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S1 Experiment

S1.1 Experiment on Salient Object Detection

Data and Experimental Settings. In order to evaluate the transferability of
our DSTC to other visual tasks, we have conducted experiments on a hyper-
spectral salient object detection dataset, HS-SOD [2]. This dataset comprises 60
hyperspectral images, each spanning a spectral range from 380 to 780 nm, at 5
nm intervals, and featuring a spatial resolution of 768×1024 pixels. We partition
the HS-SOD dataset manually into training and testing subsets, allocating 48
HSIs for training and the remaining 12 for testing. During the training phase,
we set the initial learning rate to 1× 10−3 and extend the training duration to
150 epochs. We select ResNet18 as the backbone network.
Compared Methods. We benchmark our model against several established
models, including Itti’s model [3] and conventional hyperspectral salient object
detection (HSOD) methods proposed by Liang et al . [5]. These conventional
methods encompass spectral angle distance (SAD), spectral Euclidean distance
(SED), and spectral grouping (SG). Additionally, we included comparisons with
deep learning-based HSOD method SUDF [1], as well as RGB SOD methods like
EDN [7], TRACER [4], and ABiU_Net [6].

The performance of the above models is evaluated using several metrics,
namely Mean Absolute Error (M), E-measure (Eξ), F-measure (Fβ), Area Under
Curve (AUC), and Cross-Correlation (CC).
Quantitative Results. The quantitative results of our DSTC on the HS-SOD
dataset are detailed in Tab. S1, which indicates that DSTC surpasses both tra-
ditional hyperspectral salient object detection methods and contemporary deep
learning-based approaches, as well as SOD techniques, in most of the evaluated
metrics. DSTC demonstrates outstanding performance across a range of metrics,
achieving a M score of 0.094, an Eξ of 0.786, an Fβ of 0.608, and an AUC of
0.925. The only area where DSTC exhibits a slight deficit is in CC, lagging be-
hind EDN by a marginal difference of 0.035. These results underscore the robust
transferability of DSTC to the saliency detection task.
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Table S1: Quantitative Results on the HS-SOD Dataset.

Methods M ↓ Eξ ↑ Fβ ↑ AUC ↑ CC ↑

Itti [3] 0.259 0.539 0.207 0.783 0.225
SAD [5] 0.205 0.546 0.197 0.778 0.223
SED [5] 0.133 0.577 0.258 0.793 0.200
SG [5] 0.197 0.563 0.234 0.808 0.268
SUDF [1] 0.242 0.554 0.256 0.723 0.250
TRACER [4] 0.158 0.610 0.393 0.868 0.465
ABiU_Net [6] 0.119 0.620 0.391 0.846 0.472

DSTC (Ours) 0.094 0.786 0.608 0.925 0.590

False-color Ground TruthSSTN (Ours)SUDF ABiU_Net
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Fig. S1: Qualitative results on HS-SOD.
DSTC’s results closely align with the
ground truth, demonstrating the robust
transferability of DSTC.

Input HSI Local Feature Long Range Dependency Classification Result

Fig. S2: Visualization of Local Feature
and Long Range Dependency.

Qualitative Results. Fig. S1 presents the comparative performance of our
DSTC against other deep learning methods, including SUDF and ABiU_Net.
DSTC stands out for its remarkable ability to maintain edge clarity, an advantage
stemming from the incorporation of a pre-classification stage. This stage clusters
similar pixels, thereby preserving sharp edge details. The outputs generated by
DSTC align closely with the ground truth across various scenes, conclusively
demonstrating its robust transferability and effectiveness in the context of hy-
perspectral salient object detection.

S2 More Visualization on WHU-OHS Dataset

Visualization of Local Feature and Long Range Dependency. In the
DSTC framework, we initially aggregate local features through spectrum-derivative-
based pixel clustering and semantic feature aggregation. Subsequently, in the sec-
ond phase, global information is modeled using a Transformer. In this subsection,
we randomly selected one spectral supertoken for visualization. As depicted in
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Fig. S3: Full Confusion Matrices.

Figure S2, this visualization elucidates the interconnections between this spe-
cific spectral supertoken and other supertokens. It is evident that employing the
Transformer for modeling global dependencies plays a pivotal role.
Full Confusion Matrices. The complete confusion matrices are presented
in Fig. S3. For clarity, only values greater than 0.1 are displayed, which is why
the class probabilities do not sum to 1. Highlighted with red boxes, our DSTC
shows robust performance across various classes.
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Fig. S4: More qualitative results on WHU-OHS dataset.

More Qualitative Results. Additional typical scenarios are selected for fur-
ther illustration, as showcased in Fig. S4.
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S3 Method

We summarize the pseudo-code of generating class-proportion-based soft labels
as Algorithm S1.

Algorithm S1 Pytorch Pseudo Code of Generating CPSL.
# gt: ground truth image , [H, W]
# asso_mat: association matrix , [N, M]
# H, W: height and width of ground truth image
# C: number of classes
# N: number of pixels (N=H*W)
# M: number of center points

from einops import rearrange

# filtering ground truth
gt_reshape = rearrange(gt , "h w -> (h w)")
gt_filt = gt_reshape.unsqueeze (-1) * asso_mat
gt_filt = gt_filt.flatten(start_dim =3)

# calculating class probability
count = zeros ((N, C + 1))
count.scatter_add_(dim=1, index=gt_filt , src=ones_like(

gt_filt))
return rearrange(count[:, 1:], "n c -> c n")
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