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Abstract. With the comprehensive research conducted on various face
analysis tasks, there is a growing interest among researchers to develop
a unified approach to face perception. Existing methods mainly dis-
cuss unified representation and training, which lack task extensibility
and application efficiency. To tackle this issue, we focus on the unified
model structure, exploring a face generalist model. As an intuitive de-
sign, Naive Faceptor enables tasks with the same output shape and
granularity to share the structural design of the standardized output
head, achieving improved task extensibility. Furthermore, Faceptor is
proposed to adopt a well-designed single-encoder dual-decoder architec-
ture, allowing task-specific queries to represent new-coming semantics.
This design enhances the unification of model structure while improving
application efficiency in terms of storage overhead. Additionally, we in-
troduce Layer-Attention into Faceptor, enabling the model to adaptively
select features from optimal layers to perform the desired tasks. Through
joint training on 13 face perception datasets, Faceptor achieves excep-
tional performance in facial landmark localization, face parsing, age es-
timation, expression recognition, binary attribute classification, and face
recognition, achieving or surpassing specialized methods in most tasks.
Our training framework can also be applied to auxiliary supervised learn-
ing, significantly improving performance in data-sparse tasks such as age
estimation and expression recognition. The code and models will be made
publicly available at https://github.com/1xq1000/Faceptor.
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1 Introduction

In recent years, substantial strides have been made in face perception research.
Numerous methods have been developed to enhance performance in face anal-
ysis tasks such as facial landmark localization [36L[81], face parsing [69,90], age
estimation [20,/68], expression recognition [35,87|, binary attribute classifica-
tion [24,49] and face recognition [14},43}/72|. There are several concerns related
to these methods which necessitate a distinct deep model for each task. Firstly,
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Fig. 1: Existing efforts for unified face perception mainly concentrate on representation
and training. Our work focuses on unified model structure, achieving improved task
extensibility and increased application efficiency.

from a methodological perspective, it is not cost-effective to conduct large-scale
data collection and model training for each task due to the fact that there is only
one object of interest - the human face. Secondly, from a practical perspective,
real-world applications often simultaneously require a set of face analysis tasks
to cater to specific businesses. It is inefficient to deploy numerous models.

In light of this, researchers have naturally turned their attention toward
achieving a unified approach for face perception. Existing efforts mainly con-
centrate on the following two aspects: (1) Unified representation. As shown in
Fig. FRL |5] and FaRL initially obtain a task-agnostic backbone through
universal facial representation learning (unsupervised learning EII, self-supervised
learning [253], and natural language supervised learning [2757,58]). By avoiding
the need to collect large-scale datasets specifically for supervised pre-training of
each task, these approaches improve data efficiency. However, they still require
separate finetuning for each downstream task, resulting in low application effi-
ciency in terms of the training process, inference speed, and storage overhead.
(2) Unified training. As shown in Fig. HyperFace and AIO employ
a multi-task learning framework to simultaneously handle a predefined set of
face analysis tasks, eliminating the repetitiveness in model training. However,
due to the empirically determined output structures for each task, these early
all-in-one models are unable to address new-coming tasks, resulting in a lack of
task extensibility. Furthermore, these early models lack robust pre-training and
are now considered to have performed inadequately.
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Our work aims to explore a face generalist model, which is initialized with a
task-agnostic backbone (unified representation) and can handle any user-chosen
set of face analysis tasks with a multi-task learning framework (unified training).
To achieve improved task extensibility and increased application efficiency, we
focus on the unified model structure. Two ideas are presented as follows:

(1) Shared structural designs: dealing with new-coming tasks using stan-
dardized output heads. We have observed significant variations in the expected
outputs of different face analysis tasks in terms of shape and granularity. Based
on these observations, we categorize all face analysis tasks into three distinct
categories: dense prediction, attribute prediction, and identity prediction. An
intuitive model design can consist of a backbone and three types of standard-
ized output heads, each dedicated to a specific task category, as illustrated in
Fig. referred to as Naive Faceptor. All tasks share a common backbone,
enabling the proposed model to achieve higher application efficiency than the
unified representation approaches. Tasks within the same category will share
structural designs, thus avoiding the need to design new output structures based
on experience for new-coming tasks, and ensuring the extensibility of the model.
However, a notable limitation of this design is the lack of parameter sharing
among heads across tasks. This results in a linear growth of the number of heads
as the tasks increase, leading to significant storage overhead.

(2) Shared parameters: dealing with new-coming semantics using task-specific
queries. To further enhance the unification of model structure while maintain-
ing the model’s performance on individual tasks, we propose Faceptor, which
adopts a single-encoder dual-decoder architecture, as shown in Fig. The
transformer encoder extracts shared features while the transformer decoder at-
tends to particular semantic information. Additionally, the pixel decoder is used
for restoring the image spatial scale for dense prediction tasks. Inspired by pre-
vious works [8}|10}/11}76}/81], we introduce task-specific queries from single-task
methods into our unified structure to model the semantics of different tasks,
minimizing the use of non-shared parameters and achieving a significantly higher
storage efficiency. We also introduce the Layer-Attention mechanism in the trans-
former decoder to model the preferences of different tasks towards features from
different layers. With layer-aware embeddings in the transformer decoder, Facep-
tor can adaptively assign weights for the features from different layers.

Multi-task learning aims to achieve optimal performance across all tasks,
while auxiliary supervised learning leverages some tasks to enhance the perfor-
mance of others. In our training framework, auxiliary supervised learning can
be performed by adjusting the weights and batch sizes of involved tasks. Ex-
periments indicate that harnessing landmark localization, face parsing and face
recognition tasks can significantly enhance the performance of tasks such as age
estimation and expression recognition, which suffer from limited available data.

Our contributions can be summarized as follows:

1. To the best of our knowledge, our work is the first to explore a face generalist
model, with unified representation, training, and model structure. Qur main
focus is on the development of unified model structures.
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2. With one shared backbone and three types of standardized output heads,
Naive Faceptor achieves improved task extensibility and increased appli-
cation efficiency.

3. With task-specific queries to deal with new-coming semantics, Faceptor
further enhances the unification of model structure and employs significantly
fewer parameters than Naive Faceptor.

4. The proposed Faceptor demonstrates outstanding performance under both
multi-task learning and auxiliary supervised learning settings.

2 Related Works

Universal Facial Representation: FRL [5] and FaRL 93| address face anal-
ysis tasks by following a pipeline that involves (1) collecting a large-scale facial
dataset, (2) pre-training a task-agnostic network to achieve universal facial rep-
resentation learning, and (3) fine-tuning the network for specific facial tasks
in the user-chosen set. FaRL [93] combines natural language supervised and
self-supervised learning, extracting high-level semantic meaning from image-text
pairs using contrastive loss [27,/57,/58|, while also exploring low-level information
through masked image modeling |2,/53]. Robust pre-training is crucial for face
generalist models. In our experiments, we utilize the ViT [17] model pre-trained
with the FaRL framework as the initialization for the transformer encoder.

Multi-task Learning for Face Perception: HyperFace [59] and AIO [60]
are early classic works of multi-task learning, employing CNN as the backbone
and leveraging experiential knowledge to determine the appropriate layer of fea-
tures for different tasks. However, since these models are designed for predefined
task sets, they are not able to deal with new-coming tasks. In contrast, Swin-
Face [56] adopts standardized subnets for task extensibility, with face analysis
and recognition subnets handling attribute and identity prediction tasks respec-
tively. In our experiments, the Naive Faceptor is primarily inspired by SwinFace
but includes an additional subnet |82] to handle dense prediction tasks.

Transformer Encoder-Decoder Architecture for Computer Vision:
The success of DETR [§] in object detection has motivated researchers to inves-
tigate the utilization of transformer encoder-decoder architecture in computer
vision tasks. MaskFormer [11] presents a unified approach to tackle semantic and
instance-level segmentation tasks through the introduction of a single-encoder
dual-decoder structure. In MaskFormer, each segment is represented by a query.
In SLPT |81] and RLPFER |[76], individual facial landmarks or expressions are
considered distinct semantic information and are represented as task-specific
queries. To the best of our knowledge, there is no existing work in the field of
face perception that comprehensively unifies all face analysis tasks and employs
task-specific queries to represent diverse semantic information.

3 Method

In this section, we first offer a brief introduction to the structure of Naive Facep-
tor. Next, we provide the details of the Faceptor design, highlighting the Layer-
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Attention mechanism. Then, we present the training framework and discuss the
objective functions. Lastly, we provide a comprehensive comparison between our
proposed face generalist models and previous efforts for face perception.

3.1 Naive Faceptor

We briefly describe the structure of Naive Faceptor. For a fair comparison, the
backbone of Naive Faceptor and the encoder of Faceptor utilize the same trans-
former encoder architecture, initialized by the FaRL [93] framework. Details
regarding the transformer encoder will be provided in Sec. We employ stan-
dardized face analysis and face recognition subnets from SwinFace [56] as at-
tribute prediction head and identity prediction head, respectively. In addition,
we follow the implementation in the FaRL experiment, utilizing UperNet [82] as
the dense prediction head to produce dense output. We provide an illustration
of Naive Faceptor in the appendix, offering more details.

3.2 Faceptor

Faceptor adopts a single-encoder dual-decoder architecture, as shown in Fig. 2

Transformer Encoder: We utilize a 12-layer ViT-B [17] as the transformer
encoder, which is pre-trained with FaRL [93| framework. When an image X of
size H x W is given as input, the encoder produces a feature F! € R FXF at
the [-th layer. Here, C.,, represents the number of channels, and .S represents the
stride of patch projection, which are 768 and 16 respectively. To handle input
images of varying resolutions (512 x 512 for dense prediction tasks, and 112 x
112 for attribute and identity prediction tasks), we employ a shared learnable
positional embedding E.,, ,,s with a size of 32 x 32, and interpolate it based on
the spatial size of the input image after patch projection. We retain the features
obtained from all 12 layers of the encoder for future use. Therefore, the encoded
feature F can be formulated as:

Hy W
F = TransformerEncoder(X, Ec, pos) € R12XCen x5 X5

; (1)
where F = [F1; F?;... ;F'2].

Transformer Decoder: We employ a 9-layer standard transformer de-
coder [71] to compute the task-specific tokens based on the encoded features
and task-specific queries. To begin, we define task-specific queries, which are
applicable to dense prediction and attribute prediction tasks. The task queries
for task ¢ are denoted as:

Q; = [Qt,l, qt,2,49t,35 -+ Qt,NtL (2)

where N; represents the number of queries that convey different semantic mean-
ings in task ¢. A landmark, a semantic parsing class, and a binary attribute are
each represented by one query for facial landmark localization, face parsing, and
binary attribute classification respectively. 101 queries represent ages 0-100 for
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Fig. 2: Overall architecture for the proposed Faceptor

age estimation. 7 queries represent expressions (surprise, fear, disgust, happi-
ness, sadness, anger, neutral) for expression recognition. Following established
conventions , all task-specific queries Q; are accompanied by a positional
embedding Ege pos,t, Which has the same dimension as Q; and is not shared
across tasks.

Typically, when using the transformer decoder in visual tasks, only the en-
coded feature from the top layer, denoted as Fi°P, is utilized for computation.
However, the features obtained from the encoder contain decreasing geometric
information and increasing semantic information from the bottom to the top
layers. Different tasks have varying preferences for features from different lay-
ers. To enable the transformer decoder to leverage features from multiple layers,
we uniformly extract six layers of features from F and project them into the
dimension of the decoder tokens, denoted as Cy. and set to 256, resulting in:

F = Projection([F?; F*; FS; F3; F10; F'2)) € R6XCaex 5% g (3)

After processing with the transformer decoder, task-specific tokens for dense
prediction or attribute prediction task ¢ are obtained:

T; = TransformerDecoder(ﬁ‘, Q:t, L, P,Ege pos,t) € RN#*Cac (4)

where L; and P are the layer-aware embedding and positional embedding asso-
ciated with F, respectively. Further details are provided in Sec.
Pixel Decoder: The pixel decoder is used to gradually upsample the fea-

tures in order to produce per-pixel embeddings:
w

E,izer = PixelDecoder(F) € RCuex & x =, (5)

where s is set to 4 in our implementation. It should be noted that any per-pixel
classification-based segmentation model can be employed as a pixel decoder. In
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our implementation, we extract the feature F'2 from the top layer of the encoder,
and then pass it through two consecutive 2 x 2 deconvolutional layers to obtain
the per-pixel embedding Ej;zc;. Experimental results have demonstrated that
this simple pixel decoder has been capable of achieving excellent performance in
facial landmark localization and face parsing.

Outputs: Similar to Naive Faceptor, Faceptor also includes specifically
designed output modules for three categories of tasks. For the dense prediction
tasks, the task-specific tokens need to be passed through a shared MLP to align
with the per-pixel embeddings outputted by the pixel decoder. The dot product
of these two is then linearly interpolated to obtain the final dense prediction
output ymap € RVHXW For the attribute prediction tasks, the task-specific
tokens produced by the decoder can directly go through a shared linear layer
to obtain the final prediction result yyque € RNt. For the identity prediction
task, the features from the top layer of the transformer, denoted as F'2, are
first passed through an average pooling layer to obtain a vector. Then, following
the implementation of SwinFace [56], the vector is processed by an FC-BN-FC-
BN structure to obtain the final identity representation yyector € R?, where d
is set to 512. It is important to note that in Faceptor, all parameters of output
modules are shared among multiple tasks of the same category, whereas in Naive
Faceptor, tasks of the same category share only the structural design of output
modules without sharing parameters.

3.3 Layer-Attention Mechanism

In the transformer decoder, cross-attention can be represented as:
CrossAttention(Q, K, V) = Softmax(QK” /Vd)V. (6)

For the I-th layer, the query is Q = Hé_l + Ede pos,t, where Hi_l is the output
of the previous layer of the decoder and H? = Q;. The value is V = F. We
implement Layer-Attention by introducing layer-aware embeddings L, € R6*Cae
for task ¢ into the key, obtaining:

K = F + Repeat(L;) 4+ Repeat(P), (7)

where P € RC4X§%§ s the learnable positional embeddings randomly initial-
ized, and the Repeat function extends the input features in a repeated manner
to a scale of R6XCaex 5 x5

For simplification, we use L; and P to represent Repeat(L;) and Repeat(P)
respectively. In Eq. @, QKT can be expanded as QFT+Qﬁf+QpT. The term
Qf’T reflects the model’s preference for features at different positions, typically
taken into account by existing models. In contrast, Qf;tT represents the model’s
preference for features from different layers, which has often been neglected in
previous research.
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In practice, we found that swuge:
directly introducing Layer-
Attention can not improve
the model’s performance on
various tasks, and even result
in significant deterioration in
the age estimation task. We
believe that this is because
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randomly initialized, which
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training, Q; to be unable to fectiveness of Layer-Attention mechanism.
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quate in reflecting task t’s preference for features from different layers. To address
this issue, we introduce a two-stage training process, as shown in Fig. [3| In the
first stage, only the features from the top layer, namely, Projection(F!2), are
used for training to enable Q; to learn the semantic representation of task ¢. In
the second stage, the transformer decoder is allowed to access f‘, and most of
the model parameters are frozen except for L;, which is allowed to be learned. It
should be noted that since L; is not shared across tasks, if there is no performance
improvement on task t after the second stage of training, the Layer-Attention
mechanism can be excluded during inference for task t. Experimental results
show that attribute prediction tasks such as age estimation, expression recogni-
tion, and binary attribute classification can benefit from the introduction of the
Layer-Attention mechanism.

3.4 Objective Functions

We employ a multi-task learning framework to enable the model to simultane-
ously tackle a variety of face analysis tasks. The overall objective function is:

ZteT Oétn% Z?:H L(yt.:) (8)
ZteT at 7

where T represents the user-chosen task set, a; is the weight of task ¢, n; is
the number of samples for task ¢ in each training batch, y;; is the output of
Faceptor for the i-th sample in task ¢, and L(y,;) is the loss function for single
sample. Auxiliary supervised learning can be performed by adjusting the oy
and n;. Please refer to the appendix for the specific loss function used for each
individual task.

Loy =

3.5 Comparison of Task Extensibility and Application Efficiency

Table [1| presents a semi-quantitative comprehensive comparison between our
proposed models and previous unified approaches in task extensibility and ap-
plication efficiency. Assuming there are N tasks in the user-chosen set. It is
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Table 1: Semi-quantitative comparison of task extensibility and application efficiency.
3 represents backbones, O represents output modules, and Q represents queries in the
transformer decoder.

. Application Efficiency
Paradigms or Models Focus for Um.ﬁed Extensible?| Training| Inference Storage
Face Perception N
Cycles |Calculation Parameter
Universal Representation .
o) ,
I Finetuning Representation Yes N NB+NC NB+NO
Early All-In-One Model Training No 1 1B4+NO 1B+NO
Our Naive Faceptor Model Structure Yes 1 1B4+NO 1B+NO
Our Faceptor Model Structure Yes 1 1IB4+NO |(1B4104+NQ, OKO

noticed that the number of parameters in the queries is much less than that in
the output modules. As N increases, the number of parameters in Faceptor will
be significantly less than that in Naive Faceptor. To sum up, our Faceptor can
achieve improved task extensibility and the highest application efficiency.

4 Experiments

4.1 Implementation Details

Datasets: To validate the effectiveness of our proposed generalist models, we
have collected 13 training datasets covering 6 tasks within 3 categories. In our
experiments, Naive Faceptor and the base version of Faceptor (referred to as
Faceptor-Base) are trained with only the 7 datasets highlighted in bold in Tab.
To explore the performance ceiling of Faceptor, we further train Faceptor-Full
using all 13 datasets. Table [2| presents the number of training samples in each
dataset after preprocessing. For dense prediction, we apply the data augmenta-
tion methods used in the FaRL [93]’s downstream experiment. For attribute pre-
diction, we employ horizontal flip, Randaugment [12], and Random Erasing [84].
For identity prediction, we use only horizontal flip for data augmentation. It is
worth noting that we do not perform uniform alignment for training samples
used but still achieve excellent performance. Please refer to the appendix for
more details of the datasets.

Training for Faceptor: For the first stage, we employ an AdamW [46]
optimizer for 50,000 steps, using a cosine decay learning rate scheduler and 2000
steps of linear warm-up. The base learning rate for the Transformer Encoder
is 5.0 x 107°, and the learning rate for the remaining parts is 10 times that
of the Transformer Encoder. A weight decay of 0.05 is used. For the second
stage, only 20000 steps are required, with 2000 steps reserved for linear warm-up.
All parameters except for layer-aware embeddings are frozen. The other hyper-
parameters remain consistent with the first stage. Due to the small number of
parameters being trained, the second stage can be completed quickly. Table [2]
presents the batch size and weight used for each dataset during the training of
Faceptor-Base and Faceptor-Full. All training is conducted on 4 NVIDIA Tesla
V100 GPUs.
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Table 2: The face analysis tasks included in our experiment and the corresponding
datasets used

Task Category Task Datas.et's for Number of|Faceptor-Base|Faceptor-Full
Training Samples | n¢ Qg N Qg
300W 63| 3, 148 4 1000.00 | 4  250.00
Landmark WFLW |[79] 7, 500 - - 4 250.00
Dense Localization COFW 6| 1, 345 - - 4 250.00
Prediction AFLW-19 [94] 20, 000 - - 4 250.00
Face CelebAMask-HQ [33[[ 27, 176 4 100.00 4 100.00
Parsing LaPa [44] 20, 168 - - 4 100.00
Age MORPH 11 [29] 44,194 | 64 6.00 64 4.00
Estimation UTKFace |83 13, 144 - - 16 1.00
Expression AffectNet |50] 282, 829 [ 64 4.00 64 6.66
Attribute Recoenition RAF-DB 37| 12,271 |16 1.00 16 1.67
Prediction g FERPlus [3] 28,127 | - - 16 1.67
Binary
Attribute CelebA [45] 182, 637 | 64 2.00 64 2.00
Classification
Identity Face
Prodiction | Recognition MS1MV3 |22| 5, 179, 510|256 5.00 256  5.00
g

Training for Naive Faceptor: During the training of the Naive Faceptor,
we have observed that this structure is not sensitive to the weight changes of the
tasks. Therefore, the weights for all tasks are set to 1.0. Other settings are kept
consistent with the first stage of training the Faceptor-Base.

4.2 Comparison Between Naive Faceptor and Faceptor

Table [3] presents a comparison between Naive Faceptor and Faceptor-Base in
terms of parameters and performance. Overall, Faceptor-Base demonstrates sim-
ilar performance to Naive Faceptor while utilizing significantly fewer parameters.
Specifically, Faceptor exhibits slight enhancements in facial landmark localiza-
tion, face parsing, age estimation, and binary attribute estimation tasks, along
with a notable improvement in expression recognition by 2.80%. Only for face
recognition, Faceptor indicates a slight decrease. Faceptor consists of a total of
103.2M parameters, distributed as follows: 86.8M for the transformer encoder,
14.7M for the transformer decoder, 0.5M for the pixel decoder, and 1.2M for
the remaining components. In Naive Faceptor, the standardized output heads
for dense, attribute, and identity prediction tasks respectively contain approx-
imately 39.3M, 3.4M, and 1.0M parameters. Consequently, Naive Faceptor en-
compasses a total of 178.9M parameters for the six tasks, which is 73% more
than Faceptor. As the number of tasks increases, this parameter difference be-
tween the two models will become even more pronounced. The experimental
results indicate that Faceptor, with higher storage efficiency and comparable
performance with the naive counterpart, should be favored as a unified model
structure. For this reason, we conduct larger-scale experiments in Sec. [1.4] to
compare the performance of our Faceptor with specialized models.

It is worth noting that we have omitted the performance comparison of our
proposed models with early all-in-one models [59,60], as those early models
utilized significantly simpler testing protocols that are now rarely referenced, and
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Table 3: Comparison between Naive Faceptor and Faceptor-Base

Landmark 300W Parsing Age Expression|Attribute
Methods |Comm. Chal. Full CelebAMask-HQ|MORPH II| RAF-DB | CelebA
NMEinter—ocular 4 Fl-mean 1 MAE | Acc 1 mAcc T
Naive 2.75 4.84 3.16 88.04 1.873 87.58 91.40
Faceptor| 2.60 4.60 3.00 88.22 1.869 90.38 91.43
Face Recognition Params
Methods 1:1 Verification Accuracy 1 (M)
LFW CFP-FP AgeDB-30 CALFW CPLFW Mean
Naive 99.50 96.17 94.35 95.13 92.68 95.57 178.9
Faceptor| 99.52  95.86 93.33 94.70 92.12 95.10 103.2

Table 4: Comparison under three settings. LA stands for Layer-Attention.

Settings Age MORPH II MAE ||Expression RAF-DB Acc 1|Attribute CelebA mAcc 1
w/o LA 1.882 89.80 91.40
LA (Directly) 1.970 90.03 91.40
LA (Two-stage) 1.869 90.38 91.43

their task sets are also smaller. Given that our generalist models perform well
on more challenging and diverse testing protocols, it is evident that our models
surpass the early all-in-one models. The appendix provides further discussion on
the performance of early models.

4.3 Layer-Attention Mechanism

Table [ presents the performance of Faceptor-Base on age estimation, expres-
sion recognition, and binary attribute classification tasks under three settings:
without using the Layer-Attention mechanism, using the Layer- Attention mecha-
nism directly, and using the Layer- Attention mechanism with two-stage training
process. It can be observed that when using the Layer-Attention mechanism
directly, Faceptor does not always achieve improved performance and even ex-
hibits significant degradation in age estimation. However, employing two-stage
training generally leads to performance improvement, especially in expression
recognition, where a 0.58% improvement is achieved on RAF-DB [37].

4.4 Comprehensive Performance Evaluation for Faceptor

To explore the upper limit of Faceptor’s performance, we have trained Faceptor-
Full using 13 training datasets. Tables[5|to[7] present the performance of Faceptor-
Full in various tasks. In most tasks, Faceptor-Full achieves comparable or supe-
rior performance to state-of-the-art specialized models, except face recognition
where it slightly lags behind the state-of-the-art method. A detailed analysis of
the performance is presented below.

Dense Prediction. Thanks to the masked image modeling [2}[53| incor-
porated into the FaRL framework [93|, our model achieves outstanding per-
formance in dense prediction tasks. Faceptor-Full outperforms existing methods
on all facial landmark localization and face parsing datasets except for LaPa,
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Table 5: Comparison with other specialized models for dense prediction tasks

WFLW 300W COFW AFLW-19 CelebA LaPa
Methods Full Comm. Chal. Full - Full Methods Mask-HQ
NMEipter—ocular + NMEgiag + Fl-mean
DAN-Menpo @l - 3.44 4.88 3.09 - - Lee et al. @l 80.3 -
- 3.34 6.60 3.98 - 1.91 BASS - 89.8
5.27 2.98 5.19 3.49 3.92 1.85 EHANet 84.0 89.2
5.11 3.27 7.18 4.04 - 1.65 Wei et al. |78 82.1 89.4
4.62 2.93 5.26 3.39 - - EAGR 85.1 91.1
4.36 2.72 4.52 3.07 - - AGRNet [69) 85.5 92.3
TSAN [16] 4.39  3.21 6.49 3.86 - - DML-CSR [90] 86.1 92.4
4.60 2.91 5.11 3.34 3.45 1.57
4.21 2.62 4.77 3.04 - -
4.37 2.76 5.16 3.23 - 1.39
4.14 2.53 4.58 2.93 - -
4.31 2.78 4.89 3.19 3.08 1.42
4.14 2.75 4.90 3.17 3.32 -
4.05 2.60 4.48 2.96 3.02 1.37
Faceptor 4.03 2.52 4.25 2.86 3.01 0.95 Faceptor 88.2 91.5

Table 6: Comparison with other specialized models for attribute prediction tasks

Age Expression Attribute

Methods MORPH II UTKFace|Methods RAF-DB FERPlus|Methods CelebA

MAE | ) Acc 1 mAcc T
OR-CNN Igl 3.27 5.74 DLP-CNN |37 80.89 - PANDA-1 |85 85.43
DEX 2.68 - gACNN [0 85.07 - LNets+ANet [45] 87.33
DLDL 2.42 - IPA2LT |83 86.77 - MOON 90.94
DLDL 2.24 - RAN 86.90 88.55 |NSA 90.61
DRFs j 2.17 - CovPoo 87.00 - MCNN-AUX 91.29
MV 2.16 = SCN 87.03  89.35 MCFA 91.23
Axel Berg et al. - 4.55 DACL 87.78 - DMM-CN 91.70
CORAL - 5.47 |KTN 88.07 90.49 |SwinFace 91.32
Gustafsson et al. - 4.65 DMU 88.76 88.64
BridgeNet 2.38 - RUL 88.98 88.75
OL 2.22 - EAC |87 88.99 89.64
DRC-ORID 2.16 - SwinFace 90.97 -
PML |15 2.15 -
DLDL-v 1.97 4.42
MWR [68] 2.00 4.37
Faceptor 1.96 4.10 Faceptor 91.26 90.40 |[Faceptor 91.39

as shown in Tab. 5] However, for LaPa, our model’s performance declines due
to the introduction of Tanh-warping to balance segmentation performance
between the inner facial components and hair region. We conduct experiments
using Faceptor-Base for transfer learning on the LaPa dataset, achieving a mean
F1 score of 92.7, as shown in Tab. [0] This score is higher than that of the state-
of-the-art specialized methods, demonstrating our model’s strong understanding
of dense prediction tasks.

Attribute Prediction. Faceptor-Full achieves state-of-the-art results in age
estimation and expression recognition with 1.96 and 4.10 MAE on MORPH
II and UTKFace [88] respectively, and 91.26% accuracy on RAF-DB |[37],
while it performs on par with the state-of-the-art on binary attribute classifica-
tion. The training samples used for age estimation and expression recognition
are insufficient relative to the complexity of these tasks. During joint training,
these tasks can benefit from the initialization of universal representation and
multi-task learning, obtaining improved performances. In contrast, for the binary
attribute classification task, the availability of ample data from CelebA with
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around 183K training samples has led to saturated performance across existing
methods.

Table 7: Comparison for face recognition. The 1:1 verification accuracies on the
LFW [25]|, CFP-FP [64], AgeDB-30 [51], CALFW [92] and CPLFW [91] are provided.

Methods Face Verification Accuracy

LFW CFP-FP AgeDB-30 CALFW CPLFW |Mean
VIiT |17]|+CosFace |72] [99.83 96.19 97.82 95.92 92.55 [96.46
FaRL |93|+CosFace |72]|99.60 96.70 95.55 95.43 92.38 [95.93
Faceptor 99.40 96.34 93.65 94.75 92.27 |95.28

Identity Prediction. The performances of specialized models trained us-
ing the MS-Celeb-1M |[22]| dataset and the CosFace |72] loss function starting
from randomly initialized ViT-B [17] and FaRL pretraining are presented in
Tab. [7], allowing a fair comparison to Faceptor-Full. Evaluation results on sev-
eral face verification test datasets indicate that Faceptor-Full performs lower
than ViT trained from scratch. This performance decline can be attributed to
two main reasons. Firstly, Faceptor-Full is initialized from FaRL, which pro-
vides facial representations combining high-level and low-level information not
specifically tailored for the face recognition task. The inferior performances of
specialized models starting from FaRL pre-training compared to those trained
from scratch validate this point. Secondly, Faceptor-Full involves tasks that in-
herently have conflicting objectives. While face recognition requires the model
to learn to extract identity representations ignoring variations in facial texture
and movements, face dense and attribute prediction tasks demand the opposite.
Despite the slight decline in face recognition, Faceptor-Full achieves or surpasses
state-of-the-art results in all other tasks, underscoring the significant potential
of the proposed face generalist model with a highly unified model structure.

4.5 Auxiliary Supervised Learning

The performance improvement of certain attribute prediction tasks is limited
due to insufficient data, with age estimation and expression recognition being
two typical tasks. In our experiment, we consider these two tasks as the main
tasks and introduce auxiliary tasks such as facial landmark localization, face
parsing, and face recognition to provide additional supervised signals. Our results
(as shown in Tab. show that Faceptor with auxiliary supervised learning
outperforms the same model which is under single-task or multi-task learning
settings. Moreover, our model achieves significant improvements over the state-
of-the-art in age and expression tasks, with an MAE of 1.787 on MORPH 1T |29],
reducing by 0.183, and an accuracy of 91.92% on RAF-DB |[37], increasing by
0.95%. This indicates that our proposed method can effectively enhance data
efficiency by leveraging rich supervised signals from auxiliary tasks, thus enabling
better performance for main tasks with insufficient data. For more experimental
details on auxiliary supervised learning, please refer to the appendix.
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Table 8: Comparison for auxiliary Table 9: Cross-datasets transfer perfor-
supervised learning. STL is short for mances under different settings. EM is short
Single-Task Learning. MTL is short for Early Methods. PT is short for Prompt
for Multi-Task Learning. ASL is short Tuning. DFT is short for Decoder Finetuning.

for Auxiliary Supervised Learning. FPFT is short for Full-Parameter Finetuning.
Age Expression Landmark Parsing Attribute
Methods MORPH II| RAF-DB Settings| AFLW-19 [94]| LaPa [44] |[LFW-73 [32]
MAE | Acc T NMEgiae 4 |Fl-mean T| mAcc T
SOTA (STL) 1.970 [20] | 90.97 [56]
ot EM T.91 [16] | 89.8 [44] -
aive Faceptor (STL) 2.070 91.33
Faceptor (STL) 2.238 91.10 PT 1.89 84.0 85.56
Faceptor (MTL) 1.869 90.38 DFT 1.06 89.9 87.81
Faceptor (ASL) 1.787 91.92 FPFT 0.89 92.7 87.95

4.6 Cross-Datasets Transfer

We aim to explore the performance of Faceptor in cross-dataset transfer scenar-
ios where subtle semantic variations exist in certain tasks, as shown in Tab. [0
We have observed that facial landmark localization datasets encompass different
landmarks, face parsing datasets involve varying semantic parsing classes, and
binary attribute classification datasets have different attribute labels. Starting
from Faceptor-Base, we try to transfer its capabilities to unseen datasets with
novel semantics. By considering the diverse trainable parameters, we investigate
three settings: training only task-specific queries (prompt tuning), training only
the decoders and other output structures (output module fine-tuning), and train-
ing all parameters (full-parameter fine-tuning). The experiments reveal that in
facial landmark localization, prompt tuning results even outperform the early
method [16]. In face parsing, the results of prompt tuning can approach the
performance of the early method [44]. In binary attribute classification, prompt
tuning can achieve performance close to that of full-parameter fine-tuning. These
experimental findings demonstrate the potential of prompt tuning for Faceptor.
For more experimental details, please refer to the appendix.

5 Conclusion

To the best of our knowledge, this is the first work that explores face gener-
alist models. Naive Faceptor consists of one shared backbone and 3 types of
standardized output heads, obtaining improved task extensibility and increased
application efficiency. Compared to Naive Faceptor, Faceptor is more unified in
structure and offers higher storage efficiency with a single-encoder dual-decoder
architecture and task-specific queries for semantics. We demonstrate the effec-
tiveness of the proposed models on a task set including 6 tasks, achieving ex-
cellent performance. In particular, we introduce a Layer-Attention mechanism
that models the preferences of different tasks towards features from different
layers, thereby enhancing performance further. The two-stage training process
ensures the effectiveness of the Layer-Attention mechanism. Additionally, our
training framework can also perform auxiliary supervised learning to improve
performance on attribute prediction tasks with insufficient data.
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