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Abstract. The existing works on object-level language grounding with
3D objects mostly focus on improving performance by utilizing the off-
the-shelf pre-trained models to capture features, such as viewpoint se-
lection or geometric priors. However, they have failed to consider explor-
ing the cross-modal representation of language-vision alignment in the
cross-domain field. To answer this problem, we propose a novel method
called Domain Adaptation for Language Grounding (DA4LG) with 3D
objects. Specifically, the proposed DA4LG consists of a visual adapter
module with multi-task learning to realize vision-language alignment by
comprehensive multimodal feature representation. Experimental results
demonstrate that DA4LG competitively performs across visual and non-
visual language descriptions, independent of the completeness of observa-
tion. DA4LG achieves state-of-the-art performance in the single-view
setting and multi-view setting with the accuracy of 83.8% and 86.8%
respectively in the language grounding benchmark SNARE. The simula-
tion experiments show the well-practical and generalized performance of
DA4LG compared to the existing methods. Our project is available at
https://sites.google.com/view/da4lg.

Keywords: Visual Language Grounding · Multimodal Learning · Do-
main Adaptation

1 Introduction

Visual language grounding aims to identify the region or object within visual
content described by natural language [7,21]. It serves as an essential bridge for
current embodied agents to connect symbolic concepts with the perceptible real
world, enabling the evolution of an agent’s intelligence from perceptual to cog-
nitive decision-making [5,16]. For example, an agent could make a cup of coffee
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Fig. 1: The comparison between existing works and our model. Existing works focus on
(a) multi-view perception and (b) external prior. (c) We approach language grounding
from domain adaptation.

following a series of primitive instructions including detailed descriptions of the
target object from a Large Language Model (LLM) planner like GPT-4 [30].
Within the process, visual language grounding plays a key role in linking each
step instruction with the physically observed object [3,36]. Therefore, visual lan-
guage grounding with 3D objects is the indispensable means of enabling an agent
to interact with the real world. A limited scale of high-quality vision-language
paired data hinders the development of visual language grounding technology,
especially 3D vision language grounding. To address this problem, existing work
attempts [9,28,38,42] to use multi-view perception or external priors, which need
extra data cost and existing domain gap caused by pre-trained feature encoders
in fixed settings. In this paper, we give an exploration from a domain adaptation
perspective for the language grounding task inspired by domain adaptation in
parameter-efficient tuning of large language model [13,14,19,22,27,39,41].

As shown in Fig. 1, existing research in language grounding mainly focuses
on two lines including the multi-view perception-enhanced method (Fig. 1 (a))
and the external prior-injected method (Fig. 1 (b)). For the former, Thomason
et al. [42] and Mitra et al. [28] propose a view-based method to improve the
prediction accuracy. Thomason et al. [42] design an auxiliary task of viewpoint
angle estimation to enhance 3D object understanding. Mitra et al. [28] design
a multi-view transformer to fuse visual features and textual features in shared
space. For the latter, Corona et al. [9] propose a voxel-informed method by
using pre-trained 3D volumetric generative model LegoFormer based on the view
of 3D objects [45]. Song et al. [38] construct explicit scene-driven multimodal
knowledge graph ManipMob-MMKG to design a knowledge-enhanced method.
In all, current methods still depend heavily on viewpoints or external priors.

In the representation learning aspect, existing works usually adopt vision-
language feature encoders using freezing parameter mode pre-trained on a source
domain, which cannot work well for 3D language grounding tasks in multi-
modal alignment due to domain gap. Based on these findings, we propose a
novel multimodal domain adaptation method Domain Adaptation for Language
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Grounding named DA4LG, to improve 3D object-level understanding and mul-
timodal alignment, which does not require extra visual or textual data, as shown
in Fig. 1(c). Given the language similarity between the source domain (e.g., the
WebImageText domain, where CLIP is pre-trained [31]) and the target domain
(e.g., language grounding domain), coupled with the generalization capabili-
ties of pre-trained language models [12,20,44], DA4LG concentrates on domain
adaptation within the vision feature. Specifically, we design the pseudo-siamese
visual encoder network [17] to realize domain adaptation, in which one visual
encoder subnetwork is used to learn domain-specific 3D visual representation,
named Domain-specific Encoder, while another one is freezing to encode vi-
sual representations associated with the source domain. For training the model,
we design two auxiliary tasks with the main language grounding task (LGR) to
learn cross-modal representation. The first task is to distinguish different objects
using vision and language contrastive learning, while the second involves regen-
erating the input text from multi-modal fused features. We evaluate DA4LG
via the language grounding dataset SNARE proposed by Thomason et al. [42],
which discriminates natural language descriptions with 3D ShapeNet [6] ob-
jects. DA4LG achieves state-of-the-art (SOTA) performance in both single-view
and multi-view settings. Additionally, through simulation experiments, DA4LG
demonstrates generalization and robustness compared to existing models. Com-
pared to multi-view perception-enhanced methods such as Thomason et al. [42]
and Mitral et al. [28], our DA4LG is immune to the number of viewpoints or
the selection of viewpoints. Compared to external prior-injected methods such
as Coronal et al. [9] and Song et al. [38], our proposed method requires only
adapting the visual encoder as a cloned module with limited parameter train-
ing, without the need for external prior injection. This approach presents a clear
advantage in terms of reducing the model’s parameter size while simultaneously
enhancing its reliability.

Our main contributions can be summarized as follows:

1. We introduce a novel domain adaptation method (DA4LG) using multi-task
learning to reduce visual domain gap in vision-language aligned representa-
tion for language grounding with 3D objects.

2. DA4LG demonstrates SOTA performance, achieving 83.8% accuracy in a
single-view setting and 86.8% accuracy in a multi-view setting on the lan-
guage grounding benchmark SNARE [42].

3. We conduct the simulation 3D object grounding experiment including a
grounding environment and a test set extended from Lang-SHAPE [37] re-
ferred to as Simulation-SNARE. The results indicate that DA4LG has
an obvious advantage in the robustness and generalization of applications
compared to existing models.

2 Related Work

Language Grounding. Language grounding with 3D can be classified into
two categories: language grounding for navigation and language grounding for
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Fig. 2: The framework of DA4LG. DA4LG is comprised of Encoder Layer, Embed-
ding Reweighting Layer and Embedding Fusion Layer. Encoder Layer contains three
encoders: Language Encoder (L. Encoder), Vision Encoder, and Domain-specific En-
coder. The snowflake and fire denote the freezing and unfreezing respectively.

interaction. Language grounding for navigation focuses on training an agent
to follow a set of natural language instructions to navigate towards a target
object in an environment, as discussed by Chen et al [8]. This task is relevant to
scene understanding including object localization [1, 23, 33, 46], visual language
navigation [18,29,34,35].

Recently, research has emerged in the language grounding for interaction with
3D objects. ShapeGlot [2] investigates how linguistic expressions capture detailed
differences in the shapes of common objects based on their 3D representations.
Akula et al. [4] propose the use of neural module networks that share weights and
exploit associations between similar textual contexts, such as "dark cube on the
left" and "black cube on the left". SNARE [42] presents a challenge by requiring
the identification of referent objects that are highly similar to distractors. This
task encompasses various perspectives of objects in 3D space from ShapeNet [6],
thereby increasing the complexity of the problem in language referencing.

Current research encompasses two main approaches: the multi-view perception-
enhanced method and the external prior-injected method. The former employs
a multi-view framework with 3D objects to enhance prediction accuracy such
as MAGiC [28], LAGOR [42], among others. The latter approach integrates ex-
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ternal priors to augment task performance, including VLG [9], LOCKET [38],
among others.
Domain Adaptation. Recent research has placed particular emphasis on adap-
tors designed for domain adaptation in the natural language processing (NLP).
Hu et al. [22] propose Low-Rank Adaptation(LoRA), a novel approach involving
freezing pre-trained model weights and introducing trainable rank decomposi-
tion matrices as adapter into each layer of the Transformer architecture. Effective
adaptation strategies based on this are introduced to bridge the domain gap in
NLP tasks [13, 14, 19, 22, 27, 39, 41]. Inspired by the existing research, we incor-
porate domain adapter into multimodal tasks and explore its utility in adapting
language grounding with 3D objects, extending the application of it beyond
traditional NLP tasks.

3 Proposed Method

Domain Adaptation. Given a pre-trained network model Fs(·) on a source
task Ts (e.g., CLIP pre-trained model [31]) in the source domain Ds (e.g., the
WebImageText domain where CLIP is pre-trained on [31]), and a set of training
examples with associated labels in the target domain Dt for target task Tt (i.e.
the language grounding task). Our goal is to create an adaption strategy to
promote the performance of target predictive function Ft(·) in Dt for Tt through
leveraging the Fs(·) in Ds and Ts [10].
Task Definition. In the language grounding task with a 3D object, given a
language description l as input, our objective is to identify the best matching
object ô in a set of candidate objects O = {oi | i ∈ {1, 2}} [42]:

ô = argmax
oi∈O

p(oi|l), (1)

where p(oi|l) denotes the conditional probability of the target object given the
language description. We expect our output ô to closely align with the ground
truth o∗ as much as possible.

3.1 Domain Adaptation for Language Grounding

Overall of Network Structure. As shown in Fig. 2 (a), DA4LG comprises
three encoders: a Vision Encoder (Evision(·)), a Language Encoder (Elang(·)),
and a Domain-specific Encoder (Edomain(·)). Additionally, it includes an Embed-
ding Reweighting Layer (RW (·)) and an Embedding Fusion Layer (MLP (·)).
Therefore Eq. 1 can be rewritten as:

fv
j = Evision(vj),

fd
j = Edomain(vj),

f l = Elang(l),

Score = MLP (RW (fd
j ), f

v
j , f

l),

ô = argmax
oi∈O

Scoreoi ,

(2)
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where the object o is projected into a set of images V = {v1, ..., vj} from discrete
viewpoints. Evision and Elang are based on the pre-trained encoder in the freezing
state. We compute the Scoreoi to determine the output label ô.
Domain-specific Encoder. To reduce the domain gap between Ds and Dt,
we design a Domain Vision Transformer named Domain-specific Encoder to
encode the V, as shown in Fig. 2 (c). Domain-specific Encoder is pre-trained on
Ds (e.g., the WebImageText domain [31]). Compared to vanilla Vision Trans-
former [15], we incorporate low-rank matrices WA

∗ ,WB
∗ as domain adapters in

the Wq, Wk, Wv of multi-head attention layer MHA. Different from the adapters
employed for parameter-efficient tuning in NLP, the domain adapters in DA4LG
are designed to capture the domain-specific representation. In Domain-specific
Encoder, all other parameters are freezing except the WA

∗ ,WB
∗ while training.

vj is input into the MHA to build domain features fd
j ,

Q = Wq · vj +WA
q ·WB

q · vj ,

K = Wk · vj +WA
k ·WB

k · vj ,

V = Wv · vj +WA
v ·WB

v · vj ,

fd
j = MHA(Q,K, V ).

(3)

Embedding Reweighting Layer. As shown in Fig. 2 (b), we use RW (·) to
adjust the fd

j and reduce the impact of those features that are irrelated to f l.
Specifically, given the fd

j corresponding to the j-th view vj and the descrip-
tion f l, we compute the cosine similarity with sim(fd

j , f
l) and get the weighted

combination of domain features fd
j = fd

j · softmax(sim(fd
j , f

l)).
Embedding Fusion Layer. To enhance multimodal alignment and construct
joint features, we employ the aggregate operation agg in Embedding Fusion
Layer to build the vision features fv = agg(fv

j ) and domain features fd =

agg(fd
j ), where agg is max-pooling. We concatenate the features f = [f l, fv, fd]

which is fed into a multi-layer perceptron MLP (·) to compute Score.

3.2 Multi-task Learning

As shown in Fig. 2 (a), the DA4LG framework incorporates three different tasks:
the Language Grounding (LGR) Task, the Vision-Language Contrastive (VLC)
Task, and the Vision Grounding Caption (VGC) Task in multi-task learning. The
LGR Task is designed as the primary task following the existing works [42]. The
VLC and VGC tasks serve as auxiliary tasks to optimize the training objectives
inspired by BLIP-2 [24].
Language Grounding Task (LGR Task). The primary task is the LGR
task, which involves predicting the target. We feed Score to predict the ground
truth label o∗ and apply the binary cross-entropy loss for optimization:

LLGR = −E[o∗log(Score) + (1− o∗)log(1− Score)]. (4)

Vision-Language Contrastive Task (VLC Task). We propose the VLC
task to learn an embedding that distinguishes samples from two different dis-
tributions. At each step, we sample some positive or negative pairs (l, o) during
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Table 1: Performance of our model and existing work on the SNARE dataset. Absence
of parentheses signifies that the original paper does not report standard deviations.
Standard deviations over five seeds are shown in parentheses (the same as below).

Model Method Validation Test

Visual Blind All Visual Blind All

ViLBERT [26] External Prior 89.5 76.6 83.1 80.2 73 76.6
CLIP [31] External Prior 83.7 65.2 74.5 80.0 61.4 70.9

MATCH [42] External Prior 89.2 (0.9) 75.2 (0.7) 82.2 (0.4) 83.9 (0.5) 68.7 (0.9) 76.5 (0.5)
LAGOR [42] Multi-view Perception 89.8 (0.4) 75.3 (0.7) 82.6 (0.4) 84.3 (0.4) 69.4 (0.5) 77.0 (0.5)

VLG [9] External Prior 91.2 (0.4) 78.4 (0.7) 84.9 (0.3) 86.0 71.7 79.0
BLIP2 [24] External Prior 51.2 50.9 51.5 - - -

LOCKET [38] External Prior 90.9 78.4 84.7 86.1 71.5 79.0
MAGiC [28] Multi-view Perception 92.1 (0.4) 81.3 (0.9) 86.8 (0.5) 87.7 75.4 81.7

DA4LG(ours) Domain Adaptation 91.8 (0.3) 81.8 (0.6) 86.8 (0.5) 88.5 75.0 81.9

training. Specifically, samples from matched pairs are termed positives, whereas
those from unmatched pairs are termed negatives. We use cosine similarity, de-
noted as s(f l, fo), to measure the alignment between the language features f l

and the object features fo, where fo = agg([fv
j , f

d
j ]). We optimize this function

to correctly select a single positive description sample l with Φ negative object
samples and calculate the contrastive loss for object description:

Lo→l
con = −E[log

s(f l, fop)

s(f l, fop) +
∑Φ

φ=1 s(f
l, fo

φ
n )

], (5)

where fop , foφn are the features of the positive and negatives sample for 3D
objects. Similarly, we can obtain the contrastive loss for the description-object
pairs:

Ll→o
con = −E[log

sj(f
lp , fo)

s(f lp , fo) +
∑Φ

φ=1 s(f
l
φ
n , fo)

]. (6)

And the VLC loss is denoted as LV LC = Ll→o
con + Lo→l

con .
Vision Grounding Caption Task (VGC Task). Given the fo and l, we
design the VGC task to generate textual descriptions based on the freezing GPT-
2 [32]. Here, l represents a sequence of tokens denoted as {ci, i = [1, ..., N ]}. Our
training objective is to predict the caption tokens conditioned on the output
token in auto-regressive. The training loss for the VGC task is formulated as:

LV GC = −E[
N∑
i=1

log p(ci|fo, c1, ..., ci−1)]. (7)

During the multi-task learning phrase, our target loss function is

L = LLGR + LV LC + LV GC . (8)

4 Experiment Design

To evaluate our proposed method, we investigate four key research questions
(RQs). The RQ1 concerns the DA4LG superior to the baselines. The RQ2
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and RQ3 focus on how to adopt DA4LG efficiently. The RQ4 concerns the
generalization of DA4LG in the downstream simulation environment.

• RQ1: What are the advantages of our DA4LG compared to other methods
for the language grounding task?
• RQ2: Which training policy in Domain-specific Encoder can obtain the
better performance with efficient parameters?
• RQ3: How do different learning tasks in DA4LG affect the language
grounding performance?
• RQ4: Can our DA4LG perform more effectively deployed in a downstream
task by a simulation environment compared to other methods?

4.1 Baseline Models

We conduct a comparative analysis between DA4LG and various public base-
lines, as summarized in Table 1. Two primary approaches are utilized in current
research: the multi-view perception-enhanced method, exemplified by MAGiC [28]
and LAGOR [42], and the external prior-injected method, represented by ViL-
BERT [26], MATCH [42], VLG [9], CLIP [31], LOCKET [38], and BLIP2 [24].
We list these baselines below:

• LAGOR adopts a multi-task learning approach by predicting the canon-
ical viewing angle for individual view images.
• MAGiC performs joint reasoning over candidate referent objects, consid-
ering each object from multiple possible perspectives.
• MATCH and ViLBERT uses CLIP-ViT and ViLBERT respectively to
encode the views of each object. An MLP is trained to assign scores based
on the encoded views and language description embedding
• CLIP uses the cosine distance in CLIP embedding between visual and
language features to pick the object in the lowest distance.
• BLIP-2 is the multimodal LLM-based method in zero-shot setting.
• VLG leverages implicit 3D prior information from predicted volumetric
voxel maps to improve language grounding performance by LegoFormer [45].
• LOCKET is a knowledge enhancement method that employs a graph
convolutional network to encode a multimodal knowledge graph.

4.2 Implementation Details

Training and Inference Details. We employ the Adam optimizer with weight
decay 5e−4. The batchsize is 64, training epoch is 60, and learning rate is 5e−3.
Experiments are implemented with CUDA 11.2 and PyTorch 1.7.1 and run on
one NVIDIA RTX4090. In DA4LG, we employ the vision and language encoders
from CLIP ViT-B/32 [31] as the Vision Encoder and Language Encoder, respec-
tively. Domain-specific Encoder is initialized from the vision encoder in CLIP
ViT-B/32.
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Benchmark Datasets. We train and evaluate our proposed method on SNARE
dataset [42] which is split into training, validation, and test sets following ex-
isting works [42]. SNARE is a benchmark for choosing the correct object with
small differences in multiple views given a language description. Each data in the
set has the label of visual or blind. The visual label means a comprehensive un-
derstanding of the object, providing relevant visual cues to guide the grounding
process (e.g., “classic armchair with white seat”). The blind labels predominantly
focus on the object’s shape and specific distinguishing attributes, intentionally
omitting color and other visual characteristics (e.g., “oval back and vertical legs”).
The training set consists of 207 categories, 6, 153 objects, and 39, 104 references.
The validation set contains 7 categories, 371 objects, and 2, 304 references. The
test set consists of 48 categories, 1, 357 objects, and 8, 751 references.

Simulation Details. We build a new simulation benchmark by sampling the
objects from the existing 3D datasets Lang-SHAPE [37] and annotating them
with the original data annotation process utilized in SNARE, which we refer to
as Simulation-SNARE. Specifically, the objects and domains in Lang-SHAPE
are identical to those in SNARE, both of which are derived from ShapeNet [6].
We follow the original data annotation process utilized in SNARE. Simulation-
SNARE consists of 327 objects and 2, 876 references, where 634 classified as
visual and 2, 242 as blind, following the configuration of SNARE. We deploy the
Simulation-SNARE into the simulation environment MuJoCo [43]. We replicate
the existing methods CLIP, ViLBERT, MATCH, VLG, and LAGOR with open-
source code, deploying these methods along with DA4LG in the simulation world.

Metric. The metric for this task is the accuracy (%) of the predictions in
correctly identifying the object referred to by the language description from two
candidate objects. We calculate the accuracy across all sets, the visual subset
and the blind subset respectively. Additionally, we assess the model’s parameter
efficiency by calculating its parameter size.

5 Result Analysis

5.1 Benchmark Comparisons

Comparisons with Existing methods. To answer RQ1, we conduct a com-
parative analysis in multi-view and single-view settings and our proposed model
DA4LG outperforms in all settings compared to baselines. In the multi-view
setting, Table 1 demonstrates that DA4LG achieves the best improvements
in validation performance compared to the External Prior methods utilizing
the same backbone CLIP ViT-B/32. Specifically, DA4LG exhibits enhancements
of 12.3% (74.5% → 86.8%), 4.6% (82.2% → 86.8%), 2.1% (84.7% → 86.8%),
and 1.9% (84.9% → 86.8%) compared to CLIP, MATCH, LOCKET, and VLG
methods, respectively. Specifically, the VLG model requires 168 million train-
ing parameters, while our method requires only less than half of the VLG
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Table 2: Performance on the model with single-view. *We obtain the reported results
from the curve [28], which is below but close to 82.0%. **The results come from our
reproduction.

Models Method Validation

Visual Blind All

CLIP [31] External Prior 79.0 63.0 71.1
MATCH [42] External Prior 88.4 (0.4) 73.3 (0.6) 80.9 (0.4)
VLG [9]⋆⋆ External Prior 89.3 (0.7) 74.1 (0.9) 81.8 (0.6)

MAGiC [28] Multi-view Perception - - 82.0⋆

DA4LG (ours) Domain Adaptation 90.1 (0.5) 77.1 (0.8) 83.8 (0.5)

model’s parameters (79.5 million). This demonstrates the superior parameter
efficiency of DA4LG. Contrary to the LOCKET model, which demands a knowl-
edge graph for extensive data, our method eliminates the necessity for such a
structure. When employing ViLBERT as the backbone, our model achieves a
3.7%(83.1% → 86.8%) improvement in validation accuracy. Furthermore, when
utilizing a multimodal LLM in a zero-shot approach, our model exhibits an in-
crease in performance exceeding 30%. The Multi-view Perception method
includes LAGOR and MAGiC. DA4LG demonstrates improvements, with a
4.2%(82.6% → 86.8%) improvement in validation compared to LAGOR. DA4LG
achieves a validation score of 86.8% on the validation set and 81.9% on the test
set, tying with the existing SOTA model MAGiC in the validation and surpassing
it by 0.2% in the test.

The performance of models in the single-view setting are shown in Ta-
ble 2. DA4LG achieves the best result among all methods, surpassing the exist-
ing SOTA model MAGiC by over 1.8%(82.0% → 83.8%) in validation. DA4LG
in the single-view setting achieves better performance than several models in the
multi-view setting. Specifically, DA4LG exhibits improvements of 9.3%(74.5% →
83.8%), 1.6%(82.2% → 83.8%), 1.2%(82.6% → 83.8%), and 0.7%(83.1% →
83.8%) over the CLIP, MATCH, LAGOR, and ViLBERT models in the multi-
view setting respectively. This study shows an aligned multimodal feature in the
single-view setting can enhance the overall performance of the model in the lan-
guage grounding task. We believe that the observed improvement in performance
can be attributed to the multimodal alignment within the target domain. In the
following subsection, we provide ablation studies and visualizations to further
demonstrate this result.

Training Policy in Domain-specific Encoder. To answer RQ2, we explore
the different training mode and the source domains in Domain-specific Encoder.
For training modes, we conduct a comparative analysis of following four scenar-
ios where the Domain-specific Encoder is initialized using the same pre-trained
parameters:

• Freezing-Param: The parameters of Domain-specific Encoder is fixed.
• Full-Param: The full parameter in the Domain-specific Encoder is train-
able.
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Table 3: Performance and training parameters across training mode in Domain-specific
Encoder. M means one million and #Param means the training parameter size (the
same as below).

Strategies Validation #Param
Visual Blind All

Freezing-Param 89.9 (0.5) 79.8 (0.4) 84.9 (0.4) 79.2M
Full-Param 86.4 (0.7) 75.0 (0.2) 80.8 (0.6) 254M

Partial-Param 89.9 (0.4) 77.7 (0.6) 83.8 (0.5) 107M
Domain-Adapter 91.8 (0.3) 81.8 (0.6) 86.8 (0.5) 79.5M

Table 4: Comparative performance of Domain-Specific Encoders initialized with mod-
els from various source domains.

Models Source Domain #Param Visual Blind All

Scratch-B - 87M 86.4 (0.7) 76.7 (0.2) 81.6 (0.6)
BLIP-B BLIP [25] 86M +2.8 (0.4) +4.8 (0.5) +3.0 (0.6)
ViT-B ImageNet21K [11] 87M +3.4 (0.5) +4.8 (0.7) +4.0 (0.4)
CLIP-B WebImageText [31] 87M +5.4 (0.3) +5.1 (0.6) +5.2 (0.5)

Scratch-L - 303M 86.9 (0.5) 74.2 (0.8) 80.6 (0.5)
BLIP-L BLIP [25] 303M +3.0 (0.8) +3.9 (0.6) +3.3 (0.5)
ViT-L ImageNet21K [11] 304M +4.3 (0.6) +3.8 (0.8) +4.1 (0.5)
CLIP-L WebImageText [31] 303M +3.8 (0.6) +5.1 (0.7) +4.4 (0.4)

• Partial-Param: Inspired by Sun et al. [40], only the last two layers of the
Domain-specific Encoder are updated during the training stage.
• Domain-Adapter: The Domain-specific Encoder is training with domain
adaptor mentioned in Section 3.1 following Low-Rank Adaptation (LoRA) [22].

As presented in Table 3, Domain-Adapter achieves the best performance
compared to other training modes, with an accuracy of 86.8% on the validation
set with the limited training parameters. The Full-Param and Partial-Param
strategies achieved performance of 80.8% and 83.8% in the validation set respec-
tively. However, they come with the drawback of increased training parameters
compared to the Freezing-Param and Domain-Adapter methods.

We select four source domains to initialize Domain-specific Encoder for RQ2.
Table 4 demonstrates that a Domain-specific Encoder pre-trained on source do-
mains exhibits better performance compared to training from scratch. Addition-
ally, employing a larger-parameter Vision Transformer as the domain-specific
encoder does not significantly improve the performance of the DA4LG. Domain-
specific Encoder using CLIP-B (pre-trained on a specific domain WebImage-
Text) demonstrates a significant improvement from 81.6% to 86.8% compared
to Scratch-B. The performance of ViT-B and BLIP-B, which pre-trained on Im-
ageNet domain and BLIP domain, demonstrates an enhancement by 3.0% and
4.0%, respectively. The performance for CLIP-L and Scratch-L are 85.0% and
80.6%, respectively. These figures do not show a significant improvement com-
pared to the metrics for CLIP-B and Scratch-B, which are 86.8% and 81.6%, re-
spectively. Therefore, initializing with CLIP-B is the preferred choice for domain-
specific applications.
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Table 5: The ablation study of multi-task learning and encoders. The terms Language,
Vision, and Domain refer to the Language Encoder, Vision Encoder, and Domain-
specific Encoder, respectively.

Input Encoders Task Validation

Language Vision Domain LGR VLC VGC Visual Blind All

✓ ✓ ✓ ✓ × × 89.8 (1.1) 74.0 (0.4) 81.9 (0.8)
✓ ✓ ✓ ✓ ✓ × 91.0 (0.5) 79.8 (0.4) 85.4 (0.1)
✓ ✓ ✓ ✓ × ✓ 90.9 (0.4) 78.9 (0.7) 85.0 (0.5)

✓ ✓ × ✓ ✓ ✓ 89.3 (0.8) 76.3 (0.6) 82.9 (0.7)
✓ × ✓ ✓ ✓ ✓ 89.0 (0.6) 73.9 (0.7) 81.5 (0.6)

✓ ✓ ✓ ✓ ✓ ✓ 91.8 (0.3) 81.8 (0.6) 86.8 (0.5)

Fig. 3: Visualization of examples: Original images of the objects are displayed on the
left. In the middle, attention score maps are visualized, and on the right, attention score
maps are enhanced using a domain adapter in a Domain-specific Encoder. Warmer
colors, such as red, indicate higher attention scores, while cooler colors, such as blue,
represent lower attention scores.

Ablation Study. For RQ3, we perform an ablation study analysis to investi-
gate the influence of different tasks and encoders in DA4LG. For different tasks,
Table 5 demonstrates the effectiveness of different tasks and encoders within
DA4LG. The DA4LG with all tasks and encoders achieves the best performance
score of 86.6%. When DA4LG employs the LGR task exclusively, it yields a
performance metric of 81.9% in validation. The incorporation of VLC and VGC
enhances DA4LG performance, achieving scores of 85.4% and 85.0%, respec-
tively. For different encoders, DA4LG without Vision Encoder achieves 81.5%
in validation and DA4LG without Domain-specific Encoder achieves 82.9%. The
DA4LG equipped with a Vision Encoder and Domain-specific Encoder demon-
strates an enhanced performance of 86.8%, compared to its performance with
only a single encoder.

Case Study and Visualization As depicted in Fig. 3, we randomly select cases
for visualization to show the language vision alignment in the target domain. The
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Table 6: Results of simulation experiments comparing existing methods with DA4LG.
*Results are obtained through our reproduction.

Models Method Multi-view Single-view

Visual Blind All Visual Blind All

CLIP [31] External Prior 56.8 55.0 55.4 55.0 54.8 54.9
MATCH [42]* External Prior 61.5 (0.8) 60.2 (0.7) 60.5 (0.6) 59.9 (0.5) 59.6 (0.6) 59.7 (0.5)
LAGOR [42]* Multi-view Perception 62.5 (0.5) 61.0 (0.6) 61.3 (0.5) 60.7 (0.5) 60.1 (0.8) 60.2 (0.6)

VLG [9]* External Prior 62.1 (0.7) 61.2 (0.4) 61.4 (0.4) 61.4 (0.6) 60.3 (0.8) 60.5 (0.7)
DA4LG (ours) Domain Adaptation 64.0 (0.5) 63.8 (0.6) 63.9 (0.8) 63.1 (0.7) 62.4 (0.8) 62.6 (0.5)

left column denotes the raw image of the target objects. The middle and right
images illustrate the attention score map generated by the Domain-specific En-
coder without domain adapter and with domain adapter respectively. For the
descriptions “a cup with coffee in it” and “the chair with a yellow headrest”, the
attention map without the domain adapter fails to capture the descriptive ele-
ments such as “coffee” and “headrest” completely. The integration of the domain
adapter results in an enhancement in the attention directed towards “coffee” and
“headrest”.

Additionally, the attention map extends its focus beyond the intended regions
in the absence of the domain adapter. For the descriptions like “the chair with
black legs”, “the chair with wooden legs and a black back ”, “rectangular handle”,
and “the object with a round back ”, the attention is dispersed across the primary
structure of the objects. However, the incorporation of the domain adapter re-
fines the attention map, directing focus toward the detailed parts.

5.2 Simulation Results

To answer RQ4, we conduct a comparative analysis of the performance between
existing methods and DA4LG. All models are trained on the SNARE dataset
and subsequently deployed in a zero-shot setting to Simulation-SNARE. For
our experiments, we provide multiple object observations including {bird, front,
left, right, side} view images in a simulation environment, of which the bird-
view image is the input of a single-view experiment. Compared to SNARE,
Simulation-SNARE has the following characteristics:

• Viewpoint Diversity. Unlike the fixed viewpoint observed in the SNARE
dataset, objects in the simulation environment exhibit a diverse viewpoint.
• Physical Scene. The presence of physical scenes including the background
and the worktop in the simulation environment is more similar to the real-
world setting.
• Texture Quality. In the simulated environment, there is a richness in
geometric details with a deficiency in textural rendering.

Table 6 shows the DA4LG architecture exhibits superior generalization and
robustness compared to other existing models in the simulation environment.



14 P. Sun et al.

Fig. 4: Examples illustrating instances where existing methods demonstrate success
(✓) in the SNARE dataset but failure (×) in the Simulation-SNARE dataset, in con-
trast to DA4LG, which maintains robust performance across both datasets (✓). We
visualize the language description (left), Simulation-SNARE (middle), and SNARE
(right). For the Simulation-SNARE examples, we showcase the front, bird, and side
views. For the SNARE examples, we showcase all eight views.

Specifically, DA4LG achieves the highest scores of 63.9% and 62.6% in multi-
view and single-view settings, respectively, outperforming the suboptimal model
VLG by 2.5% and 2.1% in the respective settings.

As illustrated in Figure 4, We randomly select three cases where other meth-
ods (CLIP, MATCH, LAGOR, VLG) succeed in the SNARE dataset but fail
in the Simulation-SNARE dataset. For instance, objects such as a “chair with
a small metal seat” and a “circular canopy with a grip” are depicted in a fallen
state, adding complexity to the task. The object “a circle and narrow legs” fails
to capture the transparent top of the table in Simulation-SNARE. The DA4LG
model exhibits strong performance in both the SNARE and Simulation-SNARE,
indicating its enhanced suitability for simulation environments and operational
scenes in the real scene.

6 Conclusion

In this work, we attempt to address language grounding tasks from the perspec-
tive of domain adaptation and introduce a novel method named DA4LG. A
Domain-specific Encoder and a multi-task learning framework are proposed to
improve language-based 3D object understanding, in which aligned cross-modal
representation and domain information is encoded effectively. Evaluations on
the benchmark demonstrate that DA4LG achieves SOTA performance of 83.8%
and 86.8% in single-view and multi-view settings, respectively. The experiment
results show the generalization and robustness of our proposed model compared
to existing works. Our model reduces the domain gap for cross-modal aligned
representation. We also reveal the improvement space in existing methods for do-
main gap research and underscore the domain adaptation in language grounding
with 3D objects.
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