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Abstract. Modeling the trajectories of intelligent vehicles is an essential
component of a traffic-simulating system. However, such trajectory pre-
dictors are typically trained to imitate the movements of human drivers.
The imitation models often fall short of capturing safety-critical events
residing in the long-tail end of the data distribution, especially under com-
plex environments involving multiple drivers. In this paper, we propose
a game-theoretic perspective to resolve this challenge by modeling the
competitive interactions of vehicles in a general-sum Markov game and
characterizing these safety-critical events with the correlated equilibrium.
To achieve this goal, we pretrain a generative world model to predict the
environmental dynamics of self-driving scenarios. Based on this world
model, we probe the action predictor for identifying the Coarse Correlated
Equilibrium (CCE) by incorporating both optimistic Bellman update
and magnetic mirror descent into the objective function of the Multi-
Agent Reinforcement Learning (MARL) algorithm. We conduct extensive
experiments to demonstrate our algorithm outperforms other baselines
in terms of efficiently closing the CCE-gap and generating meaningful
trajectories under competitive autonomous driving environments. The
code is available at: https://github.com/qiaoguanren/MARL-CCE.

Keywords: Multi-Agent Reinforcement Learning · Generative World
Model · Coarse Correlated Equilibrium · Traffic Simulation

1 Introduction

Realistic traffic simulation plays an indispensable role in the development of self-
driving software [26]. It provides a safe and scalable environment for refinement
and testing before deployment in real-world scenarios. Previous simulation systems
typically predict vehicles’ trajectories by imitating realistic driver behaviors from
an offline dataset [3, 9, 22, 34, 37, 38, 41, 42]. While this approach can precisely
replicate common occurrences, it often falls short in capturing Out-of-Distribution
(OoD) and long-tail events. On the other hand, modern self-driving agents are
capable of managing routine traffic scenarios [45]; however, they often fail to
handle safety-critical events in the long tail end of data distributions [42]. This
dichotomy underscores a significant challenge: traffic simulators are proficient at
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modeling scenarios that have already been addressed by self-driving algorithms
but struggle to represent the critical and as-yet-unsolved situations accurately
that are vital for advancing the robustness of self-driving.

To more accurately simulate the long-tail or OoD events, prior works often
refine their generation process of these events with safety mapping network [42]
or traffic compliance constraint [48]. These refinement strategies often focus
exclusively on a single target agent, neglecting the dynamic interactions where
surrounding vehicles respond to the target’s movements. In real-world conditions,
however, safety-critical events (e.g., emergency braking, sudden lane changes, and
merging) often involve multiple vehicles, and human drivers can regularly adjust
their behavior in reaction to the actions of the self-driving car. This oversight
results in a persistent simulation-to-reality (sim-to-real) gap.

In this work, we develop a game-theoretic approach to generate critical events
by viewing traffic simulation as a general-sum Markov game involving multiple
agents. To better represent the realistic driving scenarios, our Makrov game is
based on a Decentralized Partially Observable Markov Decision Process (Dec-
POMDP) where each car can observe and interact with the vehicles in a confined
region, and the goal of each agent is to reach their destination within a minimum
time. The objective of our Markov game is to learn the Coarse Correlated
Equilibrium (CCE) in the competitive game while maintaining fidelity to realistic
human behaviors. These CCEs can characterize the competitive interactions of
vehicles in an interdependent manner so that the simulated vehicles can react to
the ego car’s movements, which better represents critical events in real traffic.

To efficiently learn CCE, we construct a world model from an offline dataset
to represent the environmental dynamics (e.g., action predictor, transition, and
observation model) in Dec-POMDP. This world model is implemented by multi-
modal cross-attention layers to represent the agents’ interaction with the scene
map, historical events, and surrounding vehicles. Within this world model, Multi-
Agent Reinforcement Learning (MARL) methods [24] can be incorporated to
capture the CCE. To achieve this goal, we integrate both 1) the optimistic
Bellman update [2] and 2) the magnetic mirror decent [35] into our learning
objective. Their theoretical property can guarantee the optimality and fidelity of
MARL agents in competitive games. Derived from these objectives, we design a
Coarse Correlated Equilibrium Multi-agent Soft Actor-Critic algorithm (CCE-
MASAC) by following the Centralized Training with Decentralized Execution
(CTDE) framework [27] where the critic and actor functions for each agent are
separately parameterized and iteratively updated.

Our experimental results demonstrate the superior performance of our method-
ology in high-dimensional traffic simulation domains. The CCE-MASAC algorithm
consistently surpasses competing baselines by effectively minimizing the CCE-gap.
To demonstrate the capability of the generative world model in enabling optimal
control, we delve into a detailed examination of both single-agent and multi-agent
control performances within this world model. Our analysis reveals a distinct
gap in controlling performance that arises from the competitive interactions
between agents. To illustrate how well the CCE captures safe-critical events,
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we visualize the simulated traffic in several complex and competitive scenarios.
These simulations provide an intuitive and clear illustration of our approach’s
effectiveness in modeling competitive behaviors.

2 Related Works

The works that are most related to our approach are introduced as follows:
Learning in General-Sum Games. In the general-sum game, agents often
have competing incentives [43]. In general, general-sum game solvers can be
divided into 1) value-based approaches and 2) policy-based approaches. The
value-based solvers commonly extend classic RL algorithms into the multi-agent
setting. These methods include Nash Q-learning [14], Optimistic Nash Q/V-
learning [2], CCE/CE V-learning algorithms [17, 36], and Online Mirror Descent
(OMD) V-learning [28]. The policy-based methods solve general-sum games from
a policy gradient perspective. [47] explored direct parameterization of policy for
capturing Nash Equilibrium (NE) in general-sum stochastic games. [20] introduced
the concept of Markov potential games for general-sum stochastic games, and
employed REINFORCE gradient estimators for learning a NE. Previous methods
commonly study NE under toy games, whereas the CCE solvers in practical
applications and complex game contexts are less explored.
Realistic Traffic Simulation. Traffic simulation techniques can be broadly
categorized into rule-based and learning-based approaches. Rule-based strategies
[8,18] rely on user interfaces for defining vehicle routes, with motion regulated by
analytical models such as the Intelligent Driver Model [4]. This rigidity limits their
ability to characterize real-world driving behaviors accurately. To improve realism,
learning-based approaches [21,39] predict or simulate traffic behavior by learning
from a realistic traffic dataset. The majority of data-driven approaches can
produce only static snapshots of scenarios. How to achieve interactive simulations
remains a challenge. Another area of focus is on simulating realistic driving
behaviors and trajectories [6,7,31,37,41]. Some studies focus on generating safety-
critical situations and designing paths that induce misbehavior in autonomous
vehicles [9,38,46], but these simulators can not cover the full spectrum of realistic
traffic scenarios, and how to model competitive interactions under different traffic
scenarios remains a critical challenge.

3 Problem Formulation

Decentralized Partially Observable MDP (Dec-POMDP). We formulate
the competitive game into a Dec-POMDP (S, {Ωi,Ai,Oi, ri}Ii=1, pT , γ, µ0) where:

1) i runs from 1 to I denotes the number of agents.
2) Ωi and Ai denote the spaces of observations and actions for a specific agent

i. The observed features include map, the historical trajectories, and
neighboring agents’ information. Our action space (∆x,∆y) represents
changes in the agent’s position, given the time step length ∆t. [10].
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3) S denotes the state space that comprises all agents’ historical trajectory
information, capturing the historical information of the observed features of
maps and neighboring agents.

4) Oi : S → Ωi denotes the observation function that maps states to local
observation for the ith agent. O = {O1, . . . ,OI} denotes the function set.

5) ri : {Ωi×Ai}Ii=1 → R+ denotes the agent-specific reward function that maps
actions and observations from all agents to the reward of ith agent.

6) pT : S ×A → ∆S 3denotes the transition function.
7) γ ∈ [0, 1] and µ0 ∈ ∆S denote the discount factor and the initial distribution.

General Sum Markov Games (GS-MGs). We consider the general sum
Markov Game under the Dec-POMDP. For the player i, the value function
V π
i,t : S → R and action-value function Qπ

i,t : S ×Ai → R are represented by:

V π
i,0(s) = Eµ0,pT ,π

[
T∑
t=0

γtri(ot,at)|o0 = O(s)

]
(1)

Qπ
i,0(s, ai,−ai) = Eµ0,pT ,π

[
T∑
t=0

γtri(ot,at)|o0 = O(s), ai,0 = ai

]
(2)

where −ai = {1i′ ̸=ia′i}Ii′=1
4 denotes the joint action performed by I − 1 play-

ers (without i’th player) and π = {πi}Ii=1 denotes the product policy. In our
framework, each player is assigned an individual reward function, denoted as
ri(·). This aligns with the structure of a general-sum game [28], which presents a
more complex and less explored domain compared to zero-sum and cooperative
games [16,43]. Despite the inherent challenges of this approach, its adoption is
essential for accurately depicting the behavior of drivers in real-world scenarios.
This is because human drivers typically prioritize their objectives, and their
actions inevitably affect the decision-making processes of their counterparts.
Coarse Correlated Equilibrium. In the study of GS-MGs, solutions are
characterized by states of equilibrium, wherein the participating agents cannot
further enhance their individualistic policies within the confines of the given
system. Within this context, a common objective is to identify a Nash Equilibrium
(NE) [30]. However, existing results [1,2,13,35,48] often focus on a two-player
zero-sum setting, and identifying NE in GS-MGs is particularly challenging due
to: 1) NE commonly assumes independent policies based on a full-observable
state whereas our state is partially observation and depends on multiple agents’
trajectories. 2) The potential for multiple NEs to exist within GS-MGs, each
representing a different set of strategies agents might adopt. 2) The lack of
assurance that current algorithms can efficiently discover the optimal NE or
converge to any equilibrium at all.

As a result, in this study, we pivot towards a more pragmatic objective:
the identification of a CCE. A CCE permits interdependencies among agents’
3 ∆S denotes the probability simplex over the space S.
4 Throughout this work, the bold symbols (e.g., a) indicate a vector of variables while

the unbold ones (e.g., a) represent a single variable.
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policies, allowing each agent’s strategy to be informed by the strategies of others.
This stands in contrast to the NE, which necessitates that each agent’s policy
be independently optimized. The shift in focus to CCE offers two significant
advantages: 1) It more accurately reflects the decision-making processes of human
drivers, who typically base their actions on the behavior of nearby vehicles. 2) It
eases the challenge of convergence, given that CCEs are inherently less restrictive
and more prevalent than NEs.

In alignment with this goal, unlike traditional works [29, 32] that consider
the Markov policy πMarkov

i : S → ∆Ai , our decision model further depends on
historical information, including decisions and observations of other players. The
corresponding general correlated policy is defined as follows.

Definition 1. (General Correlated Policy.) At a time step t, the general corre-
lated policy of a player i ∈ [1, I] in our Dec-POMDP environment is defined by
πi : ({Ωi×Ai}Ii=1)

t−1×Ωi → ∆Ai , which maps the historical states, previous be-
haviors of all players and the player’s current observation into her current decision.
The corresponding marginal policy (policies of other players) is defined by π−i :
({Ωi×Ai}Ii=1)

t−1×Ωi → ∆A−i where A−i = {A1× . . .Ai−1×Ai+1×· · ·×AI}.

Note that πi depends on the decision history, and thus it is time-dependent
and non-stationary. For brevity, we slightly abuse the notation by conditioning
the policy on the current state st such that ai,t ∼ π(·|oi,t,ht) where history
h = {(oi,ι, ai,ι)}t−1,I

ι=0,i=1 records the historical actions and observation of all agents
at previous t − 1 step. Such a policy considers the historical behaviors of all
players. Correspondingly, unlike the Nash equilibrium that assumes independent
policies, modifying the other players’ policies influences the player i’s current
decision in a CCE, and thus the policies from different players are correlated.
This difference plays a critical role in defining the CCE in GS-MGs:

Definition 2. (ϵ-approximate CCE in GS-MGs). A general correlated policy π
(definition 1) is an ϵ-approximate Coarse Correlated Equilibrium (ϵ-CCE) if

max
i∈[I]

(
V

†,π−i

0,i (s)− V π
0,i(s)

)
≤ ϵ (3)

where V †,π−i

0,i (s) = supπ′
i
V
π′
i,π−i

0,i (s) denotes the best response for the ith player
against π−i. We say π is an (exact) CCE if the above is satisfied with ϵ = 0.

Offline MA-RL. Another significant challenge in finding the CCE of multiple
driver scenarios is due to the unavailability of an interactive environment, and
our algorithms must be trained with only an offline database that records the
behaviors of multiple drivers simultaneously on open roads. The learned policy
must be consistent with the behaviors of human drivers recorded in the dataset.
Specifically, the problem can be summarized as follows:

Definition 3. (Offline MA-RL in GS-MGs.) let Do = {ζn, τn,1, . . . , τn,I}Nn=1

defines the offline dataset, where n = [N ] defines the number of scenario, ζn
presents the game context in the nth scenario, and τn,i = {oi,0, ai,0, . . . , oi,T , ai,T }
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denotes the trajectory of ith agent in the nth scenario. Given Do, the goal of
our algorithm is to learn a π̂ with the following properties: 1) Exploitability:
π̂ satisfies the ϵ-approximate CCE in definition 2, and 2) Fidelity: π̂ must be
consistent with the real driver’s policies such that Df (π̂,π

o) ≤ ξ where Df and
ξ denote the divergence metric (e.g., Bregman divergence in Section 4.2) and a
threshold.

4 Learning Coarse Correlated Equilibrium under the
Generative World Model

In this work, to solve the offline MA-RL problem in GS-MGs (definition 3), we
consider a model-based RL approach that 1) trains a generative world model by
imitating the trajectories in the offline dataset and 2) learns CCEs based on the
predicted environment dynamics and confined actions space.

4.1 Modelling Environmental Dynamics with Generative Model

To enable MA-RL algorithms to efficiently capture ϵ-approximate CCE in GS-
MGs based on an offline dataset, we introduce a generative world model [50] for
representing environmental dynamics.

Agent-to-Map 
Cross Attention

Map 𝜁

𝐼

Latent State 𝑠!

Map
Encoder

Agent-to-
Temporal 

Cross Attention

Recurrent 
State Update

Agent-to-Agent 
Cross Attention

Temporal 
Encoding 
{𝑧",!
$,%}"&'(

Multi-Mode
Encoding 
{𝑧",!
%,)}"&'(

Policy Net. Observation
Model

𝜇",!*'' , 𝑏",!*''

Policy Net.

𝐿𝑎𝑝𝑙𝑎𝑐𝑒'
……

𝐿𝑎𝑝𝑙𝑎𝑐𝑒+
𝜇",!*'+ , 𝑏",!*'+

Mixture Policy Network

……

Policy Modelling (Repeat for Each Agent 𝑖)

𝜔,

Predicted 
Action

{𝑎",!*'}"&'(

History Trajectory

Scene 
Encoding 
{𝑧",!*'- }"&'(

𝑊

Observation 
{𝑜",!*'}"&'(

Rewards
{𝑟",!*'}"&'(

Confined Policies

𝜋",!*''

𝜋",!*'.

……

Fig. 1: Illustrating the model structure of our world model.

Model Structure. This world model (in Figure 1) including 1) a transition
model that maps the previous state (e.g., st−1) and the action of each agent
(e.g., a1,t, . . . , ai,t) into the next state (st). 2) an observation model that maps
a state st into agent-specific observations o1,t, . . . , oI,t. 3) a constrained action
space for recording candidate actions that align well with the human preference.
We introduce these three components in the following: Context-aware Transition
Model. Under the context of our Dec-POMDP, when t = 0, s0 captures the
static game map ζ and initial locations of all agents (or cars). when t > 0, st =
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{zsi,w}
t,I
w=t−W,i=0 (w indicates the window size of temporal features) captures the

spatial-temporal information of all agents under the game map ζ in the previous
t− 1 time steps, and a1,t, . . . , ai,t denotes the movement of agents in the current
time step. To map st and a1,...,I,t to st+1, our transition model is implemented
by following parts:

– Map Encoder transfers the map ζ into map encoding zc such that zc = E(ζ).
– Agent-to-Map Cross Attention incorporates the map information zc into the

most recent agents’ trajectories τ1,t+1, . . . , τI,t+1 where τ1,t+1 concatenates
a1,t and τ1,t such that e.g., zsi,t+1 = CrossAttn(τ1,t+1, . . . , τI,t+1, z

c).

The final state st+1 is represented by concatenating st = {zsw,i}
t,I
w=t−W,i=0 with

the predicted zc,W1,t+1, . . . ,z
c,W
I,t+1.

Candidate Action Predictor. To align the policy well with the underlying constraint
in the realistic driving scenarios, we predict the candidate actions based on the
state st = {zsi,w}

t,I
w=t−W,i=0 and assign a weight to each candidate actions. In

specific, our action predictor is implemented by:

– Agent-to-Temporal Cross Attention that embeds the historical information into
the current prediction, e.g., zWi,t = CrossAttn({zsi,t−1, . . . , z

s
i,t−W }, zsi,t).

– Agent-to-Agent Cross Attention that embed the spatial-temporal features of
the surrounding agents such that zAi,t = CrossAttn(zWi,t , {zW1,t, . . . , zWI,t}).

– Mixture of Policy Networks. In the k’s candidate policy network, we predict
the Laplace parameters (µki,t, bki,t) such that (µki,t, b

k
i,t) = fMLP

k,i (zAi,t).

At a time step t, πi,t(ai,t|st) denotes the probability of the i’s agent select an action
at such that πi,t(ai,t|st) =

∑
k ω

k
i pL (at|µki,t, bki,t) where 1) ωki denotes a learnable

coefficient and 2) pL denotes the density function of the Laplace distribution.
The confined policy space can be modelled as Πc

i = {pL (at|µki,t, bki,t}Kk=1. Due to
the model outputting relative values while the input data consists of absolute
values, we recalculate its anchor point each time and transform the relative
position, velocity, and direction into absolute values to serve as the new input
for the world model.
Agent-Specific Observation Model. Our observation model maps a state into
agent-specific observations. The observation embeds the spatial-temporal features
of the surrounding agents, which is implemented by oi,t = fMLP

i (zAi,t).
Training Objectives. Given a dataset recording the actions performed by each
agent D0, at a scenario n, for each agent i, we select one of the K Laplace
distributions that produces the most similar actions {âk∗i,t}Tt=0 to the observed
ground-truth ones {aoi,t}Tt=0. The supervised learning loss is denoted as:

LWorldModel = −EDo

[ T∑
t=0

log
(
pL (aoi,t | µk

∗

i,t , b
k∗

i,t)
)

︸ ︷︷ ︸
bestmode_loss

+ log
(
ωk

∗

i (sT )
)

︸ ︷︷ ︸
cls_loss

]
(4)

where k∗ denotes the best mode (index of the most similar Laplace), pL denotes
the Laplace density, µki,t and bki,t characterize the mean position and the level



8 G. Qiao et al.

of uncertainty of the i-th agent at the time step t. To automatically capture
the best mode, we employ a coefficient ωki denoting the probability that the k’s
Laplace distribution best approximates the ground-truth actions for agent i.

During the evaluation, by following [25,50], we sample the i-th agent’s future
trajectory as a weighted mixture of Laplace distributions:

πo(τ̂) =

T∏
t=1

πoi (âi,t | oi,t,ht) =
T∏
t=1

K∑
k=1

ωki pL

(
âi,t | µki,t, bki,t

)
(5)

where ωki can effectively act as the weighting coefficients.

4.2 Identifying CCE from Multi-player General Sum Markov Game

Since our environment is modeled as a multi-player competitive game with agent-
specific rewards, inspired by [35, 36], we consider an independent update of each
agent’s policy where we fix the rest I − 1 agents’ policy π−i during the update
of agent i’s policy πi. In this work, we update πi by iteratively optimizing the
following objective:

πji = argmax
πi∈Πc

i

Eπi,µ0
[V̄

πi,π−i,j−1
i,t (s)]− η1Bψ(πi, πoi )−

1

η2
Bψ(πi, πj−1

i ) (6)

where Πc
i denotes the confined policy space predicted by the world model (Sec-

tion 4.1), and the πoi denotes the imitation policy learned by the world model
(Equation 5). This objective contains several key components that can efficiently
facilitate convergence to a CCE by utilizing:

– Optimistic value function, which is defined by:

V̄
πi,π−i

i,t (s) = Eµ0,pT ,πi,π−i

[
T∑
ι=t

γι
[
ropti
i (oι,aι)

]
|o0 = O(s)

]
(7)

where the optimistic reward function ropti
i (oι,aι) = ri(·) + αt(sι) and αt(s) =

c
m(s) serves as an exploration bonus to less visited state. c is a hyper-parameter
and m(s) denotes the density of visited state s, representing the probability
of state occurrences at time t. Such an optimistic V-learning objective serves
as an extension of the CCE-V-Learning algorithm [2,36], which is proven to
converge to CCE under discrete environments, and we extend this algorithm
to solve continuous decision-making problems.

– Magnetic Mirror Descent (MMD) [35], which is implemented by including
Bregman divergence Bψ(·, ·) with respect to the mirror map ψ such that
Bψ(x, y) = ψ(x)−ψ(y)−⟨∇ψ(y), x−y⟩ into the objective. In the objective (6),
ρ denotes the magnet policy, πi denotes the current policy for agent i, and
πj−1
i denotes the policy at previous iteration. Recent studies [5,23,35] justified

that the mirror decent approaches can capture different kinds of equilibrium
in multi-player games.
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To derive a more intuitive objective, we implement the mirror map as the negative
entropy such that ψ(x) =

∑
p(x) log p(x), and the objective (6) becomes:

πji,t = argmax
πi∈Πc

i

Eπi,µ0
[V̄

πi,π−i,j−1
i,t (s)]− η1Dkl(πi∥πoi )−

1

η2
Dkl(πi∥πj−1

i ) (8)

where 1) Dkl(πi∥πoi ) denotes the Kullback–Leibler(KL) divergence between the
current policy πi and the imitation policy, and 2) Dkl(πi∥πj−1

i ) denotes the
KL divergence between the current policy πi and the policy at the previous
iteration πj−1

i . Intuitively, by punishing the distance between current policy πi
and imitation policy πoi , this objective ensures the fidelity in the offline MA-RL
problem (definition 3). By constraining the scale of updates, the training process
becomes more stable. Since Dkl(πi, πoi ) = H(πi, π

o
i )−H(πi) and by default our

objective considers the entropy of trajectory τi:

πi(τi) = µ0(s0)

T−1∏
t=0

[pT (st+1|st,at)πi,t(ai,t|oi,t,ht)π−i,t(a−i,t|o−i,t,ht)]
γt

(9)

However, both the transition function pT and policy of other players π−i,t
are not subject to optimize in the objective (8), and thus recent studies [11,
12] often consider the discounted causal entropy [52]

∑T
t=0 γ

tH[π(ai,t|oi,t,ht)].
Similarly, instead of utilizing the computationally intractable trajectory-level
KL-divergence Dkl(πi∥πj−1

i ), we consider the time-wise causal KL-divergence∑T
t=0 γ

tDkl[πi,t(·)∥πj−1
i,t (·)], and by substituting it and the equation (7) into the

objective (8), we have:

(10)

max
πi∈Πc

i

E
[ T∑
t=0

γt
(
ropti
i (ot,at)− η1Dkl[πi,t(·)∥πoi,t(·)]−

1

η2
Dkl[πi,t(·)∥πj−1

i,t (·)]
)]

where, for brevity, we denote πi,t(ai,t|oi,t,ht) as πi,t(·). Since the KL-divergence
of two variables (x, y) can be represented as Dkl(x, y) = H(x, y)−H(x), objec-
tive (10) can be further derived as:

max
πi∈Πc

i

E
[ T∑
t=0

γt
(
ropti
i (ot,at) + ηH[πi,t(·)] + Eπi,t [log(π

o
i,t)

η1(πj−1
i,t )

1
η2 ]

)]
(11)

where for brevity, we denote η = 1+η1η2
η2

. This objective maximizes the entropy
of learned policy πi,t, which aligns well with the soft Bellman update, and thus
we propose a soft actor-critic algorithm in the following.
An Optimistic Soft Actor-Critic Implementation. To effectively optimize
the objective (11), we propose a CCE Multi-Agent Soft Actor-Critic algorithm to
update the policy πi,t(ai,t|oi,t,ht) by following the CTDE framework. Algorithm
1 (see Appendix D) introduces the implementation of CCE-MASAC. To cope
with the general-sum Markov game, we independently parameterize and update
both the actor and critic models conditioning on each agent.
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Multi-agent Soft Policy Evaluation. Since the objective (11) considers a maxi-
mum entropy policy, our policy evaluation objective utilizes the soft Bellman
operator [11]. We construct two critic networks (parameterized by ϕ, ϕ̂) and the
corresponding loss function can be given by:

L(ϕi,t) = Est,st+1,ai,t,ri,t∼B [(Qϕi,t
(st, ai,t,a−i,t)− yi,t)

2] (12)

yi,t = ropti
i,t + log(πoi,t)

η1(πj−1
i,t )

1
η2 + γEπθi,t

[ηQϕ̂i,t
(st, ai,t,a−i,t)− η log πθi,t(·)]

where θ is the policy network and B denotes a memory buffer that stores the
recently generated trajectory by the learned environmental model. Under this
objective, the optimal policy follows the Boltzmann representation:

πθi,t(ai,t|oi,t,ht) ∝
[
exp(Qϕi,t)

] 1
η (13)

Intuitively, our policy πθi,t should be proportional to the imitation policy πoi,t and
the previous policy πj−1

i,t , and the exponential of cumulative rewards exp(Qmin
ϕ̂t,n

).
Multi-agent Soft Policy Improvement. Based on soft policy iteration [12] and our
policy representation (13), our policy update loss can be defined as follows:

Lπ(θi,t) = Est∼D,ϵ̃i,t∼U

[
η log(πjθi,t(a

ϵ̃i,t
i,t |·)−Qϕi,t(st, a

ϵ̃i,t
i,t ,a−i,t)

]
(14)

where U denotes a uniform distribution supported in the range [-1,1] and
a
ϵ̃i,t
i,t = µ − b sgn(ϵi,t) ln(1 − |ϵi,t|) (where Laplace parameters are predicted by

neural function, i.e., {µ, b} = fθi,t(oi,t,ht)) denotes a reparameterizated policy
(Appendix C shows the derivation). We adopt this reparameterization trick [19]
since our policy follows a Laplace distribution, and sample actions from the
Laplace distribution are non-differentiable.

We follow [12] and perform soft policy evaluation and improvement alternately
until the learned policy converges toward the optimal policy.

5 Experiments

We validate the performance of CCE-MASAC in the task of traffic simulation.
Evaluation Environment. To study how well our algorithm captures CCEs,
our empirical evaluation mainly focuses on the agents’ behavior under realistic
scenarios that are carefully selected from the Argoverse 2 dataset [40]. Figure 2
visualizes these intriguing scenarios, including 1) Wrong-way driving where some
cars accidentally drive on the opposite lane, 2) Four-lane intersection where
four cars with different destinations meet simultaneously on an intersection,
3) T-junction merging where cars from opposite lanes intend to merge on the
same lane under dense traffic, and 4) Dense-lane intersection where cars enter
a four-way intersection with dense traffic. To provide a fair comparison these
scenarios are hold-out from the pretraining dataset.
Metrics and Running Settings. Unlike standard RL algorithms that consider
rewards maximization, in the multi-agent setting, we primarily consider the
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exploitability [35], which measures the scale of an agent’s policy can exploit the
current policy. An ideal equilibrium should have zero exploitability, meaning
no agent alone can achieve larger rewards. In this work, we follow [49] and
utilize the CCE-gap (see definition 2) as a measurement of exploitability. For
a comprehensive analysis, we report Discounted Cumulative Rewards to
evaluate the effectiveness of a single agent’s policy across various traffic scenarios,
and we contrast this with the rewards optimization performance of multiple agents.
In our experiments, we use three different random seeds to ensure the robustness
of our results, and we present the mean± standard deviation (std) for each
evaluated algorithm. Appendix B shows the detailed parameter configurations.
You can also check Appendix E to see the training details.
Comparison Methods. Our baseline methods include: 1) MASAC is a multi-
agent off-policy algorithm developed for Maximum Entropy RL without applying
optimistic value functions or magnetic mirror descent. 2) Multi-agent Proximal
Policy Optimization (MAPPO) [44] adapts PPO [33] for multi-agent domains
to align with the CTDE structure. 3) QCNet [50] jointly predict the trajectory
of multiple agents under a supervised learning framework. 4) GameFormer [15]
predicts multiple agents’ trajectories by applying the hierarchical game theory to
model the interaction between agents.

5.1 Efficiency of Algorithms in Closing the CCE-gap

We evaluate our CCE-MASAC by how well it can close the CCE-gap when
compared to other baselines. Given a learned joint policy π, to estimate the
CCE-gap for an agent i , we fix the policies of other I − 1 agent (i.e., π−i)
and find the policy π†

i until it reach an optimal value V †,π−i

0,i (s). According to
Equation 2, the CCE-gap can be defined as

∑
s∈τ [V

†,π−i

0,i (s)−V π
0,i(s)], measuring

how well the optimal policy can exploit the learned policy. In our experiment, π†
i

can be computed by leveraging the prior knowledge in reward designs (detailed
in Appendix A). Figure 3 and Table 2 (see Appendix F) show the CCE-gap
for each agent controlled by the algorithm in every scenario. Comparing all
methods comprehensively, CCE-MASAC outperforms all others by having a
smaller the CCE-gap, the better). QCNet and GameFormer predict whether
each vehicle’s trajectory is the same as the ground truth, without considering
the competitiveness between agents, so it results in a larger CCE-gap. MAPPO
performs inherently unstable and struggles to converge to the CCE. Although
MASAC performs better than other baselines, it still falls short of the results
obtained by CCE-MASAC without considering the property of CCE.

5.2 Efficacy of the World Model in Facilitating Policy Update

To demonstrate the learned world model can significantly facilitate policy update,
we first train each agent using the regular single-agent RL algorithms (e.g.,
SAC [12]) and imitation learning methods (e.g., QCNet [50]). This allows us to
study whether the RL agent can maximize the discounted cumulative rewards
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Fig. 2: From left to right, these scenarios are Wrong-way driving, Four-lane intersection,
T-junction merging, and Dense-lane intersection. In each traffic scenario, only the orange
vehicles are controlled by the algorithm. The gray agents represent bicycles, buses, and
other types of vehicles that are not manipulated by the algorithm in the environment.
The green vehicles are autonomous cars. Blue arrows indicate the orientation of each
agent, while black represents the trajectories of the vehicles. In the first scenario, the
two yellow cars at the top are violating traffic rules by driving in the opposite direction.
All other vehicles in each scenario initially adhere to traffic rules by default.

Fig. 3: The training curve of the CCE-gap across different episodes, where each row
represents a scenario, and scenarios 1-4 correspond to Wrong-way driving, Four-lane
intersection, T-junction merging, and Dense-lane intersection respectively. Each column
corresponds to one of the agents in the multi-agent environment. (QCNext [51] is the
multi-agent version of QCNet.)
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under the learned world model. Figure 4 shows the rewards collected by each
agent across various scenarios. We observed SAC can improve the agents’ reward
maximization performance under our world model, compared to direct imitation.
Additionally, in this experiment, the results demonstrate the rewards obtained
by CCE-MASAC are lower than those obtained by SAC, indicating that control
performance can be influenced by the competitive behavior under our evaluation
environments. These findings demonstrate our world model provides a valid
environment for multi-agent policy updates.

Fig. 4: The discounted cumulative rewards obtained by each agent in single-agent,
multi-agent, and behavior cloning settings. Each row represents a scenario, and each
column corresponds to one of the orange agents controlled by the algorithm.

5.3 Case Study: Visualization of the Learned CCEs

Figure 5 visualizes the CCE learned by CCE-MASAC in each scenario. Under the
framework of general-sum games, each agent is self-interested. To maximize their
rewards, these agents tend to drive quickly, resulting in competitive behaviors
such as lane hogging and aggressive merging. These behaviors lead to congestion
in both the straight lanes and intersections. In such situations, individual decisions
are not only influenced by their own choices (whether to pass or wait) but also by
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the choices of other agents. When agents strive to prioritize their interests, they
may exacerbate the congestion until no agent can further improve its policy. This
situation characterizes a CCE, where individual policy choices are interdependent,
and no one can change their policy to gain benefits given the policies of others.
These situations can effectively represent the infrequent but safe-critical events,
which pose significant challenges for many autonomous driving systems.

Fig. 5: We visualized the CCEs learned by CCE-MASAC across different scenarios.
This figure depicts the trajectories generated by the algorithm at the final timestep.

5.4 Limitations

Omitting the Constraint: CCE-MASAC does not account for the constraints
of agents, failing to model their behavior in avoiding constraint violations within
competitive environments, which frequently occurs in real-world traffic situations.
Exclusion of Cooperation: While we focus on modeling the competitive
behaviors of vehicles, realistic traffic scenarios might involve both competition
and cooperation behaviors among agents during some specific events (e.g., lane
merging or yielding).

6 Conclusion

In this work, we introduce a generative world model aimed at predicting the
environmental dynamics of self-driving scenarios. Leveraging this world model,
we introduce the CCE-MASAC algorithm to effectively capture competitive
behaviors among agents, thereby identifying CCE from a game-theoretical view.
To exhibit the efficacy of our approach compared to other baselines, we explore the
ability of CCE-MASAC to precisely estimate CCE and how well the generative
model facilitates policy updates. Future research could incorporate velocity or
distance constraints into the algorithm design and investigate how CCE-MASAC
can be applied in mixed settings involving cooperative behaviors among vehicles.
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