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Abstract. In black-box attacks based on substitute training, the sim-
ilarity of the substitute model to the target model is critical for suc-
cessful attacks. However, existing schemes merely train the substitute
model to mimic the outputs of the target model without fully simulating
the decision space, resulting in the adversarial samples generated by the
substitute model being classified into the non-target class by the target
model. To alleviate this issue, we propose a novel Inter-Class Topol-
ogy Alignment (ICTA) scheme to more comprehensively simulate the
target model by aligning the inter-class positional relationships of two
models in the decision space. Specifically, we first design the Position
Exploration Sample (PES) to more thoroughly explore the relative po-
sitional relationships between classes in the decision space of the target
model. Subsequently, we align the inter-class topology between the two
models by utilizing the PES to constrain the inter-class relative posi-
tion of the substitute model in different directions. In this way, the sub-
stitute model is more consistent with the target model in the decision
space, so that the generated adversarial samples will be more successful
in misleading the target model to classify them into the target class. The
experimental results demonstrate that our ICTA significantly improves
attack success rate in various scenarios compared to existing substitute
training methods, particularly performing efficiently in target attacks.

Keywords: Black-box attacks · Substitute attacks · Position explo-
ration sample · Inter-class topology alignment

1 Introduction

Convolutional Neural Networks (CNNs) have shown impressive performance in
various fields and are widely applied in daily life. However, it has been found
that CNNs exhibit poor robustness to well-designed perturbations [3, 36, 38],
which poses a great threat to their safety and reliability. For example, in the
field of autonomous driving, if the network makes a wrong judgment, it will
lead to potential safety hazards [13, 14, 26]. Therefore, it is especially urgent to
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Fig. 1: (a) Comparison of different methods and (b) Attack success rate. Traditional
approaches only focus on intra-class consistency, resulting in the adversarial samples
generated by the substitute model failing to mislead the target model to classify them
into the target class. In contrast, our ICTA better simulates the target model by align-
ing the inter-class topology in the decision space, resulting in a successful target attack.
The performance of our ICTA is significantly improved across multiple datasets, par-
ticularly in target attacks.

research deeply into the adversarial attacks [4,30,38] and defense [17,22] schemes
to enhance the reliability and security of CNNs in practical applications.

Existing adversarial attacks can be categorized into white-box and black-box
attacks according to the knowledge of the attacker about the target model. In
white-box attacks [3–5,11,12,16,29], the attacker possesses complete information
about the target model (such as network structure, gradient, etc.), thus can
generate highly deceptive adversarial samples based on this information. By
contrast, in black-box attacks [2, 9, 21, 24, 31, 35], the attacker can only utilize
the outputs of the network (probabilities or labels) to craft adversarial samples,
making the task more challenging and realistic. In such scenario, the substitute
attacks [9,27,33,35,37] is proposed, which focus on training a substitute model
to emulate the target model, so that the adversarial samples generated by the
substitute model can effectively attack the target model.

Current substitute attack methods [9, 21, 27, 28, 33, 35, 37] adhere to the
paradigm of knowledge distillation, encouraging the substitute model to mimic
the outputs of the target model. Some schemes utilized simple L2 loss [21,28,33,
37] or KL-divergence [9] to constrain the substitute model. As an improvement,
DST [27] leveraged a graph structure consisting of multiple outputs to optimize
the substitute model. Nevertheless, these strategies only focus on learning the
simplistic outputs of the target model, without adequately considering the deci-
sion space of the network. Subsequently, Zhang et al . [35] considered aligning the
decision boundary between the substitute model and the target model to bridge
the gap between the two models. However, this restriction of decision bound-
ary only aims at the intra-class decision consistency and ignores the inter-class
relationship consistency of the two models in the decision space. As a result,
the adversarial samples generated by the substitute model are difficult to be
classified as target class by the target model, as Fig. 1(a).
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To alleviate the above issue, we propose a novel Inter-Class Topology
Alignment (ICTA) scheme to align the inter-class positional relationships of
the two models in decision space, thus better simulating the target model and
achieving more accurate target attacks. Specifically, we first design the Posi-
tion Exploration Sample (PES) to explore the relative positional relationships
among all classes of the target model by introducing adversarial perturbations
of different directions and strengths. Subsequently, we constrain the inter-class
positional consistency of the substitute model to align the inter-class topology
between the two models. Thanks to the better alignment of the two models in
the decision space, the adversarial samples generated by the substitute model
can be more successful deceiving the target model to classify them into the target
class, as shown in Fig. 1(a). Experiments demonstrate that our ICTA achieves
higher attack success rate on different datasets, and especially more pronounced
in target attacks, as Fig. 1(b). Our primary contributions are as follows:

– We propose ICTA to innovatively align the substitute model with the target
model in terms of inter-class topology in the decision space, which effectively
improves the success rate of black-box substitute attack.

– We propose a novel PES to more comprehensively explore the inter-class
relative position of the target model, which is utilized to align the inter-class
topology between the substitute model and the target model.

– Experiments illustrate that our ICTA achieves significant performance gains
in a variety of scenarios and outperforms on target attacks compared to the
existing substitute attack schemes.

2 Related Works

2.1 White-box attacks

In white-box attacks, the attacker is fully aware of the information about the
target model, such as the structure and parameters [5,11,12,16], and highly de-
ceptive adversarial samples can be generated based on this information. Classical
white-box adversarial sample generation schemes utilized gradient information
of network to generate adversarial samples, such as FGSM [5], BIM [11], and
PGD [16]. Moreover, Croce et al . [4] proposed parameter-free attack combina-
tion AutoAttack by integrating multiple attack methods for testing adversarial
robustness. However, white-box attacks may lack practicality in real-world sce-
narios due to the requirement for extensive knowledge about the target model.

2.2 Black-box attacks

In contrast, black-box attacks are more challenging and more in line with realistic
scenarios, as the attacker can generate adversarial samples only using the outputs
of the target model, including transfer attacks, query attacks, and substitute
attacks. Transfer attacks [1, 3, 7, 29, 31] aim to maximize the transferability of
existing adversarial samples, enabling them to successfully attack the target
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model. For example, Zhu et al . [38] proposed modifying the distribution of the
original images to match the distribution of the target class, thereby obtaining
adversarial samples with high transferability. Query attacks [2, 24, 30] obtain
adversarial samples by continuously querying the target model using specific
inputs until a desired output is obtained. Substitute attacks [21, 35, 37] focus
on training a substitute model that is similar to the target model, so that the
adversarial samples generated by the substitute model can successfully attack
the target model. Compared to other schemes, the substitute attack is able to
generate more effective adversarial samples due to the ability to simulate the
decision process of the target model.

Most of the existing substitute attack schemes used L2 loss [21, 28, 33, 37]
or KL-divergence [9] as the constraint to train substitute models. For example,
DaST [37] used Generative Adversarial Networks (GANs) to generate data for
substitute training and leveraged the L2 loss as a constraint to align the outputs
of the substitute model with the target model. Kariyappa et al . [9] optimized
the generator with the help of zeroth-order gradient estimate and trained the
substitute training model with a simple KL-divergence. Shao et al . [21] proposed
LCA to utilize a diffusion model to generate the data required for substitute
training, which greatly improved the training efficiency compared to traditional
GANs-based methods. However, the target attack success rate is not impressive
as it only used L2 loss to constrain the substitute model. In order to simulate
the target model more precisely, Wang et al . [27] proposed DST to optimize the
substitute model from a graph with multiple outputs of the target model instead
of a single output. Nevertheless, these schemes only learn the simple outputs of
the target model without fully considering the complex decision space attributes,
resulting in poor performance. Subsequently, Zhang et al . [35] encouraged a high
alignment of decision boundary between the substitute model and the target
model, which improved the attack success rate.

However, the aforementioned schemes only focused on the intra-class consis-
tency and neglected the inter-class relational consistency, resulting in the adver-
sarial samples generated by the substitute model being difficult to be classified
as target class by the target model. In this paper, we further consider the inter-
class positional relationships in the decision space and better simulate the target
model by aligning the inter-class topology for a more effective target attack.

3 Methodology

3.1 Preliminary

For a black-box target model T , existing research on substitute attacks typically
trains a substitute model S similar to the T through a knowledge distillation
paradigm. Formally, the substitute model can be obtained by substitute training:

argmin
θ

Ex∼Xd[S(x), T (x)], (1)
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where d denotes the distance metric function, x ∼ X denotes the training data,
and θ is the parameters of S. The goal of substitute training is to optimize the
substitute model to resemble the target model as similar as possible.

Positional 

exploration sample

Traditional 

adversarial sample

Clear sample

Fig. 2: Position exploration sample vs. Traditional
adversarial sample. Traditional adversarial sam-
ples are closer to and clustered at the decision cen-
ter after several iterations of minor adjustments.
While our PES has a much broader coverage and
is able to explore the decision space more compre-
hensively.

Subsequently, the adversar-
ial samples can be gener-
ated using white-box adversar-
ial sample generation methods
based on the substitute model.
We take BIM [11] as an in-
stance, which perturbs the in-
put data along the gradient
direction of the target class
through multiple iterations to
make the output of the model
close to the target class in the
decision space, as Fig. 2. The
generation of adversarial sam-
ples for target attacks can be
represented as follows:

xadv
0 = x, xadv

N+1 = Clipx,ϵ{xadv
N − αsign(∇xL(S(x

adv
N+1), ytar))}, (2)

where ytar is the target class, ∇x denotes the gradient of the substitute model,
sign denotes the sign function, α represents the step size during the iteration
process, and Clip is the clip function based on the perturbation boundary ϵ.

Finally, the generated adversarial samples are used to attack the target
model. Clearly, the similarity between the substitute model and the target model
is a key factor for successful attacks in substitute attacks.

3.2 Aligning the Inter-Class Topology in the Decision Space

Existing substitute training methods encourage the substitute model to simply
mimic the outputs of the target model without fully simulating the decision
space of the target model. Resulting in the adversarial samples generated by
the substitute model are difficult to be classified into the target class by the
target model. Moreover, there is also a lack of research on what aspects the
substitute model needs to resemble the target model. In this paper, we propose to
understand and improve the substitute training from the perspective of the inter-
class topology in the decision space, which refers to the positional relationships
(including directions and distances) among all classes in the decision space.

According to Eq. (2), modifying the adversarial samples along the direction
of the gradient ∇x in the decision space can bring the decision of the model closer
to the target class, as shown in Fig. 2. Therefore, if the relative positions of all
classes are consistent between the substitute model and the target model, then
the adversarial samples generated by the substitute model can be successfully
classified into the target class by the target model. This suggests that aligning
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Fig. 3: The framework of our Inter-Class Topology Alignment (ICTA). ICTA
explores the inter-class relative position in the decision space using position exploration
sample in different directions, and aligns the inter-class topology of the two models by
fitting the inter-class relative position.

the inter-class topology between the two models in the decision space is crucial
for substitute attacks.

For the sample xi, we consider S(xi) and T (xi) as nodes in the two decision
spaces, and eSij = ⟨S(xi), S(xj)⟩, i ̸= j and eTij = ⟨T (xi), T (xj)⟩, i ̸= j to repre-
sent the edges of the topology in the two decision spaces. Topology consistency
can be achieved by aligning all nodes and edges:

min
n∑

i=1

Dp(S(xi), T (xi)) +

n∑
i=1

n∑
j=1

De(eSij , eTij ), (3)

where Dp and De denote the distance metrics of points and edges, respectively.
However, aligning the edges among all the samples in the decision space is

extremely complex. Therefore, we propose a relative position exploration and
alignment strategy for matching the inter-class topology of the two models.

3.3 Position Exploration Sample

According to Fig. 3, the relative position of the clean and adversarial samples in
the decision space can similarly be used to represent the relative position of the
two classes in the decision space. In this case, the adversarial perturbations used
to generate the adversarial samples can reflect the distance and direction between
the two classes. Therefore, under the assumption that the target model is white-
boxed, the inter-class relative position can be estimated using the positional
relationships between the clean and adversarial samples.

The traditional adversarial samples aim to progressively bring the sample
closer to the decision center of the target class through multiple iterations of
minor adjustments. While the sample has a relatively high success rate in the
attack, it does not beneficial for thoroughly exploring the entire decision space.
To alleviate this limitation, we design the Position Exploration Sample (PES)



Topology Alignment for Substitute Attacks 7

to more comprehensively explore the inter-class relative position of the target
model in the decision space, which can be represented as:

xpes = x− ϕ∇xL(T (x), ytar), (4)

where ϕ is the perturbation strength. We generate the PES using the full gra-
dient, not just the gradient direction, without iteration and without being con-
strained by the pixel range. Thus, the gradient ∇x and the perturbation strength
ϕ determine its direction and distance relative to the clean sample in the deci-
sion space. We represent the inter-class relative position based on the relative
position of the PES to the clean sample and explore the decision space more
thoroughly over a wider coverage by controlling ytar and ϕ, as Fig. 2.

However, it is impossible to generate the PES directly due to the gradient of
the target model is inaccessible. Therefore, we retreat to generating PES using
the substitute model, as shown in Fig. 3, which can be represented as:

xpes = x− ϕ∇xL(S(x), yarb), (5)

where yarb represents an arbitrary class different from ground truth. In this
way, we can explore the decision space from different directions and obtain the
complete inter-class topology in the decision space. Moreover, the PES generated
by the substitute model has an effect on exploring the decision space of the target
model, since our goal is to make the two models as similar as possible.

3.4 Topology Alignment Based on PES

In order to align the inter-class topology of the two models, we simplify the
topology consistency in Eq. (3) to the consistency of the inter-class relative po-
sition. This method allows us to capture the inter-class topology through the
position of two nodes without the need to optimize the edges directly, as demon-
strated in Fig. 3. We can achieve this alignment by simultaneously optimizing
the knowledge distillation loss LKD and the relative position loss LRP :

LKD = Dkd(T (x), S(x)), (6)
LRP = Drp(T (xpes), S(xpes)), (7)

LT = λ1LKD + λ2LRP , (8)

where Dkd and Drp are distance measure formulas, λ1 and λ2 are hyperparam-
eters. The inter-class relations of the two models can be aligned by ensuring
intra-class consistency through LKD and inter-class consistency through LRP .

Furthermore, we can constrain the substitute model to be inter-class con-
sistent with the target model in different directions and distances based on the
PES of a clean sample in different directions and at different distances. At this
point, the loss of topology consistency can be expressed as:

LT = λ1LKD + λ2

M∑
i=1

Li
RP , (9)
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Table 1: The accuracy of target model. We selecte four models with different archi-
tectures as target models on each of the three datasets.

Dataset CIFAR10
Target Model ResNet34 Vgg16 GoogleNet ShuffleNetV2

Accuracy 94.53 92.82 95.31 94.53
Dataset CIFAR100

Target Model ResNet50 MobileNetV2 WideResNet ResNeXt50
Accuracy 79.3 71.61 79.69 77.56
Dataset TinyImageNet

Target Model ResNet50 Vgg19 MobileNetV2 ResNeXt50
Accuracy 62.81 59.66 62.81 66.33

where M is the number of xpes generated for a same clean sample.
In addition, incorporating the original categorical loss into this process is

often beneficial, which is usually the cross-entropy loss LCE . The overall loss
can be expressed as:

Lall = LT + λ3LCE , (10)

where λ3 is a hyperparameter. The parameters of the substitute model are op-
timized by back propagation to better simulate the target model.

4 Experimental

4.1 Experimental Details

Dataset and Target Model. We choose CIFAR10 [10] (with size of 32×32
and 10 classes), CIFAR100 [10] (with size of 32×32 and 100 classes), TinyIma-
geNet [19] (with size of 64×64 and 200 classes) as the training dataset. And we
select VGG(16, 19) [23], ResNet(34, 50) [6], MobileNetV2 [20], GoogleNet [25],
WideResNet [34], ShuffleNetV2 [15], and ResNeXt50 [32] as the target model.
The accuracy of the target models is shown in Tab. 1.

Training Setup. During training, we set the perturbation strength in Eq. (5)
to ϕ = |Y |, where Y obeys the Gaussian distribution Y ∼ N(0, 3). The number
of PES in Eq. (9) is set to M = 1. The hyperparameters are empirically set to
λ1 = λ3 = 1, λ2 = 10. We standardize the query budget for substitute training
across all baselines to ensure fairness, setting it to 2 million for CIFAR10 and 3
million for CIFAR100 and TinyImageNet.

Additionally, we conduct experiments in two scenarios: full-data and data-
free. In the data-free scenario, we utilize Stable Diffusion [18] as a generator and
use the LCA [21] strategy to produce the data needed for substitute training. In
the full-data scenario, the whole training data is available for substitute training.
We perform this part of the experiment to validate the performance of the scheme
without the influence of the generator. The algorithm of our ICTA and other
experimental details are described in the supplement. The source code will be
released upon acceptance of the paper.
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Table 2: Comparison of different white-box adversarial sample generation schemes. We
choose ResNet34 on CIFAR10, ResNet50 on CIFAR100 and VGG19 in TinyImageNet
as target models. The best results are marked as bolded.

Dataset CIFAR10 CIFAR100 TinyImageNet
Methods FGSM BIM PGD FGSM BIM PGD FGSM BIM PGD

N
on

-T
ar

ge
t

GANs

MAZE [9] 38.64 57.98 68.94 38.20 41.55 43.07 9.18 9.79 11.10
DaST [37] 35.19 56.21 64.22 40.01 42.54 47.40 9.71 9.26 9.81
DST [27] 40.83 67.65 71.26 46.45 49.21 59.46 11.67 12.47 33.52

Zhang et al . [35] 60.11 94.21 97.54 83.69 94.53 91.18 38.58 48.21 65.01

Diffusion LCA [21] 68.29 95.73 97.30 82.03 95.58 96.49 51.55 52.35 70.58
ICTA (Ours) 75.60 98.71 99.19 87.42 99.01 99.25 83.74 92.73 93.39

T
ar

ge
t GANs

MAZE [9] 6.84 13.83 16.65 6.20 12.78 10.01 0.50 2.50 2.54
DaST [37] 7.85 15.41 18.61 5.01 12.48 11.41 0.20 3.02 5.20
DST [27] 10.26 16.12 19.33 10.22 16.37 24.65 1.88 3.05 5.87

Zhang et al . [35] 28.17 72.05 64.05 7.74 58.45 54.78 2.30 10.88 15.01

Diffusion LCA [21] 24.31 76.90 79.98 4.61 45.19 51.50 1.84 12.95 15.45
ICTA (Ours) 29.41 87.63 91.40 7.80 69.02 74.49 6.87 29.31 33.41

Evaluation Setup and Process. During testing, we choose three classical
methods, including FGSM [5], BIM [11], and PGD [16], to generate adversarial
samples, with parameters uniformly set to perturbation boundary ϵ = 8/255
and step size α = 2/255. Our hardware utilizes an RTX 2080Ti GPU, and all
schemes are retrained under the same environment.

We train substitute model by our ICTA and then generate adversarial sam-
ples based on the substitute models using a white-box adversarial sample gen-
eration scheme. The success rate of these adversarial samples in attacking the
target model is used as the final evaluation metric.

4.2 Comparative Experiments in Data-free Scenario

Comparison of White-box Adversarial Sample Generation Schemes.
We compare different white-box adversarial sample generation schemes, includ-
ing FGSM, BIM, and PGD. As illustrated in Tab. 2, our ICTA realizes signif-
icant performance improvements across different white-box adversarial sample
generation methods. On the one hand, our ICTA achieves more noticeable per-
formance enhancement on large datasets TinyImageNet than on small datasets
CIFAR10. On the other hand, ICTA has superior performance improvement
on target attacks than non-target attacks. The results indicate that our ICTA
more effectively simulates the decision space of the target model compared to
traditional substitute training methods [9, 21,27,35,37].

Comparison on Different Target Models. According to the results in
Tab. 3, our ICTA demonstrates a significant performance improvement on dif-
ferent target models compared to the GANs-based approaches [9,27,35,37] and
the diffusion-based method [21]. Specifically, ICTA achieves the most superior
performance in target attacks, especially on TinyImageNet. Additionally, ICTA
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Table 3: Comparison on different target models. We choose PGD as the default white-
box adversarial sample generation scheme. The best results are marked as bolded.

Dataset CIFAR10 CIFAR100 TinyImageNet
Target Model VGG16 ResNet34 GoogleNet MobileNet ResNet50 ResNet50 VGG19

N
on

-T
ar

ge
t

GANs

MAZE [9] 47.49 68.94 27.13 51.73 43.07 15.54 11.10
DaST [37] 53.29 64.22 26.48 57.94 47.40 16.11 9.81
DST [27] 55.15 71.26 38.64 65.85 59.46 32.51 33.52

Zhang et al . [35] 95.84 97.54 67.24 97.78 91.18 78.82 65.01

Diffusion LCA [21] 97.01 97.30 94.82 97.01 96.49 67.56 70.58
ICTA (Ours) 96.48 99.19 97.32 99.63 99.25 94.80 93.39

T
ar

ge
t GANs

MAZE [9] 11.39 16.65 12.98 11.03 10.01 3.18 2.54
DaST [37] 15.39 18.61 5.31 9.58 11.41 2.21 5.20
DST [27] 17.07 19.33 18.89 18.46 24.65 8.55 5.87

Zhang et al . [35] 57.47 64.05 39.83 44.11 54.78 20.01 15.01

Diffusion LCA [21] 75.39 79.98 78.18 51.61 51.50 12.45 15.45
ICTA (Ours) 79.57 91.40 84.57 70.56 74.49 43.02 33.41

Table 4: Comparison of attack success rate in label-based and probability-based sce-
narios. The best results are marked as bolded.

method Probability-based Label-based
cifar10 cifar100 cifar10 cifar100

N
on

-T
ar

ge
t

GANs
DaST [37] 64.22 47.40 67.72 36.57
DST [27] 71.26 59.46 80.42 48.50

Zhang et al . [35] 97.54 91.18 98.98 90.20

Diffusion LCA [21] 97.30 96.49 98.48 94.55
ICTA (Ours) 99.19 99.25 99.49 98.53

T
ar

ge
t GANs

DaST [37] 18.61 11.41 19.28 5.20
DST [27] 19.33 24.65 23.85 4.59

Zhang et al . [35] 64.05 54.78 69.25 40.17

Diffusion LCA [21] 79.98 51.50 82.18 49.85
ICTA (Ours) 91.40 74.49 93.10 61.71

consistently enhances performance across different target models, showcasing the
stability of the performance in various scenarios. In summary, our ICTA is able
to simulate different target models in black-box attack scenarios and exhibits
substantial performance improvements on large-scale datasets.

Comparison in Probability-based and Label-based Scenarios. We com-
pare the attack success rate in the probability-based and label-based scenarios, as
displayed in Tab. 4. In the label-based scenario, only the output labels of the tar-
get model are accessible, while in the probability-based scenario, both the labels
and probabilities of the target model are available. The experiment results indi-
cate that our ICTA achieves the optimal performance in both probability-based
and label-based scenarios and shows significant improvement over the existing
substitute attack methods [21, 27, 35,37]. This highlights the comprehensive su-
periority of our ICTA, demonstrating outstanding attack performance even in
scenarios where only label outputs are accessible.
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(a) Attack success rate (b) Accuracy of substitute model

Fig. 4: Comparison of attack success rate and accuracy in full-data scenario. Compar-
ison schemes include the substitute training schemes DST [27] and Zhang et al . [35]
as well as a distillation method DIST [8]. The ResNet50 on CIFAR100 is used as the
target model.

4.3 Comparative Experiments in Full-data Scenario

Performance of Different Substitute Training Strategies. In Fig. 4, we
present the attack success rate (both target and non-target attacks) and the
accuracy of the substitute training during the training process. It can be observed
that our ICTA demonstrates excellent performance in both target and non-
target attacks and shows higher efficiency in target attacks. There is a significant
improvement in non-target attacks compared to conventional methods DST [27]
and Zhang et al . [35], which highlights the unique advantages of our ICTA
in improving the effectiveness of target attacks. In addition, we compare an
excellent knowledge distillation scheme, DIST [8], which also shows the superior
performance of our ICTA in attack scenarios.

Notably, we find that the accuracy of the substitute model does not fully
reflect the effectiveness of the substitute training. Despite having a relatively
low accuracy in our ICTA, the substitute model exhibits excellent performance
in attacks. This indicates that our ICTA better simulates the target model in
terms of inter-class topology, rather than just replicating its outputs.

Comparison of Relative Performance with White-box Attacks. We fur-
ther compare the attack success rate of our ICTA with the corresponding white-
box attacks, as demonstrated in Tab. 5, where the Relative Performance (RP) is
used as a metric to measure the performance relative to the white-box attacks.
Our ICTA achieves comparable performance to the corresponding white-box at-
tacks in non-target attack, when the query budgets is set to 2M (for CIFAR10)
and 3M (for CIFAR100 and TinyImageNet). Moreover, it is worth noting that
the target attack success rate exceeds 83% on the CIFAR10 dataset, 67% on the
CIFAR100 dataset, and 44% on the TinyImageNet dataset compared to the cor-
responding white-box attack. As can be seen, the proposed ICTA achieves quite
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Table 5: Comparison with direct white-box attacks on target model. We utilize Rela-
tive Performance (RP) to evaluate the attack success of our black-box attack method
relative to the white-box attack (in red).

ResNet34 Vgg16 GoogleNet ShuffleNetV2
white-box Ours RP white-box Ours RP white-box Ours RP white-box Ours RP

C
IF

A
R

10 N
on

-
T
ar

ge
t FGSM 78.54 83.42 1.06 85.59 79.46 0.93 63.84 77.73 1.22 84.97 83.97 0.99

BIM 100.00 99.59 1.00 100.00 97.26 0.97 99.93 97.61 0.98 100.00 98.86 0.99
PGD 100.00 99.79 1.00 100.00 98.08 0.98 100.00 98.26 0.98 100.00 99.20 0.99

T
ar

ge
t FGSM 28.79 34.69 1.20 19.66 30.25 1.54 24.55 26.99 1.10 32.93 31.78 0.97

BIM 99.84 94.58 0.95 84.81 81.19 0.96 99.55 82.58 0.83 100.00 86.01 0.86
PGD 100.00 96.63 0.97 98.21 85.67 0.87 99.97 86.29 0.86 100.00 89.03 0.89

ResNet50 WideResNet MobileNetV2 ResNeXt50

C
IF

A
R

10
0

N
on

-
T
ar

ge
t FGSM 84.77 86.76 1.02 74.27 83.40 1.12 90.18 88.20 0.98 87.24 87.51 1.00

BIM 100.00 99.22 0.99 98.11 96.83 0.99 99.98 99.09 0.99 99.98 99.16 0.99
PGD 100.00 99.50 0.99 99.57 97.54 0.98 100.00 99.46 0.99 100.00 99.47 0.99

T
ar

ge
t FGSM 3.05 8.52 2.79 3.87 9.42 2.43 4.39 7.35 1.67 3.83 8.79 2.30

BIM 95.22 72.79 0.76 89.44 65.90 0.74 96.30 64.79 0.67 97.06 73.29 0.76
PGD 99.25 79.34 0.80 98.38 73.22 0.74 99.66 70.33 0.71 99.70 80.15 0.80

ResNet50 Vgg19 MobileNetV2 ResNeXt50

T
in

yI
m

ag
eN

et
N

on
-

T
ar

ge
t FGSM 95.82 86.07 0.90 92.82 86.74 0.93 98.42 88.00 0.89 96.62 83.65 0.87

BIM 99.97 96.26 0.96 99.64 95.94 0.96 100.00 97.21 0.97 99.98 94.78 0.95
PGD 99.98 96.96 0.97 99.91 96.56 0.97 100.00 97.78 0.98 99.98 95.86 0.96

T
ar

ge
t FGSM 10.25 10.04 0.98 4.79 7.99 1.67 15.71 8.74 0.56 13.18 8.68 0.66

BIM 98.96 52.30 0.53 85.66 39.31 0.46 99.72 45.92 0.46 99.53 43.56 0.44
PGD 99.74 57.85 0.58 97.81 46.31 0.47 99.92 51.18 0.51 99.96 50.30 0.50

satisfactory performance in black-box attack scenarios, demonstrating robust
adaptability in target attacks across different datasets.

4.4 Analysis of Decision Boundary Similarity
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(d) DST(c) Zhang et al.

Fig. 5: The t-SNE visualization of the decision space
for (a) the target model, (b) our ICTA, (c) Zhang
et al . [35] and (d) DST [27].

The t-SNE Visualization
of Decision Space. We
exhibit the t-Distributed Stochas-
tic Neighbor Embedding (t-
SNE) visualization of the de-
cision space of the models, as
exhibited in Fig. 5. In t-SNE
visualization, each data point
is typically labeled with its
corresponding class. There-
fore, it can depict the inter-
class relative position in the
decision space, as well as the
inter-class topology. The visu-
alization illustrates that the
inter-class topology in the de-
cision space of the substitute
model trained by our ICTA
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(a) Attack success rate (b) Accuracy of substitute model

Fig. 6: Ablation experiments on PES. The experiments include baseline (no relative
position loss) and strategies for exploring inter-class relative position through tradi-
tional adversarial samples, clean samples, and position exploration sample.

method is remarkably similar to the topology of the target model. On the con-
trary, both the output alignment-focused DST [27] and the decision boundary-
constrained approach by Zhang et al . [35] exhibit greater differences from the
target model in t-SNE visualization. This confirms that our ICTA is more effec-
tive in aligning the substitute model to match the target model.

Table 6: Quantitative analysis of decision
boundary similarity.

Method ICTA (Ours) Zhang et al . DST
CIFAR10 0.93 0.87 0.80
CIFAR100 0.88 0.77 0.71

TinyImageNet 0.82 0.57 0.55

Quantitative Analysis. We ex-
plore random directions of arbitrary
samples, and then quantitatively as-
sess the Decision Boundary Similar-
ity (DBS) based on the overlap be-
tween target and substitute models.
As in Tab. 6, our ICTA has more con-
sistent decision boundaries with the
target model.

4.5 Ablation Study

Ablation on Position Exploration Sample. In this paper, we design PES
to explore the inter-class relative position in the decision space through their
relative position relationships with respect to the original clean samples. How-
ever, as the position of any two samples in the decision space inherently depict
the inter-class relative position, traditional adversarial sample or even a clean
sample has the effect of exploring the decision space. In this section, we validate
the effectiveness of PES by comparing it with traditional adversarial sample
generated by BIM and clean sample, as illustrated in Fig. 6.

It is worth noting that while all three approaches contribute to explore the
inter-class relative position in the decision space, PES stands out as particularly
advantageous. This is due to the fact that both clean samples and the adversarial
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Table 7: Ablation comparison of the loss function and the distance metric. We select
two distance metrics, MSE and DIST [8], and use different combinations of distance
metrics in the loss function. The best result are marked as bolded, and the sub-optimal
results are marked as underlined.

Dkd Drp Target Non-Target
MSE DIST MSE DIST FGSM BIM PGD FGSM BIM PGD
✓ 4.31 42.14 46.14 79.48 95.37 96.38

✓ 4.11 55.52 57.67 82.85 98.30 98.80
✓ ✓ 7.64 64.20 71.70 84.35 98.43 99.06

✓ ✓ 7.82 73.42 79.09 86.73 99.04 99.61
✓ ✓ 8.52 72.79 79.34 86.76 99.22 99.50

samples generated by BIM are closer to the decision center, resulting in limited
exploration in the decision space. In contrast, the proposed PES is more diverse
by employing the full-gradient and unconstrained setting, enabling exploration
across a wider range of the decision space. The ablation experiments for the
parameters of PES and the number of PES are provided in the supplement.

Ablation on Loss and Metrics. We conduct an ablation study on the loss
functions and distance metrics of substitute training in Tab. 7, focusing on the
distillation loss LKD and relative position loss LRP . Here, the term ‘DIST’ refers
to the distance metric function in the distillation scheme DIST [8]. It can be
seen that when DIST [8] is used as the distance metric in LKD, there is a
certain improvement in the attack success rate. And when LRP is added, there
is a significant improvement in the attack success rate, which underscores the
indispensability of the relative position loss. Notably, our ICTA employs DIST
as the distance metric in both losses, as it further improves attack performance.

5 Conclusion

In this paper, we propose a novel ICTA scheme to better align the substitute
model to the target model for efficient black-box substitute attacks. Compared
to the existing schemes that only align intra-class consistency, we simulate the
target model in the decision space more comprehensively through inter-class
topology alignment. Specifically, we first explore the inter-class relative position
of the target model in the decision space by the designed PES. Subsequently,
we achieve inter-class topology alignment of the two models by constraining
the inter-class relative position of the substitute model in different directions.
Benefiting from the better alignment of the two models in the decision space,
the adversarial samples generated by the substitute model are more successful in
misleading the target model to classify them into the target class. Experimental
results demonstrate the effectiveness of ICTA, which achieves better simulation
of the target model and significantly improves the attack success rate beyond
existing substitute attack approaches.
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