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We provide more details in this supplementary material, including: 1) Exper-
iments on the impact of modality on gait recognition. 2) Feature visualization
about our contrastive silhouette-point pre-training strategy (CSPP). 3) Exam-
ples of generated multimodal gait data for contrastive pre-training.
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Fig. 1: The overview of CL-Gait-F. We modify the cross-modality network of CL-Gait
to obtain CL-Gait-F for camera-LiDAR multi-modality gait recognition. The input to
CL-Gait-F consists of synchronized sequences of silhouettes and point clouds.

A Impact of Modality

To investigate the impact of different modalities on gait recognition tasks, we
compare the performance of single-modality, multi-modality, and cross-modality
gait recognition approaches. For single-modality methods, we compare with the
state-of-the-art methods on the SUSTech1K dataset [9]. Because there are no
existing camera-LiDAR multi-modality methods for gait recognition, we modify
the cross-modality network of CL-Gait to obtain CL-Gait-F, as illustrated in
Fig. 1. The input to CL-Gait-F consists of synchronized sequences of silhouettes
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from camera and point clouds from LiDAR. The quantitative results are shown
in Tab. 1, from which the following observations can be obtained: 1) The multi-
modality method, CL-Gait-F, surpasses all single-modality methods, indicating
the complementarity of the two modalities and also proving that the network of
CL-Gait can effectively extract distinguishable features from both modalities. 2)
Cross-modality gait recognition performs worse than other methods because it
needs to handle the significant modality discrepancy between different modali-
ties. It is a valuable but challenging task that still requires further research.

Table 1: Performance of state-of-the-art methods under different modalities on the
SUSTech1K dataset. ‘-’ indicates that the result is not reported in the paper.

Method Modality Rank-1 Rank-3 Rank-5

GaitSet [1]

Camera

65.04 - 84.76
GaitPart [3] 59.19 - 80.79
GaitGL [5] 63.14 - 82.82
GaitBase [2] 75.98 86.22 89.59
PointNet [7]

LiDAR

31.33 - 59.75
PointNet++ [8] 50.78 - 82.38

PointTransformer [10] 44.37 - 76.70
SimpleView [4] 64.83 - 85.77
LidarGait [9] 86.66 94.10 95.92

CL-Gait-F (ours) Camera and LiDAR 90.06 95.97 97.31

CL-Gait (ours) LiDAR to Camera 53.29 69.54 75.59
Camera to LiDAR 55.12 71.23 77.31

B Feature Visualization

To visually demonstrate the effectiveness of our proposed contrastive silhouette-
point pre-training strategy (CSPP), we use t-SNE to visualize the feature dis-
tributions of the first 100 individuals in the SUSTech1K test set extracted by
CL-Gait with and without CSPP, as shown in Fig. 2 and Fig. 3. We refer to
CL-Gait without pre-training as CL-Gait-B. We can observe that the feature
distributions extracted by CL-Gait and CL-Gait-B share certain similarities.
However, for cross-modality retrieval tasks, CL-Gait demonstrates better dis-
criminative ability. In Fig. 2, features of the same modality for some individuals
cluster together and are distant from features of another modality, as empha-
sized by the colored elliptical circles. This is primarily due to the significant
modality discrepancy between 2D silhouettes and 3D point clouds. Conversely,
in Fig. 3, the clustering phenomenon within the same modality is significantly
reduced, making cross-modality retrieval more accurate, as indicated by the gray
boxes. We attribute this to the potent influence of our proposed CSPP, which
effectively mitigates modality discrepancy.



CL-Gait 3

Fig. 2: The feature distribution of the first 100 individuals in the SUSTech1K test set
extracted by CL-Gait without pre-training (CL-Gait-B). Stars and points respectively
represent the features of silhouette sequences and point cloud sequences, and distinct
colors indicate different individuals. Features of the same modality for some individuals
cluster together and are distant from features of another modality, as indicated by the
elliptical circles. This is primarily due to the significant modality discrepancy between
2D silhouettes and 3D point clouds.

Fig. 3: The feature distribution of the first 100 individuals in the SUSTech1K test set
extracted by CL-Gait with contrastive pre-training. The individuals within gray boxes
correspond to these within the elliptical circles in Fig. 2. The clustering phenomenon
within the same modality has been greatly reduced, making cross-modality retrieval
more accurate. This can be attributed to the effectiveness of contrastive pre-training
in mitigating modality discrepancy.



4 W. Guo, Y. Liang et al.

C Generation of Pre-training Gait Data

C.1 Comparison with Real Gait Data

To demonstrate the effectiveness and realism of our proposed method of multi-
modal gait data generation, we present several generated examples and compare
them with the real data, as shown in Fig. 4. The examples are from SUSTech1K
dataset, because it includes RGB images, real point clouds and corresponding
depth images, for the comparison with our generated data. From Fig. 4, we can
observe that the depths estimated by our method are realistic. The generated
point clouds and the depth maps obtained from point clouds are very close to the
real data. Furthermore, as shown in Fig. 4b, even in low-light environments, our
method can still obtain accurate depth estimation and generate gait data that
closely matches real-world conditions. The realism of the generated point clouds
and depth maps, along with the consistency of the paired gait data, ensures
the effective implementation of contrastive pre-training to mitigate modality
discrepancy in cross-modality gait recognition tasks.

Real Gait Data

Generated Gait Data

(a)
Real Gait Data

Generated Gait Data

(b)

Fig. 4: Examples of generated multimodal gait data and corresponding real data. In
each example, the green box contains the estimated and generated gait data, and the
blue box contains the real data. Real data acquisition costs are high. In contrast, our
synthetic data can be easily accessed at scale.

C.2 Visualization of Generated Samples

Our CL-Gait can automatically generate training pairs from RGB images or
videos without human involvement. Thus, huge amount of RGB images can
be used to generate training pairs for contrastive pre-training, which helps the
supervised networks generalize to various scenes. Figure 6 shows some generated
samples from real-world video sequences that cover individuals from different
datasets, scenarios, and views.
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(a) SUSTech1K [9], scene 1, view 225°.

(b) SUSTech1K [9], scene 2, view 0°.
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(c) SUSTech1K [9], scene 3, view 45°.

(d) HITSZ-VCM [6].

Fig. 6: Examples of our multimodal gait data generation method. The examples are
sequence data, covering individuals from different datasets, scenarios, and views.
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