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A Datasets and Backbones Specifications

Pre-trained Backbones. In our experiments, we use a total of six backbones,
with their specifics outlined in Table 1. Specifically, under the VP framework, all
these six backbones are utilized. The results for Vit-B pretrained on ImageNet-
22K and ResNet50 are presented in the manuscript while the results for Vit-
B/Vit-L pretrained on ImageNet-1K, ConvNeXt-B and Swin-B are presented in
this supplementary. Meanwhile, Swin-B is also utilized under VPT framework.
Downstream Datasets. Detailed information about the downstream datasets
used under two framework groups is displayed in the table. Specifically, within
the VP framework, we utilized ten datasets. For datasets without publicly avail-
able splits, we followed [8] for the allocation of training and validation sets.
Additionally, the five datasets we used within the VPT framework are from
Fine-Grained Visual Classification tasks. For datasets without publicly available
splits, we followed [9].

Table 1: Specifications of six pre-trained backbones employed in this paper. All of
these backbones are pre-trained on ImageNet [3].

Backbone
Pre-trained
Dataset

# params
(M)

Feature dim
d

vit-B/16 [4] ImageNet-1k 85 768
vit-B/16 [4] ImageNet-22k 85 768
swin-B [12] ImageNet-22k 88 1024
ResNet50 [6] ImageNet-22k 25 2048
vit-L/16 [4] ImageNet-1k 307 1024
ConvNeXt-B/16 [13] ImageNet-2k 88 1024
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Table 2: Discription of various datasets evaluated.

Dataset # Classes # Train # Val # Test Description

Evaluated under VP framework

DTD [2] 47 1880 1880 1880 texture database
CUB-200-2011 [17] 200 5394 600 5794 images of birds
NABirds [16] 555 21536 2393 24633 images of birds
Stanford Dogs [10] 120 10800 1200 8580 images of dogs
Oxford Flowers [15] 102 1020 1020 6149 images of flowers
Food101 [1] 101 60600 15150 25250 images of food
CIFAR100 [11] 100 40000 10000 10000 real-life object
CIFAR10 [11] 10 40000 10000 10000 real-life object
GTSRB [7] 43 21312 2526 12630 traffic signs
SVHN [14] 10 58605 14652 26032 numbers in real-life

Evaluated under VPT framework

CUB-200-2011 [17] 200 5394 600 5794 images of birds
NABirds [16] 555 21536 2393 24633 images of birds
Oxford Flowers [15] 102 1020 1020 6149 images of flowers
Stanford Dogs [10] 120 10800 1200 8580 images of dogs
Stanford Cars [5] 196 7329 815 8041 images of cars

B More Results on Other Backbones

We assess our OTLM on Swin-B pretrained on ImageNet-22K and Vit-B pre-
trained on ImageNet-1K, presented in Table 3 and Table 4, respectively. We train
the source models for 100 epochs. And we also assess OTLM on ViT-L pretrained
on ImageNet-1K and ConvNeXt-B pretrained on ImageNet-22K, presented in
Tabe 5, we train these two source models for 50 epochs. As shown in Table 3,
the performance of the original VP with Swin-B as the backbone is not ideal.
All LM methods, especially OTLM, significantly enhance VP’s performance on
all ten downstream tasks. Moreover, OTLM notably outperforms both FLM and
ILM. Additionally, as mentioned in experiment section, pre-trained datasets with
smaller output dimensions make label mapping simpler. Therefore, compared to
backbones pre-trained on ImageNet-22K, the performance of frequency-based la-
bel mapping methods improves, as shown in Table 4. Nevertheless, performance
of OTLM remains significantly superior to other label mapping methods across
all datasets.

C Data Efficiency

To assess the data efficiency of various label mapping methods, we present the
detailed results when reducing training samples per clasee from 4k to 4 on CI-
FAR10 dataset using Vit-B pretrained on ImageNet-22K in Tabel 6.
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Table 3: Comparison of performance on 10 downstream datasets under the VP frame-
work. The utilized source model is Swin-B pretrained on ImageNet-22K. The highest
performance achieved among prompt-based methods is highlighted in bold.

Fine-tuning Prompt-based
Dataset FF LP VP FLM-VP ILM-VP OTLM

DTD 72.4 73.6 28.0 56.1 51.1 62.2
CUB200 89.7 88.6 5.4 54.5 57.9 60.9
NAbirds 86.8 85.2 3.2 46.8 47.7 52.9
StanfordDogs 86.2 86.8 12.5 81.9 82.4 86.6
Flowers102 98.3 99.4 13.7 89.5 90.8 95.5
Food101 91.7 88.2 19.8 62.9 64.9 66.1
CIFAR100 73.3 61.6 24.6 68.5 71.4 77.9
CIFAR10 98.3 96.3 76.9 93.4 92.9 95.1
GTSRB 97.1 93.8 64.3 68.8 72.3 76.8
SVHN 91.2 43.5 74.7 77.6 78.5 81.9

Average 88.50 81.70 32.29 69.97 71.00 75.58

Table 4: Comparison of performance on 10 downstream datasets under the VP frame-
work. The utilized source model is ViT-B pretrained on ImageNet-1K. The highest
performance achieved among prompt-based methods is highlighted in bold.

Fine-tuning Prompt-based
Dataset FF LP VP FLM-VP ILM-VP OTLM

DTD 70.6 68.7 47.8 53.0 54.2 57.4
CUB200 84.7 83.5 40.6 53.5 56.8 63.2
NAbirds 72.3 69.3 13.8 30.5 34.6 38.8
StanfordDogs 84.6 84.4 61.9 71.1 70.3 73.7
Flowers102 98.3 97.7 56.5 76.7 74.7 82.0
Food101 83.0 78.5 55.7 62.3 63.4 64.1
CIFAR100 87.5 77.6 54.4 63.7 64.0 64.3
CIFAR10 97.4 92.9 92.9 93.8 93.7 94.9
GTSRB 96.8 65.6 86.0 86.1 86.4 89.0
SVHN 96.9 61.1 87.8 88.0 88.2 88.7

Average 87.21 77.93 59.74 67.87 68.67 71.61

Table 5: Comparison of performance on 3 downstream datasets under the VP
framework. The utilized source models are ViT-L pretrained on ImageNet-1K and
ConvNeXt-B pretrained on ImageNet-22K. The highest performance achieved among
prompt-based methods is highlighted in bold.

Model ViT-L-1k ConvNeXt-B-22k

Method FLM-VP ILM-VP OTLM FLM-VP ILM-VP OTLM

CIFAR10 92.9 91.7 94.9 79.1 81.3 83.2
CIFAR100 50.6 51.4 72.4 18.6 23.7 29.9
StanfordDogs 62.3 64.5 87.9 14.8 32.4 62.5
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Method 100%(4000) 10%(400) 1%(40) 0.1%(4)
FLM 94.6 88.5 70.6 12.7
ILM 94.7 88.5 69.8 10.9
OTLM 95.2(+0.5) 93.6(+5.1) 80.3 (+9.7) 18.4(+5.7)

D Discussion on Tunable Parameters and Running Speed

Tunable parameters. We present the amount of trainable parameters of vari-
ous methods on Vit-B pretrained on ImageNet-22K in Table 7. VP incorporates
a minimum of trainable parameters with the input images without access to the
model instead of tuning a great number of parameters of pretrained model. As
shown in Table 7. Compared to FF and LP, the amount of parameters that VP
needs to train is negligible. Furthermore, compared to VP, existing label map-
ping methods, especially our OTLM, do not introduce additional parameters
yet significantly enhance model performance. Therefore, it is evident that a VP
method equipped with an appropriate label mapping strategy can significantly
improve training efficiency and greatly reduce the memory for model storage.

Table 7: Total trainable parameters in the input prompt or model finetuning for all
10 downstream datasets under VP framework on Vit-B pretrained on ImageNet-22K.
‘×’ denotes the multiple of the tunable parameter amount relative to the total amount
of pre-trained Vit-B pretrained on ImageNet-22K encoder parameters (85.8M).

FF LP VP FLM ILM OTLM

Total params 10.01× 0.43× 0.01× 0.01× 0.01× 0.01×

Running speed. Additionally, we report the average execution time for 1 epoch
training under the VP framework in Table 8. OTLM shares the similar run time
with ILM which is slightly behind FLM.

Table 8: Running time(s/epoch) under VP framework on DTD dataset with source
model Vit-B pretrained on ImageNet-22K.

FLM-VP ILM-VP OTLM

Running time 20 24 24

E Visualization

Visualize mapping results. we present the comparison mapping results on
CIFAR10 dataset under the VP framework using model Vit-B pretrained on
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Fig. 1: Visualize mapping results of three label mapping methods .

Fig. 2: Explanation of the difference between frequency-based LM and OTLM. (a) The
blue line represents the mapping of the ‘gray jay’ selected from the source labels by
FLM. The green line represents the mapping of the ‘gray’ jay selected from the source
labels by OTLM. (b) The orange line indicates the logit for the class ‘gray catbird’ on
the selected label of FLM for ‘gray jay’. (c) and (d) report the logits of ‘gray jay’ on
labels selection results by frequency-based LM and OTLM, respectively.

ImageNet-1K in Figure 1. Different label mapping strategies will yield different
mapping results, thereby directly affecting the model’s accuracy on downstream
datasets.
Explanation of Different Label Mapping Strategies. We report the LM
strategies of frequency-based LM and OTLM on NABirds dataset using a Vit-B
model pretrained on ImageNet-1K at the first epoch in Figure 2. Specifically,
the results of the average logit for the classes ‘gray jay’ and ‘gray catbird’ at the
model’s output are shown in subfigures (a) and (b), respectively. The average
logits for class ‘gray jay’, based on labels selected by frequency-based LM and
OTLM, are presented in subfigures (c) and (d). As Figure 2 illustrates, the
frequency-based LM, following a greedy strategy, chooses the source label with
the highest logits as the mapping for ‘gray jay’ (blue line). However, this causes
a significant transport cost since other target labels also have high logits (orange
line). In contrast, OTLM, employing a linear programming strategy, selects the
source label with the minimal transport cost (green line). Although it may not
have the highest logit in the output, as shown by subfigure (d), it has the highest
logit among the selected labels. Therefore, frequency-based LM focuses solely on
local selection results, while OTLM not only identifies the source label with the
highest association but also ensures the transport cost is minimized.
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