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Appendix

This appendix includes additional experimental analyses of our proposed method,
comparing it with state-of-the-art self-supervised learning (SSL) methods and
experimental results with detailed setups. We first provide the attention map
visualizations in §A; we then provide 1) another applicability of our proposed
method to SimMIM, 2) ablation studies, and 3) our implementation details,
including hyper-parameters in §B.

A On Distinctiveness of Attention Map

In this section, we qualitatively show the improved discriminative power of our
model compared with other SSL methods [1–3, 8] and LUT through attention
map visualization by visualizing all the multi-heads of the last self-attention
block using sample cases. We visualize the attention maps of the entire heads
of the last self-attention according to the given query patches. We compare
the diverse methods to investigate the distinctive trends. Fig. A and Fig. B
showcase when the input queries are from the background of the images, As
shown in Fig. A, models pre-trained with DINO [2] highlight foreground regions
despite the background query, which reveals DINO broadly aggregates repre-
sentations across the image, losing discriminative power. Moreover, iBOT also
suffers from the correlation between the representations of foreground and back-
ground patches, as observed in Fig. Ab and Fig. Bb. data2vec shows precise
local discriminatibility in Fig. Ac, but indiscriminatively highlights attention in
Fig. Bc. While MAE does not confuse foreground and background representa-
tions in Fig. Ad, MAE suffers another confusion in Fig. Bd, which may stem
from lack of broader contexts. Besides, LUT shows enhanced discriminability
between foreground and background patches in both cases.

B Experiments (cont’d)

This section presents continued experiments that further investigate the superi-
ority and applicability of our method. We show another application of broader
⋆ Equal contribution
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(a) DINO (b) iBOT (c) data2vec (d) MAE (e) Ours

Fig.A: Attention visualization for all multi-heads of the last self-attention block.
Given a sample and a query (left top on Fig A.3(a)), We visualize the attention maps
of the models (with ImageNet-1K accuracies) pre-trained by DINO [2], iBOT [8],
data2vec [1], MAE [3], and LUT. Each row presents the corresponding attention map
of each head. White circles in the attention maps emphasize the highlighted foreground
regions despite the background query. We use the ViT-B/16 architecture and a reso-
lution of 224×224. We borrowed a sample image from n2099601 ImageNet-1K class.
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(a) DINO (b) iBOT (c) data2vec (d) MAE (e) Ours

Fig. B: Attention visualization for all multi-heads of the last self-attention block.
Given a sample and a query (left top on Fig A.3(a)), We visualize the attention maps
of the models (with ImageNet-1K accuracies) pre-trained by DINO [2], iBOT [8],
data2vec [1], MAE [3], and LUT. Each row presents the corresponding attention map
of each head. White circles in the attention maps emphasize the highlighted foreground
regions despite the background query. We use the ViT-B/16 architecture and a reso-
lution of 224×224. We borrowed a sample image from n2422699 ImageNet-1K class.
The grid pattern in (c) is presumably induced by the interpolation of the relative pose
bias.
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Table A: Impact of broader contextualization in SimMIM. To verify the ver-
satility of our method to other methods, we apply the proposed broader contextual-
ized supervision to training SimMIM. All models are pre-trained and fine-tuned on
ImageNet-1K. We employ ViT-B/16 trained with the image resolution of 224×224 and
the identical weighting parameter of 0.25 for our context supervision loss (i.e., LBC).

Method Pre-training epochs Accuracy (%)

SimMIM 100 81.6
LUT (SimMIM) 100 81.8

Table B: Loss balancing study. We study the balance A weight between global
guidance and MIM loss. All the studies report fine-tuning and linear probing accuracies
for each configuration which are pre-trained with ViT-B/16. All the backbones are pre-
trained for 400 epochs. We mark the default settings for the study in gray .

Case Fine-tuning (%) Linear probing (%)

0.1 83.2 70.7
0.25 83.5 67.9
0.5 83.4 70.1
1.0 82.9 63.6

context supervision in masked image modeling beyond MAE. We finally share
our experimental regimes for the ImageNet-1k fine-tuning and semantic segmen-
tation experiments on ADE20K.

B.1 Further Applicability of Our Method

We showcase another use case of our method with another baseline. We choose
a representative masked image modeling SimMIM [6]. We aim to reveal that our
solution is also compatible with other masked image modeling methods that do
not drop mask tokens in the encoder, such as SimMIM [6].

We pre-train the models with SimMIM, which is the baseline, and SimMIM
with our method on ImageNet-1K [4] for 100 epochs and fine-tuned following
the fine-turning recipe of SimMIM [6]. We primitively replace the masked im-
age modeling part of our framework for MAE with SimMIM and employ the
framework for training. As shown in Table A, our method improves SimMIM by
0.2%p despite short pre-training epochs, which shows the potential applicability
of our method on MIMs.

B.2 Balancing LBC

To give a maximal impact through broader context supervision loss, we study
an appropriate α in Eq. (3), and Table B shows that a loss weight of 0.25 works
best, and our method’s effectiveness remains up to 0.5. Moreover, though the



Learning with Unmasked Tokens Drives Stronger Vision Learners 5

Table C: Training with the Broader Contextualization loss (i.e., LBC) only.
All the models are pre-trained for 100 epochs on ImageNet-1K. Fine-tuned results on
ImageNet-1K are reported.

Method Fine-tuning (%)

Baseline 82.1
LBC only 82.0 (−0.1%p)

LUT 82.6 (+0.5%p)

highly tilted loss weights brought relatively degraded performance, these models
work better than a model pre-trained by MAE.

B.3 How does training proceed when only using LBC?

To further investigate its impact, we exclusively train with broader contextu-
alization loss. We pre-train and fine-tune a ViT-B/16 on ImageNet-1K [4]. As
shown in Table C, while the model pre-trained with LBC results in on par ac-
curacy to the baseline, which suggests a broad context decent supervision to
the trainable encoder. However, it decreases the accuracy 0.6%p from LUTs,
demonstrating that the combination with the MIM loss learns more discrimina-
tive representations.

Table D: Hyper-parameter configurations for end-to-end fine-tuning on
ImageNet-1K. All the numbers are for fine-tuning with the ImageNet-1k pre-trained
backbone to the ImageNet-1K classification.

Config Value

Optimizer AdamW
Base learning rate 5e-4 (S), 2.5e-4 (B), 1e-3 (L)
Weight decay 0.05
Optimizer momentum β1, β2 = 0.9, 0.999
Layer-wise learning rate decay 0.75 (S), 0.65 (B, L)
Batch size 1024
Learning rate schedule Cosine decay
Warmup epochs 5
Training epochs 300 (S), 100 (B), 50 (L)
Resolution 224× 224
Augmentation RandAug (9, 0.5)
Label smoothing 0.1
Mixup 0.8
Cutmix 1.0
Drop path 0.1
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Table E: Hyper-parameter configurations for the ADE20K finetuning. All
the numbers are for transfer learning with the ImageNet-1K pre-trained backbone to
the ADE20K semantic segmentation.

Config Value

Optimizer AdamW
Learning rate 1e-4
Weight decay 0.05
Optimizer momentum β1, β2 = 0.9, 0.999
Layer-wise learning rate decay 0.65
Batch size 16
Learning rate schedule Polynomial
Warmup iterations 1500
Training epochs 160k
Resolution 512× 512
Drop path 0.1

B.4 Additional Implementation Details

Fine-tuning setup for ImageNet-1K classification. We list the detailed
hyper-parameters for fine-tuning on ImageNet-1K [4] in Table D. Specifically,
we use the AdamW optimizer and a weight decay 0.05 with a batch size of 1024.
We used a layer-wise learning rate decay of 0.75 for ViT-S/16 and 0.65 for ViT-
B/16 and ViT-L/16. We fine-tune ViT-S/16, ViT-B/16, and ViT-L/16 for 300,
100, and 50 epochs, respectively.

Detailed setup for ADE20K semantic segmentation. We provide the de-
tailed hyper-parameters for transfer learning to the semantic segmentation task
on ADE20K [7] in Table E. We fine-tune UperNet [5] initialized with our pre-
trained model for 160k iterations with a batch size of 16. Note that we do not
employ multi-scale training.
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