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Black-Box Substitute Attack

A Additional Setup Details

During the training phase, we employ common data augmentation operations,
such as Center Crop, Random Flip, Gaussian Blur etc., to fully utilize of the data,
and the same operations are applied in the comparison experiments for fairness.
We set the iterations of PGD to 40 and used DIST as the distance metric in
Eqs. (6) and (7), which was consistent across all experiments. In the label-only
scenario, we used the cross-entropy function instead of DIST. The substitute
model used in this paper is a simple optimized ResNet [9] architecture. We
optimized the substitute model using the SGD optimizer with an initial learning
rate of 0.001.

The evaluation is performed on a test set of the corresponding dataset, and
we use accurately categorized images as experimental subjects for both target
and non-target attacks. Each attack uses no less than 1000 adversarial samples
to calculate the attack success rate. The white-box adversarial sample gener-
ation schemes, FGSM [4], BIM [7], and PGD [8], are implemented using the
advertorch [3].

The overall of ICTA is described in Algorithm 1.

Algorithm 1 Training algorithm of our ICTA.
Inputs: Target model T ; Training data X ; Number of classes C;
Output: Substitute model S;
1: Initialization: Set the parameters: λ1 = λ3 = 1, λ2 = 10;
2: for x, y in X do
3: for m =1 to M do
4: ϕ ∼ N(0, 3) // Sample random disturbance strength
5: yarb ∈ {1, 2, ..., C|yarb ̸= y} // Choose class different from the ground truth;
6: xm

pes = x− ϕ∇xL(S(x), yarb)
7: Lm

RP = Drp(T (x
m
pes), S(x

m
pes))

8: end for
9: LKD = Dkd(T (x), S(x))

10: Lall = λ1LKD + λ2

∑M
m=1 L

m
RP + λ3LCE ,

11: Optimizing substitute model S based on loss Lall;
12: end for
13: return S
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Fig. 7: Attack success rate comparison in data-free scenario.

Fig. 8: Query number comparison with query-based attacks. The comparison schemes
include BoundaryAttack [2], TriangleAttack [10], and SquareAttack [1].

B Fairer Comparisons in Data-free Scenario.

we conduct fairer comparison using the diffusion model as generator and MSE
as our distance metric. The experimental setup is conducted under a data-free
scenario, utilizing ResNet50 as the target model and selecting PGD as the white-
box adversarial example generation method. As in Fig. 7, our ICTA exhibits
superior attack success rates in both target and non-target attacks under the
data-free scenario, with particularly significant improvements in target attacks.
These experimental results indicate that our approach can substantially enhance
the similarity between the substitute model and the target model.

C Query comparison with query-based attacks.

We compare the query number with query-based attacks at similar attack success
rates in Fig. 8. It is observed that the query number of query-based attacks
increases proportionally with the number of adversarial examples. In contrast,
our ICTA requires a fixed query number (2M) and generates adversarial examples
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Fig. 9: The ablation experiment on the number of positional exploration samples (i.e.
M in Eq. (9)). PGD [8] is used as the default white-box adversarial sample generation
scheme and ResNet50 [5] on CIFAR100 [6] is used as the target model.

directly without additional queries. If a larger number of adversarial examples
(more than 3000) are generated, our ICTA requires fewer queries than query-
based attacks, and the advantage grows as the number increases.

D Additional analysis of Sec. 4.3

In Table 5, in some cases, the RP is greater than 1.0. We attribute this to the
relatively low attack accuracy of FGSM. As a simple and fast technique, FGSM
adds only one perturbation to generate adversarial examples. This leads to higher
randomness and fluctuations of adversarial examples, e.g., originally inaccurate
adversarial examples may successfully attack target model. In contrast, PGD
and BIM use multiple iterations to ensure the precise perturbation and thus
have stable and higher attack accuracy.

E Ablation on the Number of PES

We conduct ablation experiment on the number of Position Exploration Sample
(PES), i.e. M in Eq. (9), as shown in Fig. 9. It can be observed that the efficiency
is optimal when M = 1, i.e. only one PES is generated for each clean sample. The
primary reason is that, in the early stages of substitute training, the substitute
model is not well established, resulting in limited effectiveness of the generated
PES. Consequently, the increase in the number of PES will only lead to more
queries to the target model, thereby reducing efficiency.

F Ablation on Parameters of the PES

The ablation experiment on the parameters settings of the PES are given in
Tab. 8, which contains several possible parameters. ‘Fixed 1’ represents a fixed
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Table 8: The ablation comparison of the parameters in PES. ‘Fixed 1’ indicates that
the noise strength is fixed to 1, ‘Uniform 1’ and ‘Uniform 3’ denote that the noise
strength obeys a uniform distribution U(0, 1) and U(0, 3), ‘Normal 1’ and ‘Normal 3’
indicate that the noise strength obeys a Gaussian distribution N(0, 1) and N(0, 3).
The best result are masked as bolded, and the sub-optimal results are masked as
underlined.

Target Non-target
Method FGSM BIM PGD FGSM BIM PGD
Fixed 1 8.12 58.08 64.38 86.82 98.80 99.28

Uniform 1 6.35 66.96 74.81 85.38 98.14 98.59
Uniform 3 7.06 69.11 76.58 85.45 98.86 99.38
Normal 1 6.61 68.62 75.54 84.84 98.59 98.91
Normal 3 8.52 72.79 79.34 86.76 99.22 99.50

noise strength of 1, ‘Uniform 1’ denotes a noise strength set to a uniform distri-
bution U(0, 1) with a minimum value of 0 and a maximum value of 1, ‘Uniform
3’ indicates a noise strength set to a uniform distribution U(0, 3), ‘Normal 1’
represents a noise strength set to a Gaussian distribution N(0, 1) with a mean of
0 and a variance of 1, and ‘Normal 3’ indicates a noise strength set to a Gaussian
distribution N(0, 3). ResNet50 [5] on CIFAR100 [6] is used as the target model.

It can be seen that a fixed noise strength is not sufficient to comprehen-
sively explore the decision space. Additionally, the performance of uniformly
distributed noise strength is not as expected, since a lot of PES is used to ex-
plore distant positions in the decision space. In contrast, when Gaussian dis-
tributed noise strength is used, PES is more distributed near the original class
for meaningful exploration, and a small amount of PES can also be used to ex-
plore distant positions in the decision space. Our approach performs optimally or
sub-optimally when the noise strength is set to a Gaussian distribution N(0, 3),
and thus it is used as the preferred configuration for our method.

G Limitation

Although ICTA has made some progress in improving the effectiveness of black-
box adversarial attacks, it faces the limitation in terms of computational com-
plexity. This is limited by the nature of the substitute attacks, which require high
computational complexity due to the need to optimize the model parameters,
especially on large datasets and complex models. This may limit the feasibility
of ICTA in practical applications.

Negative Impacts

This study emphasizes that attacks on neural networks are high probability
to be successful even in a black-box environment. This type of research could
be illegally used to attack the deployed neural networks, thereby generating
adversarial samples that may influence the decision of the network.
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Ethical Statements

This research adheres to ethical principles and is committed to applying the
results in a legal, ethical and responsible manner to improve system security. In
addition, we will actively take steps to ensure the safety and sustainability of
our research and to maintain the trust of the scientific community and society.
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