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Abstract. Unsupervised Domain Adaptation (UDA) for semantic seg-
mentation has been widely studied to exploit the label-rich source data
to assist the segmentation of unlabeled samples on target domain. De-
spite these efforts, UDA performance remains far below that of fully-
supervised model owing to the lack of target annotations. To this end,
we propose an efficient superpixel-level active learning method for do-
main adaptive semantic segmentation to maximize segmentation per-
formance by automatically querying a small number of superpixels for
labeling. To conserve annotation resources, we propose a novel low-
uncertainty superpixel fusion module which amalgamates superpixels
possessing low-uncertainty features based on feature affinity and thereby
ensuring high-quality fusion of superpixels. As for the acquisition strat-
egy, our method takes into account two types of information-rich su-
perpixels: large-size superpixels with substantial information content,
and superpixels with the greatest value for domain adaptation learn-
ing. Further, we employ the cross-domain mixing and pseudo label with
consistency regularization techniques respectively to address the domain
shift and label noise problems. Extensive experimentation demonstrates
that our proposed superpixel-level method utilizes a limited budget more
efficiently than previous pixel-level techniques and surpasses state-of-
the-art methods at 40x lower cost. Our code is available at https:
//github.com/EdenHazardan/ADA_superpixel.
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1 Introduction

As a fundamental task in computer vision, semantic segmentation has made
remarkable strides, enabling a multitude of applications such as autonomous
driving [32], robotics [27], and disease diagnosis [34]. The significant advance-
ments can be primarily attributed to the availability of extensively labeled
datasets [10, 12, 22]. However, the process of labeling pixel-level segmentation
data is laborious and expensive [13, 40], which poses a significant obstacle to
practical advancements. To tackle this issue, researchers have proposed unsu-
pervised domain adaptation (UDA) approaches [20, 46], which aim to adapt a
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(b) Pixel-level method(a) Target image (c) Ground truth
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Fig. 1: Illustration of different active domain adaptation strategies. (b) Pixel-level
methods (e.g., LabOR [31], RIPU [40]) use pixels as unit and select 11, 535 (2.2%) or
26, 215 (5%) pixels per image for labeling based on uncertainty. Instead, our method
(d,e,f) chooses superpixels as unit and perform superpixel fusion. Impressively, we have
achieved state-of-the-art performance by only using 640 labeling clicks per image.

model trained on a source domain with rich annotations to an unlabeled target
domain. Although UDA methods have achieved impressive outcomes, it is worth
noting that in the absence of target annotations, their performance is still far
below that of full supervision on target domain [31,39,40]. Motivated by the lim-
itation of UDA, we expect to enhance the model performance on target domain
by labeling small amounts of target samples, and active learning technologies
have the potential to accomplish precisely that.

Active learning aims to maximize the model performance with few informa-
tive labeled data. Indeed, active learning (AL) techniques have found widespread
application in traditional semantic segmentation tasks. Many methods [4, 9, 24]
employ a patch-based approach, dividing the image into non-overlapping patches
and treating each patch as a sample. By utilizing a thoughtfully designed acqui-
sition function, these methods select the most informative patches and proceed
to pixel-level labeling. Recently, some work [3,17] points out that pixel-level la-
beling is inefficient and costly. Instead, they propose superpixel-level methods,
employing superpixels as the fundamental unit. During the labeling process, only
one dominant label, obtained through a single click, is requested for each selected
superpixel (containing many pixels), thereby greatly reducing the labeling cost.
Specifically, RSAL [3] utilizes the SEEDS [2] algorithm to generate superpix-
els. ASAL [17] addresses the issue of over-segmentation in RSAL by proposing
a superpixel merging technique based on feature affinity where all superpixels
are involved in fusion process. With the rapid development of AL technology
in semantic segmentation, recent works [31, 39, 40, 44] have integrated AL into
domain adaptive semantic segmentation, resulting in active domain adaptation
(ADA) task. However, these approaches primarily rely on pixel-level methods,
treating each pixel as an individual sample, as shown in Fig. 1(b). By employing
an acquisition function driven by uncertainty, they typically label a substantial
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Fig. 2: Different superpixel-level methods. (a) RSAL [3] uses original superpixels which
is over-segmented. (b) ASAL [17] proposes superpixel merging based on feature affinity,
but fusion errors occur. (c) Our method identifies easily confused superpixels and ex-
cludes them during the fusion process, resulting in improved superpixel fusion quality.

number of pixels , such as 11, 535 (2.2%) or 26, 215 (5%) pixels, for each im-
age with a resolution of 1024× 512 to achieve good results. Such labeling costs
are not feasible in practical scenarios. Therefore, our work aims to introduce
superpixel-level AL methods to domain adaptive semantic segmentation.

An intuitive idea is to directly apply the superpixel-level ASAL [17] method
to ADA task. The key steps involve merging superpixels, selecting and annotat-
ing them based on a carefully designed acquisition function, and subsequently
training the final model. However, this direct application faces challenges at each
step, including errors in superpixel fusion, inadequate acquisition functions, and
issues related to domain shift and label noise during model training. First, in
terms of superpixel mergence, ASAL method may occur superpixel fusion er-
rors due to the inter-class feature confusion issue inherent in domain adaptation
settings, leading to a decline in the overall quality of the annotations, shown in
Fig. 2(b). As outlined in [7,14,19,40], domain adaptation suffers from inter-class
confusion (e.g., road and sidewalk, bus and train) due to the domain shift prob-
lem [38]. Therefore, our objective is to create a benchmark that can accurately
identify features that are prone to confusion. This enables us to exclude these
particular superpixels during the fusion process. Only the superpixels with dis-
tinguishable features will undergo merging, effectively addressing the problem of
superpixel fusion errors, as illustrated in Fig. 2(c). Second, regarding the acquisi-
tion function, ASAL fails to account for the issue of domain shift, whereas exist-
ing ADA methods [31,40,44] predominantly emphasize the pixel level rather than
the superpixel level. In contrast, our approach aims to comprehensively consider
two types of information-rich superpixels: large-size superpixels with substantial
information content and valuable superpixels exhibiting substantial domain dif-
ferences. Third, since superpixels are not completely accurate, superpixel-level
annotations are inevitably noisy. Besides, the supervision on source data is af-
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fected by domain shift issues. Therefore, our work introduces label denoise and
domain adaptation techniques on model training.

In this work, we design a superpixel-level AL method for domain adaptive
semantic segmentation. We propose a novel low-uncertainty superpixel fusion
module where the superpixels are divided according to the uncertainty of the
features extracted by the UDA model [14,35]. Superpixels with low uncertainty
(i.e., not easily confused) features are selected for fusion, while those with high
uncertainty features (i.e., easily confused) are excluded from the fusion process
and retain their original state. In this way, our work can effectively reduce the
cost of superpixel-level labeling while ensuring the labeling quality. To strate-
gically select the most valuable superpixel-level annotations for domain adap-
tation, we devised two distinct acquisition functions respectively considering
superpixel sizes and domain differences. As for the model training, our work
proposes to use cross-domain mixing [14, 35] and pseudo label [8, 25] with con-
sistency regularization techniques [26] respectively to address the domain shift
problem of source domain data and the label noise problem caused by superpix-
els. Remarkably, our approach achieves superior performance by utilizing only
640 clicks per image, surpassing the previous methods [39, 40] that relied on a
significantly larger set of 26, 215 labeled pixels (i.e., 26, 215 clicks) per image.

We summarize the contributions of this work as follows:

– We propose an efficient superpixel-level active learning method for domain
adaptive semantic segmentation and propose a novel low-uncertainty super-
pixel fusion module specifically designed to mitigate the issue of superpixel
fusion errors.

– We have developed two efficient acquisition functions for the comprehen-
sive selection of information-rich superpixels. Additionally, we employ cross-
domain mixing and pseudo label with consistency regularization to address
the challenges of domain shift and label noise.

– We experimentally evaluate the effectiveness and efficiency of our proposed
method, and the results on two challenging benchmarks demonstrate the
superiority of our method to previous state-of-the-art methods in terms of
annotation cost and model performance.

2 Related Work

Domain adaptative semantic segmentation (DASS). DASS has been ex-
tensively studied to tackle the challenges of pixel-level dense annotation and do-
main shift [14,26,35,36]. Recently, DASS approaches have utilized a self-training
technique to retrain the network with the pseudo labels generated from confi-
dent predictions on the target domain. To regularize the training with pseudo
labels, consistency regularization [26] based on data augmentation [33] or cross-
domain mixup [35] is commonly adopted. More recently, DAFormer [14] employs
Transformer instead of CNN as architecture and has achieved state-of-the-art
performance. Although DASS has shown great results, the lack of annotations
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on target domain makes the DASS models [23, 35, 45] far inferior to the fully-
supervised model.
Active Learning for semantic segmentation (ALSS). To mitigate the ex-
penses associated with labeling in semantic segmentation, ALSS selectively col-
lects labels among unlabeled samples and utilizes diverse predefined labeling
units to achieve this objective. Many methods [4, 9, 24] employ a patch-based
approach, dividing the image into non-overlapping patches and treating each
patch as a sample. They perform pixel-level annotation on the selected patch,
resulting in excessive annotation costs. RSAL [3] proposed to use superpixel-
level approach and demonstrate its effectiveness over the patch-based approach.
ASAL [17] pointed out that the superpixels used in RSAL are over-segmented
and proposed superpixel merging to avoid annotation wastes. However, ASAL is
not suitable for DASS. Superpixel fusion errors would occur due to the inter-class
feature confusion [7, 14, 19, 40] in domain adaptation. Unlike ASAL, where all
superpixels are involved in fusion process, our method introduces specific criteria
for selecting suitable superpixels to participate in fusion. We exclude superpixels
that can be easily confused, thereby improving the quality of fusion.
Active domain adaptation (ADA) for semantic segmentation. Active
domain adaptation for semantic segmentation can strike a balance between an-
notation cost and model performance by selectively labeling a few yet valuable
samples on target domain. MADA [28] proposes a multi-anchor strategy to ac-
tively select a subset of images and annotate the entire image, which is prob-
ably inefficient [40]. Recent works [31, 39, 40, 44] adopt pixel-level annotations.
LabOR [31] selects pixels for labeling based on the difference between the pre-
diction of two distinct classifiers. RIPU [31] constructs acquisition function in
terms of uncertainty and region impurity. UBD [44] focuses on the boundary pix-
els. D2ADA [39] dynamically considers uncertainty and domain density. Despite
good results, the labeling cost is too high and impractical, i.e., 11, 535 (2.2%) or
26, 215 (5%) pixels, for each image with a resolution of 1024× 512. Besides, the
proposed acquisition functions are all designed for pixel unit.

In this work, we use superpixel-level annotations and propose acquisition
functions suitable for superpixels. With labeling only 640 superpixels (i.e., 640
clicks) per image, our method can outperform the existing methods [39,40].

3 Our Approach

In this section, we first present an overview of our method. Then we detail each
component of the framework, including superpixel generation (Section 3.2), low-
uncertainty superpixel fusion (Section 3.3), acquisition function (Section 3.4)
and training process (Section 3.5).

3.1 Overall Framework

Active domain adaptation for semantic segmentation aims to train a segmen-
tation model that can perform well on target domain using a combination of
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Fig. 3: The overview of our method. At labeling phase 1 (a), we adopt low-uncertainty
superpixel fusion and select the merged low-uncertainty superpixels (MLUSPs) with
large-size and query annotations from a human annotator. At labeling phase 2 (b), we
select the high-uncertainty superpixels (HUSPs) with large domain differences based
on the acquisition function A2 and query annotations. The final model is trained by
our proposed training process with the selected active labels.

labeled samples from the source domain S = {Is, Ys}, partially labeled samples
from target domain T = {It, Ỹt}. Here I refers to images, Ys represents source
annotations, and Ỹt means the thoughtfully selected active labels on target do-
main. In this work, we first divide each image into superpixels. Next, we employ
superpixel fusion and adopt acquisition functions to select a few informative su-
perpixels which are then annotated by an oracle as Ỹt. Here, we use the ground
truth segmentation label to simulate such an annotation process. Specifically, we
use a dominant labeling scheme where each superpixel is assigned only a single
class label [3] (i.e., only one click). Finally, we train the model using S and
T with cross-domain mixing and pseudo label with consistency regularization
techniques.

3.2 Superpixel Generation

Superpixels are image primitives that group similar pixels and preserve object
boundary well [17]. As a result, most pixels within a superpixel are from the
same semantic category. This enables the use of a light-weight annotation scheme
where each superpixel is annotated by only one class label that represents the
majority of the pixels [3]. Superpixel generation algorithms can be broadly clas-
sified into traditional and CNN-based approaches. Traditional methods [1,2,21]
utilize original features such as color and spatial position for clustering. In con-
trast, CNN-based methods [15,42], which use deep CNNs to learn features for su-
perpixel generation, generally outperform traditional methods. However, CNN-
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based approaches require ground truth semantic segmentation labels for each
pixel to compute the learning loss [3]. RSAL [3] and ASAL [17] used the tra-
ditional algorithms SEEDS [2] to obtain superpixels. In our task, semantic seg-
mentation labels are available on source domain, so we can use a CNN-based
SSN [15] that has been pre-trained on the source domain to obtain better su-
perpixel results on target domain.

3.3 Low-uncertainty Superpixel Fusion

The original superpixel results are over-segmented [17]. To save the annotation
budget, ASAL [17] proposes to fuse the superpixels with similar predictions.
However, in DASS task, fusion errors would occur due to the inter-class feature
confusion issue. To tackle this issue, our method proposes to identify the super-
pixels with easily confused features and exclude them during the fusion process.
Specifically, we utilize the classic uncertainty metric entropy to partition super-
pixels. As shown in Fig. 3(a), we use an off-the-shelf UDA model (UDA-merge)
and SSN model respectively extract the entropy map Et and superpixel SPt

on target domain. Then, a base superpixel s ∈ SPt is divided into two cate-
gories according to the entropy map: low uncertainty superpixel (LUSP) or high
uncertainty superpixel (HUSP):

s =

{
LUSP, ents ≤ τ

HUSP, ents > τ
(1)

where ents =
∑

x∈s Et(x)

|{x:x∈s}| is the averaged entropy of superpixel s ∈ SPt, and τ is
a threshold. Typically, the features of LUSP are more distinguishable, making
LUSP more suitable for fusion. On the other hand, the features of HUSP are more
easily confused, and thus HUSP should be excluded from fusion. Therefore, we
perform superpixel fusion on LUSP. Following ASAL [17], we employ the square
root of Jensen-Shannon (JS) divergence as a symmetric measure of discrepancy
between two prediction distributions of superpixels. To be specific, any two LUSP
s, n would be amalgamated together only if

dJS(f(s)||f(n)) < ε, (2)

where f(s) =
∑

x∈s f(x)

|{x:x∈s}| is the averaged class prediction of LUSP s, f(x) is the
UDA-merge model’s estimation of class probability on pixel x in superpixel s,
and ε is a threshold. In this way, our proposed low-uncertainty superpixel fusion
module outputs high-quality merged superpixels MSPt, where LUSPs are fused
and HUSPs remain unchanged.

3.4 Acquisition Function

In this work, we proposed two distinct acquisition functions A1 and A2 respec-
tively considering superpixel sizes and domain differences.
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After superpixel fusion, MSPt contains a small number of merged LUSPs
(MLUSPs) with large-size and a large amount of HUSPs with original small
size. Specifically, a target image It with a resolution of 1024×512 is divided into
approximately 4, 985 superpixels, and each original superpixel contains about 105
pixels. According to the statistics, there are approximately 4, 135 low-uncertainty
superpixels (LUSPs) and 850 high-uncertainty superpixels (HUSPs) per image.
After fusion, the merged superpixels MSPt contain about 23 MLUSPs with an
average size of 18, 699 pixels and 850 HUSPs retaining their size of 105 pixels.

In segmentation tasks, both the quantity of pixels and uncertainty are im-
portant factors in selecting samples. However, as the above statistics show, the
merged superpixels (MLUSPs) contain far more pixels than unmerged superpix-
els (HUSPs). Therefore, we first consider labeling information-rich MLUSPs with
large-size. Then, as for the uniformly sized HUSPs, we utilize the domain differ-
ences as a benchmark to select the most valuable samples for domain adaptation
learning. In this way, our method contains two labeling phases.
Acquisition function A1: As shown in Fig. 3(a), the acquisition function A1

chooses the information-rich superpixels with largest size, and thereby we label
all MLUSPs and obtain Ỹ1 at labeling phase 1. In fact, we only need 23 clicks
(i.e., labeling all the MLUSPs) for each image to get around 82.03% of the pixel
annotations in the entire image.
Acquisition function A2: At labeling phase 2, we select the information-rich
HUSPs with largest domain differences, which can be represented by the differ-
ences in predictions from two different domain models. Specifically, we use an
off-the-shelf UDA model (UDA-base) as source domain model and utilize the
model (Target-base) trained on Ỹ1 as target domain model. For each HUSP,
we use Target-base and UDA-base models to respectively extract the predic-
tions and average the superpixel internal predictions to get the prototype P t

and Puda. For an HUSP s, we calculate its domain difference score (DDscores)
according to the cosine similarity of its corresponding P t and Puda:

DDscores = 1− P t(s) · Puda(s)

| P t(s) || Puda(s) |
. (3)

The smaller the similarity of predictions from the two models, the greater the
domain differences, and the higher the corresponding DDscore. Therefore, the
acquisition function A2 selects the information-rich HUSPs with the highest
DDscore and obtains Ỹ2 in labeling phase 2, as shown in Fig. 3(b). Finally, we
train the final model using Ỹ2.

3.5 Training Process

With fully-labeled samples on source domain and actively selected and annotated
superpixels on target domain, we aim to train a network that can perform well
on target domain. An intuitive method is to use all labeled data from source
and target domain to train network by optimizing the standard supervised loss,
like [40,44]:

Lsup = LCE(Is, Ys) + LCE(It, Ỹt), (4)
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Fig. 4: Illustration of our proposed training process. Best viewed in color.

where LCE is the cross-entropy loss. However, the independent supervision on
source domain (i.e., LCE(Is, Ys)) inevitably brings about domain shift problem.
Besides, in this work, the superpixels inherently contain noise, i.e., some super-
pixels may contain pixels from more than one category, resulting in noisy active
label Ỹt. To address these problems, our work proposes to utilize cross-domain
mixing [14, 35] and pseudo label [25] with consistency regularization [26, 33]
techniques. As shown in Fig. 4, we randomly select half of the classes in Is and
extract the corresponding pixels, which are then transplanted onto It, resulting
in domain-mix sample Ist. The corresponding label Ŷst is constructed by mixing
Ys and Ŷt which is the pseudo label of It. Thus, the overall learning objective
can be presented as follows:

L = LCE(It, Ỹt) + LCE(A(Ist), Ŷst), (5)

where A denotes the data augmentations applied to the input Ist. In particular,
we choose colorjitter, gaussianblur, and grayscale, as suggested in [26,43]. Here,
we employ pseudo label with consistency regularization in order to prevent over-
fitting to the label noise of Ỹt. We utilize data-augmentation-based consistency
regularization to encourage model to generate consistent predictions for differ-
ent variants of target data through data augmentation, thereby decreasing the
likelihood of assigning wrong class labels [18,43].

4 Experiments

Dataset. Following previous works [39,40,44], we evaluate various active learn-
ing and domain adaptation methods on two widely-used domain adaptive seman-
tic segmentation benchmarks: GTA5→Cityscapes and SYNTHIA→Cityscapes.
GTA5 [29] contains 24, 966 1914×1052 synthesized images rendered by the gam-
ing engine GTAV, acting as a source domain dataset. SYNTHIA [30] contains
9, 400 1280 × 760 synthesized images, which serve as another source dataset.
Cityscapes [10] is a representative dataset in the fields of semantic segmentation
and autonomous driving domain. It comprises 2, 975 images for training and 500
images for validation, both with a resolution of 2048× 1024.
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Table 1: Results on GTA5 → Cityscapes benchmark. “∗” denotes the upper
bound performance of superpixel-level methods, namely, the maximum model perfor-
mance achievable by labeling all superpixels. We report the mIoU and best results
are shown in bold.
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mIoU
Source Only DeepLabv2 [5] - 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6
ADVENT [36] DeepLabv2 [5] - 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
DACS [35] DeepLabv2 [5] - 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0 27.3 34.0 52.1
ProDA [45] DeepLabv2 [5] - 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
DAformer [14] SegFormer [41] - 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3
LabOR [31] DeepLabv2 [5] 40(0.008%) 96.1 71.8 88.8 47.0 46.5 42.2 53.1 60.6 89.4 55.1 91.4 70.8 44.7 90.6 56.7 47.9 39.1 47.3 62.7 63.5
RIPU [40] DeepLabv2 [5] 40(0.008%) 95.5 69.2 88.2 48.0 46.5 36.9 45.2 55.7 88.5 55.3 90.2 69.2 46.1 91.2 70.7 73.0 58.2 50.1 65.9 65.5
ASAL [17] DeepLabv2 [5] 40(0.008%) 94.0 67.6 86.5 34.4 44.2 42.8 51.7 62.5 87.7 47.2 89.5 69.8 48.6 87.4 55.7 68.8 55.1 50.9 64.0 63.6
Ours(Target-base) DeepLabv2 [5] 23(0.004%) 96.5 73.2 87.5 41.5 45.6 37.1 47.9 63.6 88.4 41.5 92.3 73.4 47.2 92.1 71.1 74.6 63.8 51.6 60.0 65.7
Ours DeepLabv2 [5] 40(0.008%) 96.8 77.2 89.0 38.4 47.6 44.1 52.9 65.9 90.0 50.9 91.4 74.8 54.0 92.2 71.5 75.7 67.6 59.1 66.2 68.7
LabOR [31] DeepLabv2 [5] 11, 535(2.2%) 96.6 77.0 89.6 47.8 50.7 48.0 56.6 63.5 89.5 57.8 91.6 72.0 47.3 91.7 62.1 61.9 48.9 47.9 65.3 66.6
UBD [44] DeepLabv2 [5] 11, 535(2.2%) 93.9 67.5 89.2 52.7 53.0 51.6 56.7 64.5 89.5 54.5 89.4 74.9 51.1 92.8 75.4 74.7 47.9 52.5 70.1 68.5
RIPU [40] DeepLabv2 [5] 11, 535(2.2%) 96.5 74.1 89.7 53.1 51.0 43.8 53.4 62.2 90.0 57.6 92.6 73.0 53.0 92.8 73.8 78.5 62.0 55.6 70.0 69.6
Ours DeepLabv2 [5] 80(0.015%) 96.5 76.5 89.7 45.0 50.1 47.6 55.2 66.9 90.4 52.7 91.3 76.5 55.0 92.3 73.9 78.4 65.6 57.8 66.5 69.9
Ours DeepLabv2 [5] 160(0.031%) 97.0 78.3 90.1 44.0 51.3 49.0 58.4 69.5 90.4 53.1 91.7 77.0 55.9 92.7 73.6 81.1 67.9 58.2 68.1 70.9
Ours DeepLabv2 [5] 320(0.061%) 97.1 79.4 90.1 43.8 53.4 49.8 59.9 70.1 90.9 55.7 92.4 77.8 57.4 92.9 73.3 83.2 71.3 57.2 71.0 71.9
Ours DeepLabv2 [5] 640(0.122%) 97.4 80.2 90.6 45.8 52.3 52.7 61.5 71.6 91.1 58.2 93.1 77.6 56.9 92.6 73.9 82.6 73.4 55.2 70.7 72.5

Ours* DeepLabv2 [5] 873(0.167%) 97.3 80.4 90.7 47.1 52.7 52.9 62.3 72.1 91.2 57.9 93.0 77.4 57.7 92.8 74.3 81.4 69.3 58.2 71.3 72.6
Ours* (no fusion) DeepLabv2 [5] 4, 985(0.951%) 97.4 81.1 91.0 47.0 54.7 53.5 61.7 72.6 91.1 59.7 93.3 78.3 59.2 92.5 67.5 83.9 70.8 61.5 72.3 73.1
Fully Supervised DeepLabv2 [5] 524, 288(100%) 97.5 81.3 90.8 45.6 53.6 59.1 65.5 74.4 91.2 59.5 92.8 80.1 60.4 94.1 72.7 77.1 63.4 60.1 74.7 73.4
MADA [28] DeepLabv3+ [6] 26, 215(5%) 95.1 69.8 88.5 43.3 48.7 45.7 53.3 59.2 89.1 46.7 91.5 73.9 50.1 91.2 60.6 56.9 48.4 51.6 68.7 64.9
RIPU [40] DeepLabv3+ [6] 26, 215(5%) 97.0 77.3 90.4 54.6 53.2 47.7 55.9 64.1 90.2 59.2 93.2 75.0 54.8 92.7 73.0 79.7 68.9 55.5 70.3 71.2
D2ADA [39] DeepLabv3+ [6] 26, 215(5%) 97.0 77.8 90.0 46.0 55.0 52.7 58.7 65.8 90.4 58.9 92.1 75.7 54.4 92.3 69.0 78.0 68.5 59.1 72.3 71.3
Ours DeepLabv3+ [6] 640(0.122%) 97.2 80.9 90.9 48.1 53.5 53.7 62.7 72.6 91.4 58.3 92.8 77.1 58.2 92.9 74.1 81.0 71.2 58.5 70.6 72.9

Ours* DeepLabv3+ [6] 873(0.167%) 97.4 81.1 91.0 47.9 53.8 53.6 63.5 72.8 91.3 58.6 92.9 77.3 58.4 92.7 74.4 81.2 71.7 58.8 71.1 73.1
Ours* (no fusion) DeepLabv3+ [6] 4, 985(0.951%) 97.4 81.2 91.1 47.9 55.3 57.1 62.1 72.4 91.2 59.9 92.6 78.8 58.1 93.4 75.1 81.1 71.9 58.1 73.1 73.6
Fully Supervised DeepLabv3+ [6] 524, 288(100%) 97.5 81.4 91.1 48.4 55.4 58.8 63.1 72.8 91.7 60.5 93.2 79.3 57.8 94.1 76.4 82.4 68.6 59.4 74.0 74.0
RIPU [40] SegFormer [41] 26, 215(5%) 97.6 81.0 91.1 50.7 57.6 55.1 60.5 69.1 91.4 61.3 94.6 76.3 52.7 93.9 84.8 81.0 64.9 58.4 70.9 73.3
Ours SegFormer [41] 640(0.122%) 97.5 80.8 91.2 53.3 57.5 50.3 60.9 71.8 91.6 60.2 94.3 76.5 56.4 93.4 83.7 85.4 76.2 61.5 70.5 74.4

Ours* SegFormer [41] 873(0.167%) 97.6 81.2 91.4 56.2 59.0 50.4 61.0 71.5 91.6 60.6 94.4 76.6 56.6 93.4 84.2 87.7 78.5 61.5 70.4 74.9
Ours* SegFormer [41] 4, 985(0.951%) 97.9 83.4 91.8 57.6 59.4 50.9 61.1 72.5 91.8 64.8 94.5 76.9 57.8 93.3 83.1 87.5 80.3 61.4 71.2 75.6
Fully Supervised SegFormer [41] 524, 288(100%) 98.0 84.2 92.4 60.6 58.2 60.9 66.5 76.1 92.3 65.7 94.7 79.6 60.6 94.6 84.1 85.0 68.4 60.2 74.7 76.7

Implementation details. All experiments are conducted on a single RTX 2080
Ti GPU with 12 GB memory. For fair and full comparisons, we choose three
semantic segmentation architectures in our experiments, including two widely-
used CNN-based models, DeepLabv2 [5] and DeepLabv3+ [6], and an excel-
lent Transformer-based model, SegFormer [41]. For the CNN architecture, most
hyper-parameters are kept identical to those used in [39, 40]. We use an SGD
optimizer with a momentum of 0.9 and a weight decay of 5 × 10−4. The learn-
ing rate is set at 2.5 × 10−4, which is annealed following the poly learning rate
policy with a power of 0.9. For the Transformer architecture, we follow the ex-
perimental setup of DAFormer [14]. In Fig. 3, we pre-train the SSN on source
domain and follow the experimental setup in [15]. We use DAFormer [14] as
UDA-merge to extract entropy map Et. Notably, for accurately gauging domain
differences, the UDA-base model necessitates an identical network architecture
to our model (i.e. Target-base and Final model). Specifically, when utilizing CNN
architecture, we adopt DACS [35] as the UDA-base method, whereas when using
Transformer architecture, we use DAFormer [14] as our UDA-base method. For
all experiments, the models are trained for 250, 000 iterations and early stopped
at 120, 000 iteration with batches of 2, and all images are randomly cropped to
1024 × 512. The threshold hyperparameters τ in Eq. 1 is set as 0.05, and ε in
Eq. 2 is set as 0.10, in line with the settings given by [17].
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Annotation budget. Following RASL [3] and ASAL [17], we use the num-
ber of clicks as the labeling budget. Existing ADA methods set the budget as
11, 535 (2.2%) or 26, 215 (5%) pixels (i.e., 11, 535 (2.2%) or 26, 215 (5%) clicks)
per image, which is costly and impractical. In this work, we extract about 5, 000
superpixels per image and obtain around 1, 000 merged superpixels per image
after low-uncertainty superpixel fusion. Consequently, more practical annotation
budgets of 40, 80, 160, 320, and 640 clicks per image were selected for all ex-
periments. Specifically, we label all MLUSPs in phase 1 and use the remaining
budget to select HUSPs for annotations in phase 2, as in Fig. 3.

4.1 Performance Comparison

We compare our superpixel-level method with various domain adaptation meth-
ods, including unsupervised domain adaptation (UDA) [14,35,36,45] and active
domain adaptation (ADA) [31, 39, 40, 44]. Furthermore, we expand the applica-
tion of ASAL [17] to active domain adaptation benchmarks, allowing for the com-
parison of various superpixel-level methods. The results on GTA5→Cityscapes
are shown in Table 1, while the results on SYNTHIA→Cityscapes are provided
in supplementary material. Notably, existing ADA methods have not conducted
experiments on Transformers. For comprehensive experiments, we re-implement
RIPU [40] on transformers for fair comparison. It can be seen that our method
dramatically outperforms the previous method while greatly reducing the anno-
tation costs.
GTA5→Cityscapes. In this scenario, we utilize SSN pretrained on GTA5 to
extract approximately 4, 985 superpixels per image. Subsequently, through fusion
using DAFormer trained on GTA5, we obtain around 873 superpixels. Compared
with recent UDA methods such as ProDA [45] and DAFormer [14], our proposed
method achieves a performance improvement of 15% and 6.2% respectively, with
active-labeling only 640 clicks per image on target domain under the architec-
tures of CNN and Transformer. Under a low-cost budget, our method achieves
good results with only labeling all MLUSP (i.e., 23 clicks per image). At the cost
of 40, our method outperform RIPU [40] and ASAL [17] by 3.2% and 5.1% mIoU,
respectively. Our proposed method is able to surpass RIPU [40], using only 80
clicks per image, as compared to RIPU’s 11, 535 clicks. Furthermore, our method
achieves a 1.6% higher mIoU compared to D2ADA [39], which utilizes 26, 215
clicks, despite our usage of mere 640 clicks. Overall, our proposed superpixel-
level method greatly reduced the annotation cost while improving the model
performance on target domain. The experiments conducted on various architec-
tures reveal that the performance of a model trained with complete annotation
of merged superpixels (i.e., cost of 873) closely matches that of a model trained
with complete annotation of original superpixels (i.e., cost of 4, 985). These re-
sults demonstrate the effectiveness of our proposed low-uncertainty superpixel
fusion module in mitigating superpixel fusion errors, thus ensuring high-quality
annotations.
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Fig. 5: Ablation study on various su-
perpixel fusion methods.
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Fig. 6: Effect of selection algorithms
used in A2.

4.2 Ablation Study

In this section, we conducted experiments to demonstrate the effectiveness of our
proposed method. All experiments were conducted on the GTA5→Cityscapes us-
ing the DeepLabv2 backbone. Extensive experiments involving hyper-parameter
settings, visual comparisons, and ablation studies on the SYNTHIA→Cityscapes
are provided in the supplementary material.
Ablation on Superpixel-level Methods. A key of our proposed superpixel-
level method is to mitigate fusion errors in domain adaptation using our low-
uncertainty superpixel fusion module, as illustrated in Fig. 2(c). In this regard,
we conducted experiments with various superpixel fusion methods while main-
taining consistency in all other experimental settings. As depicted in Fig. 5, the
point within the dotted circle represents the upper bound performance achieved
by labeling all superpixels, and obviously, the upper bound of ASAL [17] is
notably low. For instance, when setting the fusion threshold ε to 0.10, ASAL
achieves a mere 69.11% mIoU by labeling all merged superpixels (at a cost of
78), which falls significantly short of the upper bound performance achieved by
our method (72.58% mIoU). Furthermore, our method consistently outperforms
ASAL even when employing identical annotation costs. It is evident that ASAL
suffers from fusion errors caused by the inter-class feature confusion issue in
domain adaptation. In contrast, our proposed low-uncertainty superpixel fusion
module effectively addresses this problem, resulting in improved performance,
especially the upper bound performance. Moreover, our method is not sensitive
to hyperparameter ε because the LUSPs contain distinguishable features and
thereby can be easily fused.
Ablation on Acquisition Functions. To demonstrate the superiority of our
proposed acquisition functions, we make a comparison with other common strate-
gies, i.e., Random sampling (RAND), ASAL [17], and domain differences (DS).
ASAL [17] considers both Margin [16] and class imbalance, and DS is the strategy
we used as A2 at labeling phase 2. These common strategies are single-stage,
which select and annotate samples from all superpixels according to their re-
spective criteria. Unlike them, we use different strategies to select and annotate
merged superpixels (MLUSPs) and unmerged superpixels (HUSPs). Specifically,
our method adopts two-stage labeling and introduces two acquisition functions,
namely A1 and A2, for labeling phases 1 and 2, respectively, as illustrated in
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Table 2: Performance comparison using different acquisition strategies is conducted,
where the acquisition function is denoted as AF.

Labeling phase AF
cost 40 80 160 320 640

single-stage
RAND 24.6 36.3 37.5 54.4 63.8
ASAL 57.0 63.2 65.4 69.5 70.6

DS 58.5 63.8 66.2 69.8 71.0
two-stage Ours 68.7 69.9 70.9 71.9 72.5

Fig. 3. We first use A1 to select information-rich superpixels with large sizes,
encompassing all MLUSPs. Then, we utilize A2 to select the remaining super-
pixels (HUSPs) with large domain differences (i.e., DS). As shown in Table 2,
our method consistently outperforms the other strategies across various cost
settings. In Table 2, DS is equivalent to using only the second phase A2 in our
method. However, DS overlooks the size of the superpixels and solely considers
the domain differences among all superpixels, thus leading to inferior perfor-
mance. This is because large-size superpixels often contain numerous pixels with
small domain differences, causing them to be excluded by DS. Consequently, the
number of annotated pixels solely marked by DS is significantly reduced. This
highlights the crucial role of prioritizing information-rich superpixels with large
sizes (i.e., MLUSPs) to achieve better performance. The supplementary material
further demonstrates that prioritizing all MLUSPs is the optimal strategy.

After determining the prioritized annotation of MLUSPs in the first phase,
we conducted experiments on the selection algorithm used at labeling phase 2
(i.e., A2). Specifically, we compared ours (domain differences, DS) with other
common selection methods such as RAND, entropy (ENT) [37], Margin [16],

Table 3: Ablation study of our proposed training techniques. Specifically, we verified
the effectiveness of these techniques in different methods, including ours and RIPU [40].

Ours(40) Ours(640) RIPU(11,535)

Method A B C mIoU mIoU mIoU
M(0) 63.9 66.6 62.8
M(1) ✓ 67.4 71.3 68.2
M(2) ✓ ✓ 68.0 71.7 70.7
M(3) ✓ ✓ ✓ 68.7 72.5 71.9

A: Cross-domain mixing technique
B: Pseudo label technique
C: Consistency regularization technique
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softmax confidence (Conf) [11], ASAL [17] and RIPU [40]. RIPU utilizes region
impurity and prediction uncertainty. As shown in Fig. 6, our DS selection al-
gorithm surpassed the second-placed approach by 0.41% to 0.65% mIoU across
different budget settings, whereas the gap between the second and sixth place
was only 0.15% to 0.23%. Other uncertainty-based selection algorithms, which
solely consider the difficult samples on target domain, fail to account for the
challenging instances in domain adaptation scenarios. As a result, these meth-
ods only achieve sub-optimal performance. It is worth noting that the gain of
our method is observed in the prioritized MLUSPs annotation in the first phase.
The first phase of annotation completed around 82.03% of the pixel annotations.
Therefore, based on the first-stage annotation, the performance differences be-
tween the selection methods in the second stage are not significant.
Ablation on Training Techniques. To verify the effectiveness of our proposed
training techniques, we perform an ablation study with the following variants:
M(0): the baseline method in [39,44], i.e., using all labeled data from source and
target domain to train network; M(1): extend M(0) using cross-domain mixing
technique to alleviate domain shift issue; M(2): extend M(1) by using pseudo la-
bels on target domain; M(3): extend M(2) by using consistency regularization on
domain-mix samples; As shown in Table 3, the effectiveness of each technique
is demonstrated by the consistent improvements observed from M(0) to M(3)

across three active learning settings. Furthermore, our proposed superpixel-level
method outperforms RIPU with a significantly lower labeling cost of only 640,
compared to RIPU’s much higher cost of 11, 535, under identical training set-
tings. This suggests that our superpixel-level method is capable of acquiring a
substantial number of informative labeled pixels with minimal annotation costs.

5 Conclusion

In this paper, we have presented a novel approach to tackle the challenge of ac-
tive domain adaptation in semantic segmentation. By introducing a superpixel-
level approach, we have successfully reduced annotation costs while preserving
model performance. Our proposed low-uncertainty superpixel fusion module ef-
fectively alleviates fusion errors that commonly arise in domain adaptation sce-
narios. Furthermore, we have designed two efficient acquisition functions for the
comprehensive selection of information-rich superpixels. For model training, we
propose to use cross-domain mixing and pseudo label with consistency regular-
ization techniques respectively to address the domain shift and label noise prob-
lems. Extensive experiments on two challenging benchmarks demonstrate the
effectiveness and efficiency of our approach, which outperforms existing state-
of-the-art pixel-level methods by a large margin at 40x lower cost. We believe
that our proposed superpixel-level method offers a promising new approach for
active domain adaptation in semantic segmentation.
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