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Abstract. Spiking neural networks (SNNs) are a novel type of bio-
plausible neural network with energy efficiency. However, SNNs are non-
differentiable and the training memory costs increase with the number
of simulation steps. To address these challenges, this work introduces an
implicit training method for SNNs inspired by equilibrium models. Our
method relies on the multi-parallel implicit stream architecture (MPIS-
SNNs). In the forward process, MPIS-SNNs drive multiple fused par-
allel implicit streams (ISs) to reach equilibrium state simultaneously.
In the backward process, MPIS-SNNs solely rely on a single-time-step
simulation of SNNs, avoiding the storage of a large number of activa-
tions. Extensive experiments on N-MNIST, Fashion-MNIST, CIFAR-10,
and CIFAR-100 demonstrate that MPIS-SNNs exhibit excellent char-
acteristics such as low latency, low memory cost, low firing rates, and
fast convergence speed, and are competitive among latest efficient train-
ing methods for SNNs. Our code is available at an anonymized GitHub
repository: https://github.com/kiritozc/MPIS-SNNs.

Keywords: Spiking Neural Networks · Memory efficiency · Energy effi-
ciency · Low latency

1 Introduction

SNNs are considered as an important development direction of the next genera-
tion of neural networks because they have many excellent characteristics, such as
low power consumption and fast response, similar to the spike coding of biolog-
ical neural systems [10, 11, 20, 27]. However, SNNs convey information through
spike signals, and their neuron models are non-differentiable, preventing the di-
rect application of well-established backpropagation algorithms used in Artificial
Neural Networks (ANNs) for supervised training. To address this challenge, two
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main approaches have been proposed. One line of work involves converting pre-
trained ANNs into SNNs [?, 28, 32], but this conversion process may lead to a
loss of precision. A more common approach is to construct differentiable ap-
proximations of SNNs using the surrogate gradient (SG) algorithm [9,22,25,30]
to enable supervised training through BPTT. A consequential issue is the in-
crease in memory costs as the simulation time steps grow during SNN training.
This can result in training becoming infeasible due to hardware limitations. Ad-
ditionally, the SG method accumulates errors over time, compromising model
performance. However, long time step training is essential for exploring optimal
model performance. Hence, it is necessary to consider a training method that ad-
dresses the memory bottleneck in SNN training and avoids the accumulation of
errors caused by the SG method. Recently, the notion that stacking weight-tied
neural networks converges to a fixed point has been proposed [1] and extended
to the domain of SNNs [37, 38]. However, this training method requires a suffi-
cient number of time steps for the model to converge to an equilibrium state.
Additionally, the expressive capacity of the model depends on the depth of the
weight-tied block. These two issues significantly constrain the training speed and
inference speed of the model, posing challenges for the widespread application
of SNNs in practical scenarios.

In this work, based on recent theories about equilibrium models [1, 37], we
propose a novel implicit training method for SNNs. We construct an SNN com-
posed of multiple parallel implicit streams that mutually fuse, treating the for-
ward procedure of the network as a solver for the equilibrium state of this SNN.
This solver calculates the firing rate of the model as it tends towards equilib-
rium, based on the model’s parameters and inputs. Similar to the concept of
an infinite number of layers in deep equilibrium models [1], the MPIS-SNNs in
equilibrium state are equivalent to SNNs simulated for an infinite time steps. To
reduce the latency of SNNs, the MPIS model reduces the depth of a single im-
plicit stream and accelerates the convergence speed during the network’s forward
computation. Simultaneously, as the model converges to the equilibrium state,
data gradually flows into each parallel stream, ensuring the expressive capacity
of the model. In the backward process, the entire forward process is equivalent to
a single iteration after reaching equilibrium. Gradient calculations are performed
through implicit differentiation of the fixed-point equation, avoiding the need for
storing extensive intermediate states and differentiating spikes. Additionally, we
theoretically derive the rationality of employing double-bounded rectified linear
unit (DBReLU) as a firing rate estimator for neurons in a single-step approxi-
mation. Our contributions include:

– We propose a training method for SNNs with constant memory costs in-
dependent of simulation time, demonstrating faster training and inference
speeds, as well as lower energy consumption.

– We theoretically derive the rationale behind the DBReLU activation function
as a firing rate calculation function for SNNs in equilibrium state. This acti-
vation function enables an unbiased estimation of the firing rates of neurons
in equilibrium SNNs.
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– We conduct extensive experiments on widely used dataset, including Fashion-
MNIST, CIFAR-10, CIFAR-100, and N-MNIST. The results indicate that
our method significantly saves memory compared to the BPTT method and
has sparser spiking activity. In contrast to general equilibrium SNNs, our
model achieves better performance with fewer time steps. Compared to the
latest efficient training methods for SNNs, our approach is equally competi-
tive.

2 Related Work

Training of Spiking Neural Networks. A classic training method with biological
plausibility is the spike timing dependent plasticity (STDP) method [4,19,33,40],
which adjusts synaptic weights based on the differences in spike timing between
neurons, enabling self-organized feature extraction and adaptation to dynam-
ically changing inputs without requiring global error feedback, but its perfor-
mance is suboptimal. With the increasing interest in SNNs within the field of
ANNs, methods have been proposed to convert pre-trained ANNs into more
energy-efficient SNNs. The ANN-SNN approach leverages the correspondence
between the activation functions of ANNs and the neuron models of SNNs, trans-
forming high-performance ANNs into their corresponding SNNs [6, 11, 28, 32].
However, SNNs generated by the ANN-SNN conversion methods take a longer
time to achieve high accuracy, as the consistency between ReLU activation
and LIF firing rates breaks down when the time steps decrease. Another com-
mon training method involves directly training SNNs through backpropaga-
tion [9, 22, 25, 30]. To avoid non-differentiable step functions, direct training
methods typically use smooth functions as substitutes for step functions during
backpropagation. However, this practice introduces substitute errors, and these
errors accumulate over time, affecting the model’s performance. Additionally,
rate-based SNNs have longer latencies compared to ANNs, and the performance
of SNNs depends on this latency. And direct training requires storing intermedi-
ate activation values, which increases with the time steps, resulting in significant
and potentially unacceptable memory costs. To achieve low latency and mini-
mal memory costs, we focus on recently proposed implicit models to reduce the
number of parameters and the storage of activation values [1, 7, 17], and avoid
the cumulative errors caused by the SG method through the unique gradient
solving approach of implicit models.

Efficient Training of Spiking Neural Networks. To address the issue of non-
differentiability during the training of SNNs through backpropagation, implicit
differentiation methods are often employed to circumvent non-differentiable points.
[34] suggests that SNNs can be viewed as a hybrid of discrete and continuous sys-
tems, and the moments of system state transitions satisfy the local applicability
of the implicit function theorem (IFT). Therefore, it becomes possible to com-
pute jumps in their partial derivatives, enabling accurate gradient calculations
and avoiding the accumulation errors caused by SG methods. Another study,
through IFT, has proven the computability of gradients in SNNs and achieved
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precise gradient training by leveraging causal relationships between peaks [18].
However, these approaches do not seamlessly integrate with existing sophisti-
cated ANNs training tools and have only been validated on toy datasets. For
memory and time efficiency, some training methods for SNNs typically aim to
reduce model complexity or adopt approaches similar to online training. [14]
reduces memory requirements by sharing leaky integrate and fire (LIF) neu-
rons between different layers and channels. [13, 21] ignore some routes in the
computational graph of SNNs as they unfold over time, reducing the time cost
and memory cost of SNN training. To avoid the storage of large activation val-
ues, [39] introduces an alternative to BPTT called forward propagation through
time (FPTT), which combines the dynamic spiking neuron model of liquid time
constant neurons to enable online training of SNNs; [36] achieves performance
comparable to offline learning by tracking presynaptic activity and utilizing
instantaneous loss and gradients for forward learning. However, these meth-
ods either compromise some model performance to reduce memory consump-
tion [6, 11, 27, 28] or require additional storage for auxiliary structures [10, 11].
Recently, some works have also adopted implicit neural networks to achieve low
memory cost for SNNs [3,5,37,37,38], but their primary challenge is the longer
time required to solve the implicit models, where [37] is similar to our method
but does not further consider the time complexity of SNNs. Unlike other works,
our approach enables training memory costs that is independent of time steps
and balances the network’s performance with its time complexity.

3 Preliminaries

3.1 Spiking Neural Networks

In SNNs, neurons transmit information using spikes. The spiking neurons in
SNNs model the dynamics of real neural cells, receiving binary spike inputs and
characterizing the received information through membrane potential and spike
outputs. We typically consider the LIF model [31]:

τ
du(t)

dt
= −(u(t)− ures) +RI(t),u < Vth (1)

where τ , u(t), ures, R, I(t) and Vth denote membrane time constant , mem-
brane potential, resting potential, membrane resistance, input current and firing
threshold. When the membrane potential exceeds the threshold, the neuron fires
a spike. In practical calculations, the dynamic description of neurons is repre-
sented by a discrete-time equation:

ui[t] = li(ui[t− 1] + I[t]− Vthsi[t]) (2)

where ui[t] is the membrane potential of the neuron i after receiving input I[t]
at time t, li is the leakage factor and si[t] is the spike output at time t. When
li = 1, Eq. (2) is the integrate and fire(IF) model.
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3.2 General Theory of Equilibrium Models

An important concept in neural network equilibrium is weight tying [1]. We
consider an N−layer weight-tied model with parameters θ:

z[i+1] = fθ(z
[i];x), (3)

where z[i+1] and x are the outputs and inputs of the current layer, respec-
tively, z[i] is the hidden state of the previous layer, and fθ is the state transition
function corresponding to the weight-tied model. When the number of model
layers is continuously stacked (i.e.N → ∞), the relationship between input and
output will satisfy the following fixed-point equation:

z∗ = fθ (z
∗;x) , (4)

where z∗ is the fixed point. To compute the derivative of the fixed point with
respect to any parameter, we take the derivative of both sides of the Eq. (4) si-
multaneously, combining the chain rule of differentiation and the IFT, ultimately
obtaining the target derivative:

∂z∗(·)
∂(·)

=
(
J−1
gθ

∣∣
z∗

) ∂fθ(z
∗, x)

∂(·)
, (5)

where z∗(·) represents the implicit function of the target derivative parameters,

J−1
gθ

|z∗ = (I − ∂fθ(z
∗,x)

∂z∗ )
−1

which can also be transformed into a fixed-point it-
eration problem for solving [1], and ∂fθ(z

∗,x)
∂(·) can be automatically computed by

the deep learning framework.

4 Method

4.1 MPIS-SNNs

As is widely recognized, SNNs typically require an adequate number of time
steps to ensure the accuracy of the model. SNNs with feedback connections can
be approximated in the temporal dimension as a multi-layer weight-tied network
with input injection (where simulation time steps correspond to the number of
network layers). Therefore, we can consider SNNs as a weight-tied block and
utilize the theory of the equilibrium model to regard the forward procedure of
SNNs as a solver for the equilibrium state, enabling the separation of the forward
and backward procedure of SNNs. In this approach, the error does not require
explicit backpropagation through time, which allows for the training of SNNs
with a constant memory footprint. However, a common issue present in both
SNNs and equilibrium models is latency, encompassing the simulation time of
SNNs and the time required to solve the fixed point in the equilibrium model.
To address this concern, we employ a shallower parallel structure.

Model Architecture. The main concept of MPIS involves, on one hand,
decomposing the vertical complexity of SNNs to reduce the simulation time of a
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Fig. 1: MPIS Architecture. Inject: Input injection module; st
n: The output spikes of

the n−th IS branch after t time steps of iteration; r∗
N : The firing rate of the N−th IS

after reaching the equilibrium state; FEBn: Feature extraction module of the n−th
parallel stream branch; Transn: Feedback module of the nth parallel stream branch;
D: Downsampling module of the current parallel stream; U : Upsampling module of
the current parallel stream.

single time step in SNNs. On the other hand, it accelerates the model’s conver-
gence by fusing each IS, thus reducing the iteration count required for solving
the fixed point and achieving the goal of shortening the forward process time.
The core framework of the MPIS model is illustrated in Fig. 1, where all IS col-
lectively form the previously mentioned state transition function fθ. The feature
map sizes output by each IS gradually decrease from top to bottom. Each IS
branch receives injections from other branches, and the firing rates of each IS
need to reach their respective equilibrium states, i.e. solving for their correspond-
ing fixed points r∗n (where n represents the index of the IS, n ∈ [1, 2, . . . , N ]).
Ultimately, multiple equilibrium states of different sizes are obtained, and the
equilibrium state corresponding to the minimum-sized IS is fed into the classifier
(though using equilibrium states of larger sizes for subsequent tasks is possible,
it leads to increased memory cost, which is clearly undesirable). Single IS. Each
IS can be viewed as an independent state transition function, consisting of a fea-
ture extraction block (FEB) and a transformation module (Trans). The input
st−1
n (with the initial input s0n being a tensor of zeros with the same shape and

dimensions as paired with FEB, the reason for which will be explained below)
undergoes feature extraction through FEB to obtain the output spikes stn at
time t. The output at time t is transformed and used as the input for time t+1
to undergo feature extraction through FEB once again. We use the term "block"
instead of "layer" to name the state transition function because, although theo-
retically any single-layer network can fit the function we want to approximate [1],
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Fig. 2: Internal structure of implicit stream (IS). FEB: Feature extraction block
within the IS. Layerl: The l−th layer in FEB, where a sequence of similar opera-
tions is defined as one layer, including convolution, batch normalization, variational
dropout, and neuron layers. ConvTrans: Transformation layer that reshapes the
output from the previous time step to match the shape of the input for the next time
step.

a single FEB does not imply a traditional single-layer network. Instead, it is a
structurally rich block composed of multiple layers, which contributes to enhanc-
ing the model’s representational capacity. The network architecture is inspired
by the designs in [1] and [37], and the specific design of a single IS is illustrated in
Fig. 2. The FEB consists of l layers of convolutional blocks, each block sequen-
tially containing a convolutional layer, batch normalization layer, variational
dropout layer, and spiking neuron layer. However, each convolutional block has
different parameter settings. The role of the Trans module is to transform the
feature map output from the l-th layer of FEB back to the shape and dimen-
sions matching the 1st layer. The Trans module provides FEB with more flexible
structural configurations; otherwise, the input and output sizes of FEB must be
identical.

Model Representational Capacity. While adopting our proposed shal-
lower single IS reduces the time costs of the forward procedure, a conspicuous
issue is the decrease in model depth, leading to a reduction in model complexity
and, consequently, impacting the model’s representational capacity, resulting in
a performance decline. Therefore, if we aim to maintain sufficient performance
with a reduced time costs, a natural idea is to parallelly increase the model
complexity. As mentioned in Sec. 3.2, to connect the model’s dynamic evolution
process with the input, it is also necessary to inject the feature information of
the input data into the FEB. However, we want the final equilibrium state(i.e.
the firing rate r∗N after the N−th IS reaches equilibrium) to depend on more
parameters, so the input is only injected into the first IS, and the initial inputs
of all ISs are set to zero. Initially, the input information only exists in the first
IS, and the other ISs do not receive features about the input. The equilibrium
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state of each IS depends on the injection from higher-level ISs (injected through
downsampling modules), and the equilibrium states of higher-level ISs are also
modulated by other ISs. The input information gradually propagates to the final
IS as all ISs converge to the equilibrium point, which enables the model to have
sufficient representational capacity. Additionally, to enhance the flexibility of the
model, the upsampling and downsampling modules responsible for fusing the ISs
can be sliding, i.e. they can choose to fuse at any layer of the FEB (the fusion
shown in Fig. 1 occurs at the last layer of the FEB). Formally, the iteration
process of the i−th IS can be expressed as:

st+1
i = F l+1→L

i (F 1→l
i (T i(s

t
i)) +

i−1∑
d=1

Dd(F
1→l
d (T d(s

t
d)))

+

N∑
u=i+1

Uu(F
1→l
u (T u(s

t
u))))

(6)

where i represents the index of the IS, i ∈ [1, 2, ..., N ], l represents the number
of layers in the feature extraction block, l ∈ [1, 2, ..., L], F a→b

i denotes the layers
from a to b in the feature extraction block of the i−th IS, Dd is the downsampling
module of the d−th IS, Uu is the upsampling module of the u−th IS, and l is
the layer number where the fusion module is located.

4.2 Training

Forward Pass. To calculate the fixed points, one can employ acceleration meth-
ods from numerical analysis related to fixed point iterations, or convert the fixed
point finding problem into a root-finding problem. However, to better align with
the temporal characteristics of SNNs, here we still adopt the naive forward iter-
ation to calculate fixed points. We denote fθ(s;x) as the overall state transition
equation for all ISs, then the forward process can be described by an iterative
equation:

st = lim
t→∞

fθ(s
t−1;x) (7)

where t represents the t−th time step, and st represents the output spikes. As
the simulation duration increases, the contribution of each new simulation step
becomes progressively smaller until the SNNs reach equilibrium, at which point
the firing rate is r∗. Activation values are not retained during the forward pass.
The equivalent pathway for the forward process is: r∗ serves as the new input
to Eq. (7) and the firing rate is calculated through single-step simulation.

Backward Pass. Let L be the loss function concerning the r∗. As the neural
network converges to the equilibrium state, the loss gradient with respect to the
parameters θ is

∂L(r∗)

∂θ
=

∂L(r∗)

∂r∗
(J−1

gθ
|r∗)

∂fθ(r
∗,x)

∂θ
, (8)
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where ∂L(r∗)
∂r∗ and ∂fθ(r

∗,x)
∂θ can both be calculated along the equivalent path

via automatic differentiation, and J−1
gθ

|r∗ can be computed by solving a linear
system [1]. The parameters are updated using the stochastic gradient descent
(SGD) algorithm:

θnew = θold − α · ∂L(r
∗)

∂(θ)
, (9)

Where θold and θnew are the parameters before and after the update, and α is
the set learning rate. In practice, we ultimately use the firing rate rT obtained
from a finite number of simulation steps T as an approximation of r∗. When the
approximation error is sufficiently small, the error between the approximation
and the true value has a negligible impact on the model’s performance [1, 2].

4.3 Double-bounded Rectified Linear Unit

When FEB has multiple layers of neurons, the presence of step functions (spiking
neurons) still prevents the direct calculation of derivatives within FEB. Inspired
by the ANNs-SNNs [6, 28] and the implicit differentiation method for equilib-
rium SNNs [1,37], we derive the DBReLU as the firing rate calculation function
for equilibrium SNNs. We can first intuitively describe the effectiveness of our
proposed method. In the research of ANNs to SNNs, the performance of the
converted SNNs is directly proportional to the number of simulation time steps.
However, due to hardware limitations, the simulation steps cannot be increased
indefinitely. In MPIS-SNNs, the final output corresponds to the fixed point of the
model, which is equivalent to the firing rates of neurons after an infinite number
of time steps of simulation. IF neurons will be equivalent to unbiased estimators
of linear rectification units over time. The formal expression of DBReLU is

rli = Min

Max

0,

(∑M l−1

j=1 W l
ijr

l−1
j

)
Vth

 , 1

 , (10)

where rli represents the firing rate of the i−th neuron in the l−th layer, M l−1 is
the total number of neurons in the (l−1)−th layer, W l

ij is the connection weight
from the j−th neuron in the (l − 1)−th layer to the i−th neuron in the l−th
layer, and V is the threshold of the neuron. To reduce the number of inactive
neurons, we have also employed techniques such as weight normalization [29]
and batch normalization [12] as auxiliary measures.

Proof. Let V (t)
l
i represent the membrane potential of the i−th neuron in

the l−th layer at time t, then the membrane potential transformation formula
for the neuron is

V (t)
l
i = V (t− 1)

l
i +

M l−1∑
j=1

W l
ijs(t)

l−1
j − Vths(t)

l
i , (11)

where s(t)
l
i represents the spike emitted by the i−th neuron in the l−th layer

at time t, with a value of either 1 or 0. For SNNs with T steps, the following
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equation is satisfied:

T∑
t=1

V (t)
l
i =

T∑
t=1

V (t− 1)
l
i +

T∑
t=1

M l−1∑
j=1

W l
ijs(t)

l−1
j − Vth

T∑
t=1

s(t)
l
i. (12)

The average firing rate of the i−th neuron in the l−th layer within the time
period T is calculated as:

rli =
1

T

T∑
t=1

s (t)
l
i =

1

TVth

V (0)
l
i − V (T )

l
i +

T∑
t=1

M l−1∑
j=1

W l
ijs (t)

l−1
j

 . (13)

Let the sum of all inputs in the previous layer be denoted as Ct =
∑M l−1

j=1 W l
ijs(t)

l−1
j ,

and the membrane voltage difference at the initial and final moments as V∆ =
V (0)li−V (T )li. When SNNs converge to a fixed point, the model is equivalent to
SNNs with an infinite number of simulated time steps (i.e.T → ∞). The firing
rate computation is expressed as:

rli = lim
T→∞

1

TVth

(
V∆ +

T∑
t=1

Ct

)
. (14)

Since V∆ is a constant, it follows that lim
T→∞

1
TVth

. The normalized floating-
point values of the image data are directly used as the firing rates for the previous
layer’s inputs into the first layer of the MPIS-SNNs. For the neuron i in the first
layer, the sum of all upstream inputs is a constant, which we denote as a0i . From
Eq. (14), firing rate is derived that:

r1i =
a0i
Vth

. (15)

Following the derivation from Eq. (11) to Eq. (15) for higher layers, we obtain:

rli =
al−1
i

Vth
, (16)

where al−1
i =

∑M l−1

j=1 W l
ijr

l−1
j .

5 Experiments

In this section, we investigate the empirical performance of our proposed method
through four parts. Firstly, we compare the performance between the BPTT
training method and our approach on both a static dataset and a neuromorphic
dataset, assessing metrics such as time costs, memory costs, accuracy, and firing
rate (energy efficiency). Then, we compare the general equilibrium SNNs with
MPIS-SNNs in terms of time efficiency and accuracy. In the third part, we discuss
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the impact of multi-parallel IS on the convergence of equilibrium SNNs. Finally,
we evaluate the performance disparity between MPIS-SNNs and some recently
proposed efficient training methods for SNNs. Our primary aim is to demonstrate
the effectiveness and practicality of MPIS-SNNs, rather than achieving state-of-
the-art(sota) results in specific tasks. Nevertheless, it is evident that MPIS-SNNs
exhibit significant competitiveness. The details of each experiment are provided
in supplementary section 1.

5.1 Comparing with BPTT

We compare our approach with BPTT on the static dataset Fashion-MNIST [35]
and the neuromorphic dataset N-MNIST [23], with the results shown in Tab. 1.
It should be noted that the structures listed in the table represent the settings
for a single IS, and the complete architecture comprises two such IS(the same
notation is used for the architecture of MPIS-SNNs in subsequent sections).
The results demonstrate that MPIS-SNNs achieve significantly higher perfor-
mance with less simulation time compared to SNNs trained directly. Moreover,
the memory costs of MPIS-SNNs is a constant, independent of the time steps,
whereas the memory costs of BPTT increases with the simulation time and even-
tually becomes unacceptable. The firing rate is a critical metric for evaluating
the energy consumption of SNNs. We calculate the average firing rates of trained
models derived from the two training methods on the N-MNIST dataset, as illus-
trated in Tab. 2. The results demonstrate that MPIS-SNNs have a significantly
lower firing rate compared to the BPTT training method, which corresponds to
a lower energy consumption.

Table 1: Comparison of Performance on Fashion-MNIST and NMNIST.

Method Size Architecture T Acc Time Memory
30 89.60% 31s 2.1G

BPTT 133K
16C3-32C3
-48C3-FC10 100 89.70% 1min32s 4.8G

30 93.14% 30s 1.2G
Fashion-MNIST

MPIS 133K
16C3-32C3
-48C3-FC10 100 93.23% 1min27s 1.2G

30 98.21% 1min24s 12.8G
BPTT 213K

32C3-32C3
-64C3-FC10 100 - - Out of memory

30 99.31% 1min35s 3.3G
N-MNIST

MPIS 213K
32C3-32C3
-64C3-FC10 100 99.27% 5min5s 3.3G

5.2 Comparing with the General Equilibrium SNNs

We construct MPIS-SNNs with the same number of parameters and a similar
structure as the General equilibrium SNNs (IDE-Nets [37]) and compare their
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Table 2: Comparison of Firing Rate.

Firing Rate

Layer1 Layer2 Layer3

BPTT 5.06e-2 7.24e-2 8.98e-2

MPIS 8.0e-4 7.0e-4 7.3814e-5

performance on more complex CIFAR-10 and CIFAR-100 datasets [15]. To elim-
inate experimental environment errors, we locally test the original code provided
by [37] (for a direct comparison based on the original paper’s results, refer to Sec-
tion 5.4). Additionally, to explore the performance of MPIS-SNNs, we also build
models with a larger number of parameters. The results are shown in Tab. 3. In
terms of accuracy, MPIS-SNNs achieve higher accuracy with fewer simulation
time steps. In terms of training speed, MPIS-SNNs are still faster than IDE-Net
even with more parameters. Specifically, MPIS-SNNs perform better than IDE-
Nets with 100 time steps on both datasets using only 30 time steps, and the time
costs of MPIS-SNNs is less than half of IDE-Nets. When the parameter count
exceeds IDE-Net’s by twofold, MPIS-SNNs see a 2.90% increase in accuracy on
CIFAR-10 and a 4.14% increase on CIFAR-100, while maintaining faster train-
ing speeds. Th highlights the potential and adaptability of MPIS-SNNs. High
time efficiency and performance improvement demonstrate the potential and
flexibility of MPIS-SNNs.

Table 3: Comparison of Performance on CIFAR-10 and CIFAR-100.

Method Size T Acc Time

CIFAR-10
IDE-Nets 11.8M 30 90.37% 12min10s

100 90.57% 22min34s

MPIS-SNNs 11.8M 30 92.79% 2min34s

28.5M 30 93.27% 3min48s

CIFAR-100
IDE-Nets 14.8M 30 70.26% 12min33s

100 71.12% 21min50s

MPIS-SNNs 14.8M 30 73.19% 5min33s

30.0M 30 74.40% 8min38s
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Fig. 3: Model Convergence on Different Datasets

5.3 Convergence of MPIS-SNNs

To investigate the convergence of MPIS-SNNs, we simulate 100 time steps for
MPIS-SNNs with a single IS and with two ISs, respectively, and plot the dif-
ference norm(i.e. r∆(t) = r(t) − r(t − 1)) at each time. The evolution of the
convergence curve is depicted in Fig. 3. The convergence curves demonstrate
that MPIS-SNNs with two ISs (lighter blue) converge to equilibrium states more
rapidly, and the smaller the IS branch, the quicker the convergence. This result
further explains why MPIS-SNNs require fewer simulation time steps to achieve
better results and utilize faster convergence to reduce the latency of SNNs.

5.4 Comparing with the Latest Efficient Training Methods

To demonstrate the effectiveness and competitiveness of MPIS-SNNs, we sur-
vey recent methods for efficient training of SNNs, which can be broadly cat-
egorized into three objectives: reducing SNNs latency [8], minimizing mem-
ory cost in SNNs training [24, 26, 36, 37, 39], and lowering energy consumption
in SNNs [16, 24]. The comparative results between MPIS-SNNs and these ap-
proaches are presented in Tab. 4, with metrics derived from the optimal values
reported by their respective authors. It is evident that MPIS-SNNs showcase
high competitiveness across various tasks, notably achieving sota on N-MNIST,
Fashion-MNIST, and CIFAR-100 datasets.

6 Conclusion

Compared to ANNs, SNNs are a type of neural network with greater biological
plausibility. However, direct training of SNNs has always faced challenges such
as high memory costs and non-differentiability. Additionally, the performance of
SNNs depends on sufficient simulation time steps, leading to high latency. To
address these issues, we propose an implicit training method for SNNs based
on equilibrium model theory. During the forward procedure, we accelerate the
computation speed and convergence rate of SNNs by driving multiple parallel
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Table 4: Comparison of Performance on Fashion-MNIST,NMNIST,CIFAR-10 and
CIFAR-100.

Method Architecture T Accuracy

N-MNIST
IDE-Net (2021) [37] 64C5-FC10 30 99.47%

HS-IF (2023) [16]
64C3-P2-128C3-P2
-128C3-P2-FC10

15 99.44%

MPIS
32C3-32C3
-64C3-FC10

30 99.51%

Fashion-MNIST
IDE-Net (2021) [37] 400-FC10 5 90.25%

LTC-SNNs (2023) [39]
128C3-P2-128C3-P2

-FC2048-FC100-AP10
784 93.58%

MPIS
128C3-128C3
-256C3-FC10

1 93.83%

CIFAR-10

IDE-Net(2021) [37]
128C3-256C3-512C3

-1024C3-FC10
100 92.82%

Hybrid SL (2021) [16] VGG16 100 91.29%
Temporal Pruning (2022) [8] VGG16 1 93.05%

OTTT (2022) [36] VGG11 6 93.73%
AC2AS (2023) [32] ResNet17 5 92.88%

MPIS
128C3-256C3-512C3

-1024C3-FC10
10 93.27%

CIFAR-100

IDE-Net(2021) [37]
128C3-256C3-512C3

-1024C3-FC10
100 73.43%

Hybrid SL (2021) [16] VGG11 120 64.98%
Temporal Pruning (2022) [8] VGG16 1 70.15%

OTTT (2022) [36] VGG11 6 71.11%
AC2AS (2023) [32] ResNet17 5 73.61%

MPIS
128C3-256C3-512C3

-1024C3-FC10
5 74.93%

and mutually fused shallower implicit streams to reach equilibrium simultane-
ously. In the backward procedure, we equivalently represent SNNs with infinite
time steps in a single time step, achieving constant memory costs independent
of simulation time. Furthermore, to address the non-differentiability within fea-
ture extraction block, we derive double-bounded rectified linear unit as the firing
rate estimation function, avoiding the time-accumulated errors caused by surro-
gate gradient. Extensive experiments demonstrate the advantages of our method
in terms of memory costs, network latency, accuracy, and energy consumption
(spikes sparsity).
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