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Abstract. The Segment Anything model (SAM) has brought signi�cant
changes to the segmentation �eld with its superior performance, but its
extensive computational resource requirements remain a limiting factor.
Many works, such as MobileSAM, Edge-SAM, and MobileSAM-v2, have
explored lightweight solutions. However, their use of traditional Grid
Search sampling strategies or two-stage concatenation methods, which
do not allow for end-to-end training, severely limit the performance of
segment everything (SegEvery).
This paper introduces Lite-SAM, an e�cient end-to-end solution for the
SegEvery task designed to reduce computational costs and redundancy.
Lite-SAM is composed of four main components: a streamlined CNN-
Transformer hybrid encoder (LiteViT), an automated prompt proposal
network (AutoPPN), a traditional prompt encoder, and a mask decoder.
All these components are integrated within the SAM framework. Our
LiteViT, a high-performance lightweight backbone network, has only
1.16M parameters, which is a 23% reduction compared to the lightest
existing backbone network Shu�enet. We also introduce AutoPPN, an
innovative end-to-end method for prompt boxes and points generation.
This is an improvement over traditional grid search sampling methods,
and its unique design allows for easy integration into any SAM series
algorithm, extending its usability.
we have thoroughly benchmarked Lite-SAM across a plethora of both
public and private datasets. The evaluation encompassed a broad spec-
trum of universal metrics, including the number of parameters, SegEvery
execution time, and accuracy. The �ndings reveal that Lite-SAM, oper-
ating with a lean 4.2M parameters, signi�cantly outpaces its counter-
parts, demonstrating performance improvements of 43x, 31x, 20x, 21x,
and 1.6x over SAM, MobileSAM, Edge-SAM, E�cientViT-SAM, and
MobileSAM-v2 respectively, all the while maintaining competitive ac-
curacy. This underscores Lite-SAM's prowess in achieving an optimal
equilibrium between performance and precision, thereby setting a new
state-of-the-art(SOTA) benchmark in the domain.

Keywords: SegEvery · AutoPPN · LiteViT · End-to-End

∗Equal contribution.
†Corresponding author.

https://orcid.org/0009-0009-2819-3717
https://orcid.org/0009-0006-1245-3316
https://orcid.org/0009-0005-2852-1312
https://orcid.org/0009-0002-5631-5637
https://orcid.org/0009-0008-7580-0068
https://orcid.org/0000-0001-9564-1860
https://orcid.org/0009-0007-1905-5377
https://orcid.org/0000-0002-3329-7037


2 Fu et al.

1 Introduction
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Fig. 1: The proposed Lite-SAM achieves SOTA performance in terms of Backbone
Parameters (top left), Full Parameters (top right), Multiply-Accumulate Operations
(bottom left), and SegEvery time (bottom right) tasks while maintaining computational
e�ciency. The metrics were evaluated on the zero-shot learning of the COCO dataset.
Note that the comparison of backbone parameters is made against lightweight network
structures (params ≤ 40M), with MAE not falling within this scope.

Zhang et al. [41] have made a remarkable leap in the �eld of NLP, resulting in
a signi�cant breakthrough in generative AI (AIGC, also known as Arti�cial In-
telligence Generated Content) [42]. This breakthrough has largely been enabled
by the GPT-series models [3,27], which are foundation models [2] trained on ex-
tensive text datasets. Capitalizing on the success of these foundation models in
NLP, multiple studies [9,26,44] have explored the integration of image encoders
and text encoders via contrastive learning [43].

The Meta Research team has recently introduced an ambitious program
known as �segment everything� project called SAM [13]. SAM represents a cru-
cial advancement for vision framework, drawing parallels to the impact of GPT
in NLP. It comprises two key components: a ViT-based image encoder and a
prompt-guided mask decoder, which work in conjunction. SAM is designed to
handle two segmentation tasks: SegAny and SegEvery. Both tasks involve class-
agnostic mask segmentation but di�er in their objectives. SegAny uses a speci�c
prompt, such as a point or box, to isolate and segment a particular item of
interest within an image. In contrast, SegEvery's objective is to delineate all
discernible subjects in the image.
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Chaoning Zhang et al. [39] proposed a �decoupled distillation� aimed at dis-
tilling the ViT-H decoder of SAM [13], which yielded a more e�cient lightweight
encoder that could integrate with SAM's decoder. However, this algorithm model
lacks robustness in platform adaptation and exhibits considerable accuracy loss
during such translations, rendering it less suitable for deployment on mobile de-
vices. Zhao et al. [46] introduced the Fast-SAM model, built upon YOLOv8 [12],
that demonstrates remarkable segmentation capabilities. Its main limitation,
however, is the absence of a full range of interactive modalities, notably lacking
in dedicated box and point functionalities. Li et al. [15] engineered Semantic-
SAM, a model that enhances the segmentation and recognition versatility of
images across varying scales. It is imperative to highlight, though, that its sub-
stantial number of parameters contributes to longer inference times. Han Cai
et al. [4] presented E�cientViT, introduced a novel lightweight algorithm called
which achieved promising results. Chong Zhou et al. proposed Edge-SAM [47],
an algorithm that accomplishes real-time execution for the SegAny task on an
iPhone. All the aforementioned methods [4,13,15,35,39,46,47] are all evaluated
for SegAny; however, the SegEvery continues to be highly time-demanding.

MobileSAM-v2 [40] proposed an innovative training approach for YOLOv8
[12] that uses pre-generated prompts (Object-Aware Prompt Sampling) in place
of the traditional Gridsearch sampling strategy, enhancing the e�ciency of the
SegEvery process. Despite this improvement, this approach necessitates the use
of separate models, which is considered a stopgap measure. Due to YOLOv8's
inherent inference and training demands, the overall time savings may be limited.

In order to address the aforementioned issues, our contributions can be sum-
marized as follows:

� We Introduced LiteViT, a lightweight CNN-Transformer encoder, enhancing
accuracy with reduced parameters, ideal for limited computational environ-
ments.

� The development of AutoPPN, an automated prompt proposal network, im-
proving e�ciency over grid search methods and integrating easily with SAM
series algorithms.

� Validated Lite-SAM's performance through experiments, as depicted in Fig. 1,
showing accelerated results on SegEvery while preserving accuracy.

2 Related Works

2.1 Segment Anything

In the evolving �eld of image segmentation, the SAM [13] stands out as a sig-
ni�cant progress. Its groundbreaking training methodology and exceptional per-
formance on extensive visual datasets distinguish it. SAM is particularly adept in
class-agnostic segmentation and shows impressive e�cacy in zero-shot scenarios.

In addition to the work on lightweight versions of Segment Anything and its
variants mentioned in [4, 13, 15, 35, 39, 40, 46, 47], a series of works combining
SAM with various downstream tasks have also achieved impressive results.
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Grounded SAM [28] integrates Grounding DINO's open-set detection with
SAM, enabling text-guided detection and segmentation in images. SegGPT [32]
standardizes diverse segmentation data into a single image format, excelling in
segmenting both in-domain and out-of-domain subjects with strong performance.
Zou et al. [49] presented SEEM, featuring a versatile decoding mechanism for
various segmentation tasks, aiming to create a universal interface akin to large
language models. Inpaint Anything [37] introduces a novel �click and �ll� method
for mask-free image inpainting, blending SAM models with AIGC to create an
e�cient and user-friendly solution for inpainting tasks. SAM3D [36] advances
3D perception by mapping 2D segmentation to 3D spaces. It enables 3D point
cloud mask prediction using RGB images with the SAM model, eliminating the
need for additional training or �ne-tuning.

As a multipurpose foundational model, SAM has greatly enhanced interactive
segmentation techniques and demonstrated remarkable �exibility across diverse
segmentation tasks. Its contributions has notably expanded the horizons for ap-
plications in open-world image understanding. However, a noteworthy limitation
of SAM is its constrained real-time processing capabilities, which poses obstacles
for time-sensitive applications.

2.2 Lightweight ViT and CNN

Historically, mobile vision applications have heavily relied on lightweight
Convolutional Neural Networks (CNNs) like MobileNet [11] and Shu�eNet [21,
45]. The MobileNet series [10, 29] was pioneering in its segmentation of convo-
lution blocks into depth-wise and point-wise convolutions, signi�cantly reducing
model size and computational demand. The emergence of Vision Transformers
(ViTs) [7] has spurred e�orts to streamline these architectures, resulting in more
compact and e�cient models such as Deit-Small (Deit-S) and Deit-Tiny (Deit-
T) [30]. MobileViT [23] fused ViTs with conventional convolutions, outperform-
ing MobileNet-v2 [29] by focusing on improved local feature extraction, a forte
of CNNs. The trend toward computational economy is further advanced by sub-
sequent models, including E�cientFormer [17], E�cientViT [20], Next-ViT [16],
TinyViT [33], and FastViT [31].

Through extensive experimentation, our Lite-SAM algorithm achieves an op-
timal balance between model complexity and inference speed. In our research,
we introduce Lite-SAM, a lightweight algorithm that capitalizes on the LiteViT
backbone and leverages a prompt-based network architecture, namely AutoPPN.
Lite-SAM distinguishes itself by having a low parameter count and reduced com-
putational costs, yet it is capable of attaining performance benchmarks similar
to those of SAM-B. Our comprehensive testing indicates that Lite-SAM strikes
an optimal balance, o�ering reduced model complexity while maintaining swift
inference speeds.
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Fig. 2: (a) Overview of the proposed Lite-SAM. The architecture consists of two de-
tachable blocks, namely the Lightwight ViT backbone (LiteViT), Automated Prompt
Proposal Network (AutoPPN). (b) Macro Architecture of LiteViT. (c) Macro Archi-
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3 Method: Lite-SAM

3.1 Design motivation and choices

We present the Lite-SAM architecture, which consists of four main compo-
nents: a LiteViT encoder, an AutoPPN network, a standard prompt encoder, and
a mask decoder as delineated in the SAM framework [13]. This con�guration is
visualized in Fig. 2 (a). The novel AutoPPN module was speci�cally designed to
streamline the automated prompt task. It simultaneously regresses both bound-
ing box prompts and point prompts in an end-to-end fashion, which signi�cantly
cuts down the inference time for the SegEvery task when compared with dense
positional encoding schemes from previous research. This advancement is key to
achieving real-time segmentation. A comprehensive overview of the architecture
and training methodologies will be provided in the forthcoming sections.

3.2 LiteViT Architecture

Standard self-attention token mixers [7] are known for their high computa-
tional cost. In contrast, the combined CNN-Transformer hybrid structure plays
an essential role in crafting lightweight Vision Transformer (ViT) networks [20,
24,31,38]. This hybrid balances model accuracy with computational e�ciency. In-
spired by e�cient variations of self-attention layers in existing research, we have
developed our LiteViT image encoder, beginning with a PoolFormer-S12 [38]
baseline. We closely examine our architectural decisions, as detailed in Tab. 1
and illustrated in Fig. 3. As a supplement, we have also demonstrated the ex-
cellent scalability of LiteViT in Tab. 1.

We base our image encoder model on a novel building block, referred to as the
LiteViT Block. The detailed architectural speci�cations can be found in Fig. 2
(b). To overcome the challenge of capturing local features, we incorporate mul-
tiscale pooling into our lightweight attention module. Speci�cally, we introduce
the Multi-Scale Pooling Module (MSPM) module to enhance the receptive �eld
at each stage of the network architecture e�ciently.

Within a LiteViT Block, the input is �rst processed by the MSPM module,
followed by a convolutional MLP (Multilayer Perceptron) module; each stage
is connected via skip connections. To facilitate downsampling and adjust the
output channels at each stage, we employ a dedicated module known as the
Patch Merge module, which e�ectively acts as a stem convolutional layer.

3.3 AutoPPN

The standard approach of using dense positional encoding for prompts may
not be suitable for real-time segmentation tasks due to the processing time re-
quired. To enhance the inference performance of the SegEvery task, we introduce
the AutoPPN module, the architecture is detailed in Fig. 2 (c).

It has been well-established that representing objects by a single point located
at the center of their bounding box is a straightforward and e�cient technique



Lite-SAM Is Actually What You Need for Segment Everything 7

Table 1: LiteViT Attention block Ablation Studies. All models are trained
and benchmarked using the same settings described in Sec. 4.2, with uni�ed input
resolution 640×640. As a supplementary addition, we have meticulously documented
the performance metrics of LiteViT, speci�cally its �oating-point operations (FLOPs),
latency, and evaluation metrics, when scaled to 2 and 3 times the parameter volume of
the baseline LiteViT network. Notably, this scaling achieves impressive mAP scores of
56.9% and 58.1% for 1-box prompt segmentation on the COCO dataset, respectively.
These results underscore the commendable scalability of LiteViT.

Architectual
Attention
Block
Choices

Params ↓
(M)

MACs ↓
(G)

Backbone
Latency ↓

(ms/1-batch)

COCO 1-box
prompt mAP ↑

(%)

Stages 1-4
Embedding_dims

PoolFormer-S12
(Baseline [38])

Fig. 3 (1) 11.9 45.2 30 55.1 [64, 128, 320, 512]

PoolFormer-S12-Tiny
(Embedding_dims pruned)

Fig. 3 (1)
0.54 4.2 7.4 50.9 [32, 64, 96, 128]

1.15 10.8 8.4 52.7

[64, 96, 128, 256]

Fig. 3 (2) 1.15 10.8 8.1 53.1

Fig. 3 (3) 1.15 10.8 8.6 54.0

Fig. 3 (4) 1.16 10.9 8.7 55.2

LiteViT
(ours, Sec. 3.2)

Fig. 3 (5)
1.16

(-90%)
10.9

(-76%)
8.6

(3.4x up ↑)
55.3

(+0.2% ↑)

LiteViT
(∼2× parameters)

Fig. 3 (5) 2.19 22.3 12.4 56.9 [96, 128, 192, 384]

LiteViT
(∼3× parameters)

Fig. 3 (5) 3.63 38.0 15.9 58.1 [128, 160, 256, 512]

[14,48]. Building on this concept, our AutoPPN framework predicts both prompt
points and bounding boxes in an end-to-end manner from the output feature
map. The corresponding loss is composed of two elements: con�dence in the point
prompt and accuracy in the bounding box regression. We have implemented three
signi�cant modi�cations to re�ne our approach, which are detailed below:

(1) We have enhanced our network by replacing the basic stem convolution
network with a more sophisticated stem MSPM network. This updated net-
work e�ectively integrates multiscale spatial information, which signi�cantly
boosts the detection recall for large-scale objects or entities, such as the sky,
buildings, and water bodies.

(2) To estimate the con�dence of point prompts, we have incorporated the use of
distance transforms. This facilitates the calculation of the distance between
a point and its corresponding mask, as depicted in Fig. 4. In cases where a
point falls within multiple masks, we select the one with the smallest area.
The pseudo code for this procedure is provided in supplementary materials.
Unlike the Gaussian-based method referenced in [48], our technique enables
the creation of a softened pointwise ground-truth distinction between fore-
ground and background. Additionally, our method prioritizes the identi�-
cation of the most central points of objects or entities rather than simply
focusing on the center of their bounding boxes. This modi�cation helps to
alleviate the ambiguity present in scenarios involving unclear point prompts.
When computing loss, we have opted for a hard mining Mean Squared Er-
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Table 2: AutoPPN Ablation Studies. All models are trained and benchmarked
using the same settings described in Sec. 4.2.

PPN Architectural Choices
Sec. 3.3

Stem Conv
→ MSPM(Item 1)

New GT
& Loss(Item 2)

Object
Grouping(Item 3)

Mask
AR@1000(%)

Baseline = Stem Conv
+ Focal-Loss/Smooth-L1 Loss

+ w/o Object Grouping
- - - 48.8

1 improvement strategy
✓ - - 49.5
- ✓ - 50.1
- - ✓ 49.7

2 improvement strategies
✓ ✓ - 51.4
✓ - ✓ 52.3
- ✓ ✓ 51.1

AutoPPN
(all improvement strategies)

✓ ✓ ✓ 53.0

Table 3: Comparison of speed and accuracy acceleration of AutoPPN in
SOTA models. To ensure a fair comparison, we conducted AutoPPN training on
both SAM and MobileSAM using the same data and training parameters.

Model Sampling Strategy
SegEvery Time↓

(ms)
COCO

AR@1000 ↑ (%)

SAM-B [13] Grid-Search (32 x 32) 2084 55.1
SAM-B + AutoPPN AutoPPN(256 points) 120 (17.3x up↑) 54.7

MobileSAM [39] Grid-Search (32 x 32) 2500 53.2
MobileSAM + AutoPPN AutoPPN(256 points) 115 (21.7x up↑) 52.6

LiteViT(ours) Grid-Search (32 x 32) 1320 53.4
LiteViT + AutoPPN (ours,Lite-SAM) AutoPPN(256 points) 80 (16.5x up↑) 52.8

ror (MSE) Loss instead of the commonly used Focal-Loss for point prompt
estimation.
Meanwhile, the Smooth-L1 Loss remains the same as stated in [14] for bound-
ing box regression. It is also important to note that any unlabeled regions
are excluded from the loss computation process. During inference, we only
apply point-based non-maximum suppression (Point-NMS) and adhere to
the practice of selecting the Top N points, as described in [48].

(3) During the end-to-end regression stage, we divided the target masked re-
gions into three groups based on the size of their bounding rectangles: large
(max( h

Himg
, w
Wimg

) ≥ 0.25), medium (max( h
Himg

, w
Wimg

) ∈ (0.05, 0.25)), and

small (max( h
Himg

, w
Wimg

) ≤ 0.05). Separate loss calculations were performed

for each group. The three improvements greatly enhance the performance,
see Tab. 2. We denote

Lppn = LH−MSE + LS−L1 (1)

the total loss of PPN regression, where LH−MSE refers to the hard mining
MSE Loss and LS−L1 the Smooth L1 Loss for box regression.



Lite-SAM Is Actually What You Need for Segment Everything 9

(a) (c)

(b) (d)

Fig. 4: We compare two methods of generating pointwise foreground/background la-
bels within an image (sa_3196.jpg) from SA-1B [13] (a). All the masks are visualized
as shown in (b). The pointwise labels generated by large, medium, small masks, are
visualized with red, green and blue color, respectively. Comparing with bounding box
center with gaussian kernel approach (c), distance transform approach (d) provides a
more statisfactory result with less ambiguity.

3.4 Total loss

For the comprehensive training of Lite-SAM, we incorporate the mask loss,
which combines the original Focal-Loss [18] and Dice-Loss [18] from SAM [13].
This combination quanti�es the pixel-wise alignment between the predicted mask
and the ground truth. Additionally, a mean squared error loss measures the
discrepancy between the IoU prediction and the intersection of the predicted
mask with the ground truth mask. The mask loss is formally expressed as:

Lmask = λfLfocal + λdLdice + λiLiou (2)

With Eq. (1) and Eq. (2), the total training loss is de�ned by Ltotal = Lppn +
Lmask.

4 Experiments

In this section, we present a comprehensive evaluation of our proposed Lite-
SAM framework. To ensure a rigorous and equitable comparison, we utilized the
same evaluation protocol as employed by other SOTA methods.
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4.1 Datasets

Public data. Lite-SAM was trained on SA-1B [13]. We selected three public
datasets to assess the zero-shot capabilities of our model: MSCOCO 2017 [19],
LVIS [8], and BSDS500 [22].

4.2 Implementation details

Hyperparameters. We developed Lite-SAM using the PyTorch framework
and trained it on 128 NVIDIA A40 GPUs, achieving an aggregate batch size of
256. The model underwent training from scratch, without the use of any pre-
existing weights. With just 18% of the SA-1B dataset [13] dataset, our model
demonstrated impressive results. We utilized the Adam optimizer with an initial
learning rate of 4e-5 and completed the training process in 4 epochs, which
took a total of 50 hours. Throughout the training, all images were resized to
640×640 pixels. Concurrently, it is essential to recognize that the choice of using
18% of the SA-1B data was based on a trade-o� between training time and
accuracy. The ablation study results regarding the selection of training data size
and backbones, are presented in our supplementary material.

For supervising the guided prompt predictions, our loss function, AutoPPN-
Loss, included a mix of hard mining MSE Loss for pointwise objectness and
L1-Loss for prompt box regression, with a respective ratio of 2:1. For the mask
prediction component, we employed a blended loss function combining Focal-
Loss [18] and Dice-Loss [18] with a weighting of 10:1. In addition, a mean squared
error loss was introduced to estimate the accuracy of the intersection over union
(IoU) prediction compared to the ground truth mask alignment. The mean In-
tersection over Union (mIoU) metric was selected as our evaluation standard for
segmentation performance.

4.3 Comparison of speed and accuracy acceleration of AutoPPN in

SOTA models

As shown in Tab. 3, the integration of AutoPPN leads to appreciable improve-
ments in SegEvery time, while preserving the recall rates. Speci�cally, with the
SAM-B [13] model, AutoPPN achieves a speedup of 17.3-fold relative to that of
a conventional Grid Search method. For MobileSAM [39], the speedup stands at
21.7-fold. When applied to our LiteViT model, AutoPPN manages a speedup of
16.5-fold, reducing the SegEvery time to less than 80 ms, a signi�cant milestone.
These experimental results compellingly illustrate the e�ciency of AutoPPN in
addressing the speed bottleneck typically associated with Grid Search.

4.4 Comparison with SOTA lightweight models on COCO 2017

In Tab. 4, we conducted detailed experimental comparisons and found that
di�erent backbone models exhibit varying levels of performance across each met-
ric. Among these models, our proposed LiteViT (which serves as our backbone
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Table 4: Comparison with SOTA lightweight backbone models on COCO.
(1) All experiments are conducted based on open-source models and trained from scrach
with same implementation described in Sec. 4.2. (2) The time tests for SegAny were
conducted on an A40 GPU, while keeping the same environment. (3) In supplementary
material, we present the classifcation capability of LiteViT on the ImageNet dataset to
serve as a pre-trained model.

Backbone Model
COCO

SegAny time Params MACs Input
1-box
(mAP)

1-box
(mIoU)

1-point
(mAP)

1-point
(mIoU)

(ms) (M) (G)

Mobilenetv2 [10,29] 48.2% 69.6% 23.5% 48.5% 5.1 1.89 4.0 640
Shu�enetv2 [21,45] 49.2% 70.6% 24.2% 49.6% 5.8 1.52 5.1 640

MobileViT [24] 51.4% 72.1% 26.2% 53.8% 11.9 5.57 13.7 640
E�cientViT [20] 54.1% 73.6% 28.4% 53.1% 18.0 30.73 106.5 640
FastViT [31] 52.3% 70.0% 28.0% 48.0% 7.5 3.98 7.0 640
TinyViT [33] 54.0% 73.4% 26.5% 52.6% 17 6.07 36.6 640

LiteViT(ours,backbone) 55.8% 74.8% 32.9% 55.3% 7.9 1.16 10.2 640

model) outperformed the other lightweight backbone models in all metrics and
achieved the best results. Speci�cally, LiteViT reached a performance of 55.8%
for 1-box mAP, 74.8% for 1-box mIoU, 32.9% for 1-point mAP, and 55.3% for
1-point mIoU. Furthermore, LiteViT demonstrated clear advantages in terms of
inference time, model parameter count, and computational load compared to
other models. Overall, our experimental results establish that LiteViT, serving
as our backbone model, is an exceptional lightweight backbone option, achieving
SOTA performance on the COCO dataset. It also o�ers faster inference times
and a relatively smaller model size. These results con�rm its e�ectiveness and
its competitive edge.

4.5 Comparison with SOTA Algorithms on COCO and LVIS

validation sets using AP and mIoU metric

In Tab. 5, we conducted detailed experimental comparisons among the latest
algorithms from the SAM series on the COCO and LVIS datasets. The results
show that the SAM-H [13] model achieved superior performance, obtaining the
highest metrics on both datasets. Speci�cally, its 1-box mIoU reached 76.5%
on the COCO dataset and 75.3% on the LVIS dataset. In contrast, the 1-point
mIoU scored 57.4% for COCO and 56.4% for LVIS.

The experimental results classify the models into two categories based on
their size: large models with a parameter count exceeding 10M and lightweight
models with fewer than 10M parameters. Among the large models are SAM-
B/L/H [13], Semantic-SAM-L [15], Fast-SAM [46], E�cientViT-L0-SAM [4],
MobileSAM-v2 [40], and E�cientViT-L1-SAM [4]. The lightweight category in-
cludes Mobile-SAM [39], Edge-SAM [47] , and Lite-SAM.

Lite-SAM, a lightweight model, achieved a 1-box mIoU performance that
surpassed SAM-B [13] by 1.3%, with signi�cantly fewer parameters and com-
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Table 5: Zero-Shot Image Segmentation Results on MSCOCO 2017 and
LVIS validation sets using mIoU and AP metric. (1) Note that the 1-box
prompt result is not avaliable in Semantic-SAM-L's released code (similarly here-
inafter). (2)�r640� means the input resolution is 640×640. (3) Note: We adopted the
method in reference [4], which is entirely based on the ground truth (GT) box for pre-
dictions, instead of using ViTDet-H's results as prompts [13].

Model
MSCOCO(mIoU) ↑ LVIS(mIoU) ↑ MSCOCO↑ LVIS ↑

1-box
(%)

1-point
(%)

1-box
(%)

1-point
(%)

AP
(%)

APS

(%)
APM

(%)
APL

(%)
AP
(%)

APS

(%)
APM

(%)
APL

(%)

SAM-B [13] 75.0 52.2 73.5 55.2 56.6 47.4 60.3 68.0 61.1 50.3 71.6 76.7
SAM-L [13] 76.4 56.8 75.0 55.8 59.4 48.8 65.3 72.1 64.9 53.5 76.1 81.9
SAM-H [13] 76.5 57.4 75.3 56.4 59.8 49.4 63.8 71.9 65.2 53.6 76.5 82.1
Semantic-SAM-L [15] N/A 54.7 N/A 34.8 N/A
Fast-SAM [46] 72.8 50.2 67.3 46.8 47.5 37.9 48.1 56.4 43.8 35.1 45.6 59.7
E�cientViT-L0-SAM [4] 74.5 51.3 73.1 52.9 56.1 44.3 59.7 70.8 59.8 46.8 70.2 80.1
E�cientViT-L1-SAM [4] 75.2 51.5 73.9 54.8 57.1 45.4 60.8 71.5 61.4 48.0 72.5 81.6
Mobile-SAM-v2* [40] 72.8 50.5 67.7 42.4 51.4 41.6 55.1 64.1 52.8 42.2 63.2 69.6

Mobile-SAM [39] 72.8 50.5 67.7 42.4 51.4 41.6 55.1 64.1 52.8 42.2 63.2 69.6
Edge-SAM [47] 74.0 51.9 69.4 43.8 52.5 42.7 56.0 65.3 54.1 43.5 63.9 70.7
Lite-SAM(ours, r640) 74.8 55.8 73.2 54.4 55.8 46.7 59.6 69.6 58.4 45.9 66.9 77.5
Lite-SAM(ours, r1024) 76.3 56.9 75.7 57.3 56.5 47.4 61.0 70.7 60.7 49.3 71.9 79.8

putational demands. Lite-SAM also outperformed Mobile-SAM [39] and Edge-
SAM [47] in terms of mIoU metrics. Regarding the Average Precision (AP) met-
ric, SAM-H [13] still recorded the highest values, with an AP of 59.8% on COCO
and 65.2% on LVIS. Lite-SAM performed better than Mobile-SAM [39] and
Edge-SAM [47] but slightly lower than E�cientViT-L1-SAM [4] in terms of AP.

Overall, these experiments highlight the outstanding performance of our Lite-
SAM algorithm, con�rming its e�ectiveness and competitive edge in the �eld.

4.6 Comparison with SOTA Algorithms Complexity and SegEvery

Speed Evaluation

In Tab. 6, we have presented detailed experimental comparisons of the latest
algorithms in the SAM series. The results reveal substantial variations in pa-
rameter size, Multiply-Accumulate Operations (MACs), and SegEvery runtime
across the di�erent algorithmic models. The Sampling Strategy is categorized
into three types: Grid-Search, Object-aware, and AutoPPN.

SAM-B [13] boasts a parameter size of 90M, MACs of 371G, and a SegEvery
runtime of 2.1s. The lightweight models, namely Mobile-SAM [39] and Edge-
SAM [47], have parameter sizes of 9.7M and o�er 39.6/23.4G MACs, respectively.
Mobile-SAM-v2 [40] implements the Object-aware strategy, leveraging YOLOv8
[12] to perform box and point detection in advance, characterizing it as a two-
stage algorithm.

Our newly developed Lite-SAM is designed as an end-to-end algorithm with
a minimal parameter size of only 4.2M. Impressively, it has reduced the SegEvery
runtime to a mere 80ms for the �rst time. This model not only demonstrates the
best performance in regards to parameter size and MACs, but also in SegEvery
inference time, which underlines its e�ciency and competitive edge.
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Table 6: Comparison with SOTA Algorithms: Model Complexity, SegEvery
Speed, and Mask AR@1000 metric Evaluation on COCO2017. (1) �r640�
means the input resolution is 640× 640. For speci�c calculation details, please refer to
the code examples in the supplementary materials. (2) * The �Fast-SAM� does not have
true interactive segmentation via point or box prompts. It employs heuristic rules for
post-process object selection, a method that aligns marginally with the SAM principles.
Therefore, the Fast-SAM algorithm and the other SAM series algorithms are completely
di�erent, making a comparison between them of no value. (3) ** The �Mobile-SAM-v2�
paper does not include statistics on the parameter size and computational complexity
of the Object-aware model, so the data has been re-estimated (43M = Yolov8(33.3M)
+ MobileSAM(9.7M)).

Model Params ↓ MACs ↓ SegEvery
Time ↓

Mask AR
@1000 (%)

Sampling Strategy Train Strategy Year

SAM-B [13] 90M 371G 2.1s 55.1 Grid-Search (32 x 32) pretrain on MAE 2023
SAM-L [13] 308M 1.3T 3.3s 56.6 Grid-Search (32 x 32) pretrain on MAE 2023
SAM-H [13] 635M 2.7T 3.5s 58.7 Grid-Search (32 x 32) pretrain on MAE 2023
Semantic-SAM [15] 202M 1.4T 2.6s 55.0 Grid-Search (32 x 32) from scratch 2023
E�cientViT-L0-SAM [4] 31M 109G 1.7s 56.7 Grid-Search (32 x 32) from scratch 2023

Fast-SAM [46] * 72.2M 443G 0.04s 53.3
Post-Process

Object Selection
pretrain on
YOLOv8

2023

Mobile-SAM [39] 9.7M 39.6G 2.5s 53.2 Grid-Search (32 x 32) distillation 2023
Edge-SAM [47] 9.7M 23.4G 1.6s 51.9 Grid-Search (32 x 32) distillation 2024

Mobile-SAM-v2 [40] ** 43M 470G 0.13s 53.6 Object-Aware distillation 2024

Lite-SAM(r640) 4.2M 12.7G 0.08s 52.8 AutoPPN(256 points) from scratch 2024
Lite-SAM(r1024) 4.2M 32.5G 0.1s 54.1 AutoPPN(256 points) from scratch 2024

To demonstrate that Lite-SAM delivers results on par with other SAM ar-
chitectures, while also showcasing its exceptional performance relative to other
lightweight SAMs, we have included visual qualitative assessments for the �SegEv-
ery� and �SegAny� tasks as supplementary material. These illustrations under-
score the e�ectiveness of the Lite-SAM approach.

Table 7: Zero-shot transfer to edge detection on BSDS500. Evaluation data
of other methods is from [13].

Method Year ODS OIS AP R50

HED [34] 2015 0.788 0.808 0.840 0.923
EDETR [25] 2022 0.840 0.858 0.896 0.930
zero-shot transfer methods:

Sobel �lter 1968 0.539 - - -
Canny [5] 1986 0.600 0.640 0.580 -
Felz-Hutt [6] 2004 0.610 0.640 0.560 -
SAM-H [13] 2023 0.768 0.786 0.794 0.928
Fast-SAM [46] 2023 0.750 0.790 0.793 0.903

Lite-SAM(ours) 2023 0.761 0.788 0.793 0.919
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4.7 Zero-Shot Edge Detection

We assessed the zero-shot edge detection capability of Lite-SAM on the
BSDS500 dataset [1, 22], following the experimental parameters established by
SAM [13] and Fast-SAM [46]. As shown in Tab. 7, Lite-SAM R50 attains a
metric score of 0.919, slightly behind SAM's 0.928 and surpassing Fast-SAM's
0.903.

5 Conclusion

In this paper, we propose an end-to-end lightweight algorithm called Lite-
SAM, which aims to address the high computational complexity issue of the
SegEvery model in the SAM series. Lite-SAM consists of the LiteViT module and
the AutoPPN module, enabling modular deployment. Our algorithm achieves
a 16-fold speedup in inference time while maintaining a minimal decrease in
accuracy compared to the SegEvery mode. Through extensive experimental tests,
we demonstrate that our approach satis�es the requirements of e�cient and
resource-friendly segmentation algorithms, providing possibilities for practical
applications in various �elds.
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