obtained from I-ToF correlation image sets. After we

7 Due to motion, the absolute value of the estimated intensity image does not preserve
its brightness even along the true motion. See the supplementary report.

8 The intensity image I records the signal photons, while the image used in traditional
optical flow records the background photons (e.g., sunlight reflected from the scene).
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compute the XY-motion between the blurred intensity images, the finer grained
XY-motion between successive correlation images can be simply obtained by in-
terpolation (Fig. 3). Estimating the XY-motion using two correlation image sets
has several benefits over conventional motion artifact reduction approaches: 1)
While the conventional approaches estimate the motion between all neighboring
correlation images independently, we can measure it more efficiently. 2) We can
also estimate the Z-motion using depth difference along the XY-motion.
Motion Artifact-Free Depth and Intensity Estimates: After aligning two
correlation image sets along the estimated XY-motion (Eq. 8), we can obtain
motion artifact-free depth and intensity images for two correlation image sets.
For more accurate estimates, we can additionally compensate for the Z-motion
using two correlation image sets together. However, in practice, under the small
motion constraint, we ignore the Z-motion within each correlation image set and
estimate the depth and intensity estimates using Eqs. 3 and 4.

4.2 Z-Motion Estimation

Once the XY-motion is determined, we can get two aligned depth maps from the
two correlation image sets, and then estimate the Z-motion from their difference
(Fig. 3). Although the Z-motion is derived using two depth maps, it can be
approximated well as instantaneous motion with a short integration time.
Theoretical comparisons with Doppler ToF: Doppler ToF imaging [15]
estimates the Z-motion based on the Doppler effect. Given a scene with an
axial velocity v, the emitted light undergoes a Doppler frequency shift when
reflected from the scene. If the modulation frequency of the light signal is f0,
the frequency of the signal received at the sensor is f0 +∆f , where ∆f = 2v

c f0.
Although Doppler ToF allows for instantaneous Z-motion estimation without
measuring two depth values, it is challenging to measure ∆f (thus axial velocity
v) accurately under Poisson noise since ∆f is negligibly small, compared to f0
in practical conditions. Eqs. 9 and 10 are the theoretical standard deviations of
the estimated axial velocity by depth difference (σv∆Z

) and Doppler ToF (σv∆f
),

respectively.

σv∆Z
=

c√
2πf0

√
T∆t

√
es + ea
es

(9)

and

σv∆f
=

2πc

f0
√
T

√
es + ea
es

√
1

(∆f− 1
T )

2 + 1
∆f2(

1
∆f− 1

T

− 1
∆f

)2 1

| sin (2π∆fT − ϕ) + sinϕ|
, (10)

where ϕ = 4πf0Z
c . See Sec. 3 for a glossary of the other variables. See the sup-

plementary report for the derivations of Eqs. 9 and 10.
Fig. 4 shows σv∆Z

and σv∆f
as a function of the source strength es, axial

velocity v, modulation frequency f0, and scene depth Z. When one of these
parameters varies, the other parameters are fixed as es = 5 × 107 e−/s, v =
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Fig. 4: Comparisons with Doppler ToF. Velocity standard deviations by Doppler
ToF (σv∆f ) and by depth difference (σv∆Z ) are compared. Doppler ToF shows about
40 times higher standard deviation in the given practical conditions, and its estimation
becomes very unreliable at certain modulation frequencies and depth values.

5m/s, f0 = 10MHz, T = 5ms, ∆t = 40ms, and Z = 1m. We also include the
simulation results9 to verify our derivations. Under the given conditions, σv∆f

is
∼ 40 times higher than σv∆Z

. In addition, axial motion estimates from Doppler
ToF have large noise when the term | sin (2π∆fT − ϕ)+sinϕ| in Eq. 10 converges
to 0 (shown as peaks at certain f0 and Z values in Fig. 4 and as horizontal error
lines in Fig. 8). Estimating the Z-motion from the depth difference can also be
challenging when the depth estimates are noisy. We discuss how to mitigate it in
Sec. 5. See the supplementary report for further analysis, comparing the number
of measurements between the proposed approach and Doppler ToF.

5 High-quality All-in-One I-ToF Imaging

As described in the previous section, Observation 1 allows reliable XY-motion
estimation with brightness-varying correlation images, but it requires an impor-
tant motion constraint: Motion should be small and linear while capturing two
neighboring correlation image sets. This constraint can be satisfied by reduc-
ing the integration time, albeit at the cost of low SNR of the resulting depth
and intensity estimates (Eqs. 6 and 7). Improving the SNR of these estimates
is essential because inaccurate depth and intensity estimates lead to imprecise
Z- and XY-motion estimates as well. How can we overcome the low SNR due to
short integration time to achieve high-quality all-in-one I-ToF imaging?

5.1 Multi-Frequency Coding
We adopt a multi-frequency coding scheme [22] to increase the SNR of the depth
and Z-motion estimates. As shown in Eqs. 5 and 6, the SNR of the depth esti-
mates can be improved by increasing the modulation frequency at the cost of
the reduced measurable depth range. We can achieve high-depth precision and
a large depth range simultaneously by using multiple modulation frequencies.
We use two different modulation frequencies f1 and f2 to capture two neigh-
boring correlation image sets C1 and C2, respectively (Fig. 3). After obtaining
9 We simulated velocity estimation from depth difference and Doppler ToF under

Poisson noise. σv∆z and σv∆f were computed from 1000 repetitions.
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two interim ambiguous depth maps from the two correlation image sets, a final
unambiguous depth map is decoded from them.

However, unlike conventional multi-frequency schemes where one final depth
map is recovered from two interim depth maps, we recover two depth maps from
two correlation image sets to recover the Z-motion as well (see the supplementary
report). Instead of using one high and one low frequency [32], we use two high
frequencies [22] for two correlation image sets to achieve two high-SNR depth
maps, and thus, a high-quality Z-motion estimate as well. Even with the two
correlation image sets captured with different frequencies, we can still estimate
the XY-motion based on Observation 1 (see the supplementary report).

Caveat of multi-frequency coding: Although the multi-frequency schemes
improve the depth accuracy in certain conditions, they often fail under extremely
low SNR scenarios. This is because severe noise in the interim depth estimates
prevents correct depth decoding. For the multi-frequency schemes to perform
well even in challenging imaging conditions, we need to further improve the
SNR of the interim depth estimates in a complementary way.

5.2 Increasing Integration Time (and SNR) Computationally

The root cause of the low SNR in the depth and intensity estimates is the
short integration time for accurate motion estimation. How can we increase the
SNR of these estimates without optically extending the integration time? Burst
imaging is a popular method for increasing the capture time computationally to
enhance the SNR without introducing the motion artifact; it captures a burst
of images, each with a short capture time, and aligns and merges them along
the motion trajectory to increase the SNR. Burst denoising is computationally
efficient enough to be implemented on smartphones.

We exploit burst imaging to enhance the SNR of the correlation images
and thus, the resulting depth and intensity estimates. For a given reference
correlation image, we define a burst of the correlation images from the stream
of captured frames. Each burst comprises the correlation images with the same
demodulation phase shift (ψn in Eq. 2) and the same modulation frequency (f1
or f2) to ensure consistent brightness for the same scene point. The correlation
images in the burst are aligned and merged to increase the SNR of the reference
image. See the supplementary report for more implementation details.

Integrating burst denoising with multi-frequency coding: Multi-frequency
schemes and burst denoising improve depth estimation accuracy in complemen-
tary ways. Multi-frequency schemes increase the effective modulation frequency,
while burst denoising extends the integration time computationally (Eq. 6).
Therefore we can considerably improve the depth estimation performance by
fusing them; when integrated with the multi-frequency scheme, burst denoising
improves the quality of interim depth estimates and reduces decoding errors in
the final depth estimates. As illustrated in Fig. 5, this hybrid approach demon-
strates high depth estimation performance compared to using either method
alone. See the supplementary report for the overall algorithm of our approach.
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Fig. 5: Enhancing SNR of depth estimates. Although multi-frequency coding
achieves lower depth errors than single-frequency coding, it fails to decode the correct
depths under extremely low SNR conditions. The performance of multi-frequency cod-
ing can be improved when combined with burst denoising, which reduces the depth
noise in a complementary way. The three numbers underneath each depth map show
the percent fraction of inlier pixels that lie within 0.5, 1, and 2 % of the true depths.

6 Validation by Simulations

In this section, we validate the performance of our approach through simulations.
This enables us to quantitatively compare our approach with the ground-truth
and alternative methods. We can also simulate various motion scenarios and
imaging parameters, such as modulation frequency, integration time, and lighting
conditions. We model indoor scenes [1] using POVray, a ray tracing tool [2], and
outdoor scenes using the CARLA simulator [11]. See the supplementary report
for the parameter values used for all simulations.
Ground-truth comparisons of 3D geometry estimates: Fig. 6 shows the
dynamic scenario (due to camera motion) and its ground-truth depth, along with
the depth estimates using conventional and proposed approaches. While decreas-

10

4.3 m

1.4 m

Scene-in-motion ProposedGround-truth depth Short integration Long integration

5 / 10 / 20 % 14 / 28 / 51 % 84 / 97 / 99 %

Fig. 6: Ground-truth comparisons of depth estimates. Depth estimates of the
dynamic scene obtained via conventional I-ToF imaging suffer from noise or motion
artifacts. In contrast, our approach recovers high-quality 3D geometry without such
artifacts. The three numbers underneath each depth map show the percent fraction of
inlier pixels that lie within 0.5, 1, and 2 % of the true depths.
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Fig. 7: Resolving 3D motions in various motion scenarios. Our approach can
estimate dense and high-quality 3D motions for various dynamic scenes. The exact
motion scenarios can be identified correctly from our XY- and Z-motion estimates.
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Fig. 8: Axial motion estimation comparison. Doppler ToF [15] cannot estimate
small Z-motions (∼ 4m/s) accurately since the corresponding Doppler frequency shifts
(< 1Hz) are negligibly small compared to the modulation frequency (MHz). In contrast,
our approach can resolve even these small Z-motions reliably with lower source power.

ing the integration time can reduce motion artifacts in conventional methods,
it leads to noisy estimates. The extended integration time reduces noise but in-
troduces motion blur. In contrast, our approach effectively mitigates both noise
and motion artifacts in the depth estimates.
3D motion estimation under various motion scenarios: We simulate var-
ious motion scenarios of an I-ToF camera attached to a moving car using the
CARLA simulator [11]. Fig. 7 shows the 3D motion estimation results of various
dynamic scenes using our approach. Our method reliably estimates 3D motions
across different motion scenarios. We estimate XY-motion from the gradient of
the I-ToF intensity image using RAFT [36] in our simulation and experimental
results, but any state-of-the-art optical flow method may be employed.
Z-motion estimation comparisons: We compare Z-motion estimation per-
formance between our approach and Doppler ToF [15], which measures instanta-
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Fig. 9: Recovering 3D geometry and intensity of dynamic scenes. 3D geometry
and intensity estimates by conventional I-ToF imaging suffer from low SNR and motion
artifacts in both (a) indoor and (b) outdoor dynamic scenes. In contrast, our approach
can recover high-quality and motion artifact-free estimates.

neous axial motion based on the Doppler effect. Fig. 8 shows a dynamic scene, its
ground-truth Z-motion, and the estimated Z-motions by Doppler ToF and our
approach. For the Doppler ToF estimates, we also applied a binning-based non-
local means denoiser to increase the SNR, as described in [15]. As depicted in
Fig. 8, Doppler ToF cannot robustly estimate small axial motions, such as 4m/s,
as the corresponding Doppler shift (<1Hz) is negligibly small compared to the
modulation frequency (in the MHz range). In contrast, our approach can reliably
estimate even these relatively small axial motions with lower source power.

7 Hardware Prototyping and Experimental Results
We implemented our approach in hardware using the Chronoptics KeaB I-ToF
camera, which provides access to the raw correlation images. We use two modu-
lation frequencies, 40MHz and 50MHz, to capture two neighboring correlation
image sets. We set the integration time to 2ms and 3ms for indoor and outdoor
scenes, respectively. We employ 4 and 6 correlation images for each set for indoor
and outdoor scenes, respectively. The camera resolution is 240× 320 pixels.
Recovering 3D geometry and intensity of dynamic scenes: Fig. 9 (a)
and (b) show recovery results for indoor and outdoor scenes, respectively. For
comparison, we captured the correlation images with short integration times (in-
door: 2ms, outdoor: 3ms) and long integration times (indoor: 18ms, outdoor:
27ms). The ground-truth data was obtained with the same, but static scenes by
averaging 1000 correlation images captured with the short integration times. As
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Fig. 10: Resolving 3D motions. Our approach can recover 3D motions reliably for
(a) indoor and (b) outdoor dynamic scenes. Our approach can recover local and global
motions under challenging conditions such as a low scene albedo and a thin object.

shown in Fig. 9, the estimates obtained with short integration times exhibit low
SNR, while those obtained with long integration times suffer from motion arti-
facts. In contrast, our approach recovers high-SNR 3D geometry and intensity,
free from motion artifacts, for both indoor and outdoor dynamic scenes.
Recovering 3D motion for indoor and outdoor scenes: Fig. 10 shows
3D motion estimation results for (a) indoor and (b) outdoor dynamic scenes.
Our approach can recover both XY- and Z-motions reliably for both local scene
motions and global camera motions, including in challenging scenarios such as a
black tire (low scene albedo) and a fast rotation of a stick (intricate geometry).
See the supplementary report for more results and visualizations.

8 Limitations and Future Outlook
Dependency on XY-motion estimation: Since our method resolves 3D ge-
ometry, intensity, and 3D motion of dynamic scenes after 2D motion estimation
on the spatial gradients of the intensity images, its performance strongly depends
on the results of XY-motion estimation, which exploits only intensity informa-
tion. A promising line of future work is to leverage both geometry and intensity
information for motion estimation, as available in the I-ToF correlation images.
Camera resolution and light source power: A higher spatial resolution of
the I-ToF camera enables higher quality depth and intensity estimates as well as
finer motion estimates. A stronger light source allows for long-range imaging even
under high ambient light conditions. The prototype used for our experiments has
a relatively small resolution (240×320 pixels) and limited available source power,
thus constraining the performance of our approach. Recently, I-ToF cameras have
seen significant improvements in spatial resolution (> 1megapixels) and source
power, which will enable higher quality all-in-one I-ToF imaging in the future.
Acknowledgement. This research was supported in part by NSF CAREER
award 1943149, Cruise LLC, WARF, and ONR award N00014-24-1-2155.



Light-in-Flight for a World-in-Motion 15

References

1. http://www.ignorancia.org/index.php?page=lightsys, accessed: 2024-07-14
2. http://www.povray.org/, accessed: 2024-07-14
3. 3d depth sensing development kits, pmd. https://3d.pmdtec.com/en/3d-

cameras/flexx2/, accessed: 2024-07-14
4. Azure kinect dk, microsoft. https://www.microsoft.com/en- us/d/azure-

kinect-dk/8pp5vxmd9nhq?activetab=pivot:overviewtab, accessed: 2024-07-14
5. Time-of-flight sensors, texas instruments. https : / / www . ti . com / sensors /

specialty-sensors/time-of-flight/products.html, accessed: 2024-07-14
6. Agresti, G., Schaefer, H., Sartor, P., Zanuttigh, P.: Unsupervised domain adap-

tation for tof data denoising with adversarial learning. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5584–
5593 (2019)

7. Agresti, G., Zanuttigh, P.: Deep learning for multi-path error removal in tof sen-
sors. In: Proceedings of the European Conference on Computer Vision (ECCV)
Workshops. pp. 0–0 (2018)

8. Attal, B., Laidlaw, E., Gokaslan, A., Kim, C., Richardt, C., Tompkin, J., O’Toole,
M.: Törf: Time-of-flight radiance fields for dynamic scene view synthesis. Advances
in neural information processing systems 34, 26289–26301 (2021)

9. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow es-
timation based on a theory for warping. In: Computer Vision-ECCV 2004: 8th
European Conference on Computer Vision, Prague, Czech Republic, May 11-14,
2004. Proceedings, Part IV 8. pp. 25–36. Springer (2004)

10. Dong, G., Zhang, Y., Xiong, Z.: Spatial hierarchy aware residual pyramid network
for time-of-flight depth denoising. In: Computer Vision–ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIV 16.
pp. 35–50. Springer (2020)

11. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: Carla: An open
urban driving simulator. In: Conference on robot learning. pp. 1–16. PMLR (2017)

12. Godard, C., Matzen, K., Uyttendaele, M.: Deep burst denoising. In: Proceedings
of the European conference on computer vision (ECCV). pp. 538–554 (2018)

13. Hasinoff, S.W., Sharlet, D., Geiss, R., Adams, A., Barron, J.T., Kainz, F., Chen,
J., Levoy, M.: Burst photography for high dynamic range and low-light imaging
on mobile cameras. ACM Transactions on Graphics (ToG) 35(6), 1–12 (2016)

14. Heide, F., Diamond, S., Nießner, M., Ragan-Kelley, J., Heidrich, W., Wetzstein,
G.: Proximal: Efficient image optimization using proximal algorithms. ACM Trans-
actions on Graphics (TOG) 35(4), 1–15 (2016)

15. Heide, F., Heidrich, W., Hullin, M., Wetzstein, G.: Doppler time-of-flight imaging.
ACM Transactions on Graphics (ToG) 34(4), 1–11 (2015)

16. Heide, F., Steinberger, M., Tsai, Y.T., Rouf, M., Pajak, D., Reddy, D., Gallo,
O., Liu, J., Heidrich, W., Egiazarian, K., et al.: Flexisp: A flexible camera image
processing framework. ACM Transactions on Graphics (ToG) 33(6), 1–13 (2014)

17. Hoegg, T., Lefloch, D., Kolb, A.: Real-time motion artifact compensation for pmd-
tof images. In: Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Ap-
plications: Dagstuhl 2012 Seminar on Time-of-Flight Imaging and GCPR 2013
Workshop on Imaging New Modalities. pp. 273–288. Springer (2013)

18. Horn, B.K., Schunck, B.G.: Determining optical flow. Artificial intelligence 17(1-3),
185–203 (1981)

http://www.ignorancia.org/index.php?page=lightsys
http://www.povray.org/
https://3d.pmdtec.com/en/3d-cameras/flexx2/
https://3d.pmdtec.com/en/3d-cameras/flexx2/
https://www.microsoft.com/en-us/d/azure-kinect-dk/8pp5vxmd9nhq?activetab=pivot:overviewtab
https://www.microsoft.com/en-us/d/azure-kinect-dk/8pp5vxmd9nhq?activetab=pivot:overviewtab
https://www.ti.com/sensors/specialty-sensors/time-of-flight/products.html
https://www.ti.com/sensors/specialty-sensors/time-of-flight/products.html


16 J. Lee et al.

19. Hu, Y., Miyashita, L., Ishikawa, M.: Differential frequency heterodyne time-of-
flight imaging for instantaneous depth and velocity estimation. ACM Transactions
on Graphics (TOG) 42(1), 1–13 (2022)

20. Hussmann, S., Hermanski, A., Edeler, T.: Real-time motion artifact suppression
in tof camera systems. IEEE Transactions on Instrumentation and Measurement
60(5), 1682–1690 (2011)

21. Jaimez, M., Souiai, M., Gonzalez-Jimenez, J., Cremers, D.: A primal-dual frame-
work for real-time dense rgb-d scene flow. In: 2015 IEEE international conference
on robotics and automation (ICRA). pp. 98–104. IEEE (2015)

22. Jongenelen, A.P., Bailey, D.G., Payne, A.D., Dorrington, A.A., Carnegie, D.A.:
Analysis of errors in tof range imaging with dual-frequency modulation. IEEE
transactions on instrumentation and measurement 60(5), 1861–1868 (2011)

23. Lange, R.: 3D ToF distance measurement with custom solid-state image sensors
in cmos-ccd-technology. Ph.D. Thesis (2000)

24. Lange, R., Seitz, P., Biber, A., Lauxtermann, S.C.: Demodulation pixels in ccd and
cmos technologies for time-of-flight ranging. vol. 3965 (2000)

25. Lefloch, D., Hoegg, T., Kolb, A.: Real-time motion artifacts compensation of tof
sensors data on gpu. In: Three-Dimensional Imaging, Visualization, and Display
2013. vol. 8738, pp. 166–172. SPIE (2013)

26. Letouzey, A., Petit, B., Boyer, E.: Scene flow from depth and color images. In:
BMVC 2011-British Machine Vision Conference. pp. 46–1. BMVA Press (2011)

27. Lindner, M., Kolb, A.: Compensation of motion artifacts for time-of-flight cameras.
In: Dynamic 3D Imaging: DAGM 2009 Workshop, Dyn3D 2009, Jena, Germany,
September 9, 2009. Proceedings. pp. 16–27. Springer (2009)

28. Lucas, B.D., Kanade, T.: An iterative image registration technique with an appli-
cation to stereo vision. In: IJCAI’81: 7th international joint conference on Artificial
intelligence. vol. 2, pp. 674–679 (1981)

29. Ma, S., Gupta, S., Ulku, A.C., Bruschini, C., Charbon, E., Gupta, M.: Quanta
burst photography. ACM Transactions on Graphics (TOG) 39(4), 79–1 (2020)

30. Marco, J., Hernandez, Q., Munoz, A., Dong, Y., Jarabo, A., Kim, M.H., Tong, X.,
Gutierrez, D.: Deeptof: off-the-shelf real-time correction of multipath interference
in time-of-flight imaging. ACM Transactions on Graphics (ToG) 36(6), 1–12 (2017)

31. Mildenhall, B., Barron, J.T., Chen, J., Sharlet, D., Ng, R., Carroll, R.: Burst
denoising with kernel prediction networks. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 2502–2510 (2018)

32. Payne, A.D., Jongenelen, A.P., Dorrington, A.A., Cree, M.J., Carnegie, D.A.: Mul-
tiple frequency range imaging to remove measurement ambiguity. In: Optical 3-d
measurement techniques (2009)

33. Payne, J.M.: An optical distance measuring instrument. Review of Scientific In-
struments 44(3) (1973)

34. Su, S., Heide, F., Wetzstein, G., Heidrich, W.: Deep end-to-end time-of-flight imag-
ing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 6383–6392 (2018)

35. Sun, D., Sudderth, E.B., Pfister, H.: Layered rgbd scene flow estimation. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 548–556 (2015)

36. Teed, Z., Deng, J.: Raft: Recurrent all-pairs field transforms for optical flow. In:
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part II 16. pp. 402–419. Springer (2020)



Light-in-Flight for a World-in-Motion 17

37. Vedula, S., Rander, P., Collins, R., Kanade, T.: Three-dimensional scene flow.
IEEE transactions on pattern analysis and machine intelligence 27(3), 475–480
(2005)


	Light-in-Flight for a World-in-Motion

