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1 Pre-processing

1.1 Vector Map Decomposition and Sampling

Following MapTR and MapTR-V2, to enhance the parallelization capacity of
the model, each instance is evenly re-sampled with fixed-length points as li =
(v1, ..., vj , ..., vnp

). li is ordered from v1 to vnp
, with np being the number of

sampled points for each instance. For polygon instances, v1 is equal to vnp
. The

pre-processing module is visualized in Figure 1.

1.2 Inner-instance Correlation

Unlike conventional object detection tasks, where objects can be approximated
as independent and identically distributed (i.i.d.), strong correlations exist be-
tween points within the same line instance in the vectorized HD map detection
task. The point correlation is visualized in Figure 2.

2 Experiment

2.1 Experiment settings

In this paper, we employ a learning rate of 6 × 10−4 and a weight decay rate
of 0.01. The experiments involve 100 instance queries (NI = 100) and 20 point
queries (np = 20), conducted using eight NVIDIA GeForce RTX 3090 GPUs,
each equipped with 24GB of memory. For the ResNet backbones, we set the
batch size to 4.

In our comparison experiments, we keep parameter settings of all methods
exactly the same for fair comparison, such as batch size, network layers, number
of input queries, input data resolution, etc.

2.2 Road elements

InsMapper detects four types of road elements essential for vectorized HD maps:
road boundaries (polyline), lane splits (polyline), pedestrian crossings (polygon),
and lane centerlines (polyline with topology). It should be noted that most past
works either detect three types of road elements (i.e., road boundaries, lane
⋆ Corresponding author.
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G G∗ = {l1, l2, l3}

l1 l1 = (v1, v2, v3, v4)

l3 l2Graph
decomposition Re-sampling

Fig. 1: Pre-processing of the vector map. Pink lines
represent edges, orange points indicate vertices, and
the blue point is the intersection vertex with a de-
gree greater than two. The intersection is removed
to simplify the graph, and each obtained instance is
then evenly re-sampled into np vertices (np = 4 in
this example).

l1

l2

Fig. 2: Visualization of
inner-instance correlations.
Green lines represent the
inner-instance correlation
between the blue point of
an instance and other points
within the same instance.

splits and pedestrian crossings) [8–10] or only detect one road element (e.g.,
lane centerlines) [1, 14].

Currently, the detected HD map is an undirected graph to unify all elements.
If directed vectorized HD maps are required for specific applications (e.g., cen-
terlines need directions), InsMapper can be easily adapted by employing directed
ground truth HD maps as labels to train the network.

2.3 Topology Evaluation metric

To provide a comprehensive evaluation, we report a topology-level evaluation
score in this paper, namely the TOPO metric score [3–5, 12–15]. The TOPO
metric has been used in several previous studies [3–5] to evaluate the correctness
of lane and road-network graph topology. The TOPO metric first randomly
samples vertices v∗i from the ground truth graph G∗. It then finds corresponding
matched vertices v̂i in the predicted graph Ĝ based on the closest distance.
Using v∗i as a seed node, TOPO calculates a sub-graph G∗

v∗
i
, where the distance

between all vertices and v∗i is smaller than a predetermined threshold. Similarly,
we obtain the sub-graph Ĝv̂i by taking v̂i as the seed node. Finally, we measure
the graph similarity of the two sub-graphs using precision, recall, and F1-score.
The TOPO metric is the mean similarity F1-score of all sampled vertex pairs
(v∗i , v̂i).

3 Inner-instance feature aggregation

3.1 Ratio of random blocking

There is an ϵ possibility that the attention between inner-instance points is
blocked (set to one, blocked). This blocking operation is inspired by [2] to en-
hance the robustness of the proposed module. ϵ controls the ratio of blocked
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(a) Raw decoder
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(b) InsMapper
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(c) Variant 1
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(d) Variant 2
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(e) Variant 3
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(f) Variant 4
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(g) Variant 5

Fig. 3: Different transformer decoder designs. (a) Raw decoder of the deformable
DETR. (b) InsMapper decoder. The proposed inner-instance self-attention module
(blue) is incorporated. (c) Decoder variant 1. We replace the inner-instance self-
attention module with a vanilla self-attention module. (d) Decoder variant 2. The
self-attention module is removed from the InsMapper decoder. (e) Decoder variant
3. Swap the inner-instance self-attention module with the cross-attention module of
the variant 2. (f) Variant 4. Place the inner-instance self-attention module before the
cross-attention module. (g) Variant 5. Place the inner-instance self-attention module
before the self-attention module. InsMapper decoder is the best design. Changing the
structure of the proposed decoder will degrade the final performance.

attention masks. This concept is similar to dropout for better performance.
However, dropout is applied after the softmax on the whole attention mask,
while the blocking operation is before the softmax and it is operated only on the
inner-instance attention mask. Experimental results with different ϵ values are
shown in Table 1.

3.2 Transformer Decoder Architectures

The transformer decoder of InsMapper may have multiple variants, which are
visualized in Figure 3. There might be multiple kinds of attention layers and
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Table 1: Quantitative results of ablation studies about the mask ratio.

ϵ APped APdiv APbound APcenter mAP TOPO

0 (No masked attn) 42.48 50.66 53.22 41.54 46.98 51.49
25% (InsMapper) 44.36 53.36 52.77 42.35 48.31 51.58
50% 43.67 52.57 53.98 42.95 48.17 51.59
80% 42.27 52.49 53.64 41.34 47.41 49.20

Table 2: Quantitative results of ablation studies about transformer decoder designs.

Position APped APdiv APbound APcenter mAP TOPO

Raw Decoder 39.41 50.04 52.13 40.10 45.42 49.19
Variant 1 40.50 50.78 52.17 41.46 46.23 49.51
Variant 2 40.96 47.85 51.11 40.45 45.09 47.98
Variant 3 40.92 46.40 51.94 38.91 44.54 46.90
Variant 4 39.09 50.09 51.56 40.21 45.24 48.16
Variant 5 44.04 49.59 52.18 41.78 46.90 49.52
InsMapper 44.36 53.36 52.77 42.35 48.31 51.58

their positions can be altered. The evaluation results are reported in Table 2.
Based on the results, the transformer decoder of InsMapper has the optimal
design among these variants.

4 Instance-level class prediction
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Embedding after 
decoder

mean Class head Predicted class of 
instance 1

Concat Class head Predicted class of 
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Fig. 4: Class head designs. MapTR lever-
ages the mean of points for aggregation (up-
per). While InsMapper uses concatenation
(lower).

Although each instance contains np

points, it should only have one
predicted class for consistency. In
MapTR, after obtaining point embed-
dings from the transformer decoder,
it calculates a new instance-level em-
bedding by taking the mean of all
points in an instance. Then, the mean
embedding is sent to the class head
for class prediction. Differently, in In-
sMapper, we propose to use concate-
nation for class prediction, which pre-
serves more information on points. Two class prediction methods are visualized
in Figure 4. Experiment results are reported in Table 3. From the results, it is
noted that concatenation achieves a slight performance gain. Thus, the concate-
nation method is used for class prediction in InsMapper.
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Table 3: Quantitative results of ablation studies on the class head design.

Aggregation Method APped APdiv APbound APcenter mAP TOPO

Mean 42.31 53.22 53.70 43.16 48.10 51.19
Concatenation (InsMapper) 44.36 53.36 52.77 42.35 48.31 51.58

5 Abandoned Designs

In our experiments, some designs are proved not effective for performance en-
hancement in our task. But we report them here which could be helpful for
afterwards research.

5.1 Denosing DETR

In conventional object detection tasks, the denoising operation has been proven
to effectively accelerate convergence and enhance overall performance [6, 7, 16].
However, this operation requires queries to be independent and identically dis-
tributed (i.i.d.). If this condition is not met, simply adding random noise to
queries may not yield superior results. In our task, due to the strong corre-
lation among inner-instance points, the denoising operation does not improve
the vectorized HD map detection results. We report the outcomes of applying
Dn-DETR in Table 4.

Table 4: Quantitative results of ablation studies about denoising DETR. For all met-
rics, a larger value indicates better performance.

Method APped APdiv APbound APcenter mAP TOPO

InsMapper-Dn-DETR 43.74 51.34 54.48 42.33 47.97 50.37
InsMapper 44.36 53.36 52.77 42.35 48.31 51.58

In our experiments, we initially add random instance-level noise equally to all
points within the same instance. Subsequently, we introduce random point-level
noise to each point. Despite these modifications, we observe neither a significant
improvement nor faster convergence. We attribute this unsatisfactory perfor-
mance to the correlation between points.

5.2 Dynamic query generation

Another method to improve DETR in the query generation phase is dynamic
query generation [2, 11, 16]. Unlike static query generation, where all queries
are randomly initialized, dynamic queries are predicted based on the features
obtained by the transformer encoder. In other words, the output of the trans-
former encoder can be utilized to generate queries with better initialization.

After obtaining the transformer encoder output F , we create grids to parti-
tion F . Each grid Fx,y contains the local information of the input image around
coordinate (x, y). Then, each grid is used to predict a dynamic query, represented
as a 4-D bounding box. In conventional detection tasks, objects are typically not
very large, so each grid can make satisfactory predictions of dynamic queries.
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However, in our vectorized HD map detection task, target objects are often very
thin and very long, which cannot be effectively predicted by local grids. Conse-
quently, dynamic queries do not yield improvements. We present the results on
dynamic query generation in Table 5.

Table 5: Quantitative results of ablation studies about dynamic queries.

Method APped APdiv APbound APcenter mAP TOPO

InsMapper with dynamic query 43.14 48.86 52.17 38.65 45.71 43.83
InsMapper 44.36 53.36 52.77 42.35 48.31 51.58

5.3 Inter-instance self-attention

We also attempted to exploit the inter-instance information to further enhance
the vectorized HD map detection results. The inter-instance self-attention mod-
ule is incorporated into the decoder layers, similar to the inner-instance self-
attention module, as shown in Figure 5. First, we predict the adjacency matrix,
representing the connectivity of the predicted HD map. Some lane centerline
instances may intersect with each other. Adjacent instances are illustrated by
colored grids. Then, for adjacent instances, the corresponding attention mask
grids are set to zero (attention is allowed). Otherwise, the attention is blocked.
In this way, the information exchange between points in adjacent instances is
allowed to better leverage the point correlations. However, this design signifi-
cantly increases resource consumption while not noticeably improving the final
results. The experiment results are shown in Table 6.

We believe the reason is the sparsity of the adjacency matrix. Under most
circumstances, only a few instances intersect with each other, so the adjacency
matrix is very sparse, providing limited additional inter-instance information.
Furthermore, it may affect the inner-instance self-attention module, which is the
main reason for the performance gains of InsMapper.

Therefore, at this stage, inter-instance self-attention is not used in InsMap-
per. But this could be an interesting topic for future exploration.
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Table 6: Quantitative results of ablation studies about inter-instance self-attention.

Inter-instance Self-attn APped APdiv APbound APcenter mAP TOPO FPS

Yes 42.40 53.21 54.03 43.03 48.17 52.63 6.3
No (InsMapper) 44.36 53.36 52.77 42.35 48.31 51.58 7.7

Multi-Head 
Self-attention

Multi-Head 
Cross-attention

6×
D
ec
od
er
La
ye
r

Attention mask

Ins1 Ins2 Ins3 Ins4

Inner-Instance
Multi-Head Self-

attention

Feed Forward 
Network (FFN)

Inter-Instance
Multi-Head Self-

attention

Adjacency matrix

Fig. 5: Decoder of InsMapper with inter-instance self-attention module. In this mod-
ule (the pink one), the attention between points of non-adjacent instances is blocked
(grey grids). The attention is allowed for points of adjacent instances (pink grids), and
diagonal grids (blue grids) to maintain the ego information of each point.

6 Additional qualitative visualizations

Qualitative visualizations on the Nuscenes validation set are shown in Figure
6 to Figure 9. The predicted map contains four classes, i.e., road boundaries
(green), lane splits (red), pedestrian crossing (blue), and lane centerlines (pink).
We visualize the vectorized HD map of the previous SOTA method MapTR,
our proposed InsMapper, and the ground truth label. Models are trained with
ResNet50 by 24 epochs.
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Fig. 6: Qualitative visualization. Left three columns are input 6 RGB camera images.
For map columns, the first column presents MapTR’s results, the second column fea-
tures InsMapper’s outcomes, and the final column depicts the ground truth map. The
predicted map contains four classes, i.e., road boundaries (green), lane splits (red),
pedestrian crossing (blue), and lane centerlines (pink).



10 Zhenhua Xu. et al.

Fig. 7: Qualitative visualization. Left three columns are input 6 RGB camera images.
For map columns, the first column presents MapTR’s results, the second column fea-
tures InsMapper’s outcomes, and the final column depicts the ground truth map. The
predicted map contains four classes, i.e., road boundaries (green), lane splits (red),
pedestrian crossing (blue), and lane centerlines (pink).
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Fig. 8: Qualitative visualization. Left three columns are input 6 RGB camera images.
For map columns, the first column presents MapTR’s results, the second column fea-
tures InsMapper’s outcomes, and the final column depicts the ground truth map. The
predicted map contains four classes, i.e., road boundaries (green), lane splits (red),
pedestrian crossing (blue), and lane centerlines (pink).
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Fig. 9: Qualitative visualization. Left three columns are input 6 RGB camera images.
For map columns, the first column presents MapTR’s results, the second column fea-
tures InsMapper’s outcomes, and the final column depicts the ground truth map. The
predicted map contains four classes, i.e., road boundaries (green), lane splits (red),
pedestrian crossing (blue), and lane centerlines (pink).
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