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In this appendix, we present more details about the dataset (Section 1), the
proposed AdaCLIP (Section 2), and the selected baselines (Section 3). Section 4
provides a fair and comprehensive comparison between the proposed AdaCLIP
and another popular ZSAD method, AnomalyCLIP. Section 5 presents comparison
results between the proposed AdaCLIP and other popular full-shot unsupervised
anomaly detection methods, demonstrating the potential practical applicability of
the proposed AdaCLIP. Sections 6 and 7 offer more quantitative and qualitative
comparisons.

1 Dataset Details

In this study, we conduct extensive experiments on 14 public datasets covering
industrial and medical domains across three modalities (photography, radiology,
and endoscopy) to assess the effectiveness of our methods. We solely utilize the
test data from these datasets, and their relevant information is presented in
Table 1. We default to using two datasets, MVTec AD [2] and ClinicDB [3],
as auxiliary data for training. Additionally, for evaluations on MVTec AD and
ClinicDB, we employ VisA [17] and ColonDB [14] for training.
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Table 1: Key statistics the utilized datasets. |C| denotes to the number of categories
in individual datasets.

Domain Anomaly Detection Dataset Category Modality |C| Normal and
anomalous samplesImage-level Pixel-level

Industrial

✔ ✔ MVTec AD Obj & Texture Photography 15 (467,1258)
✔ ✔ VisA Obj Photography 12 (962,1200)
✔ ✔ MPDD Obj Photography 6 (176,282)
✔ ✔ BTAD Obj Photography 3 (451,290)
✔ ✔ KSDD Obj Photography 1 (181,74)
✔ ✔ DAGM Texture Photography 10 (6996,1054)
✔ ✔ DTD-Synthetic Texture Photography 12 (357,947)

Medical

✔ ✘ HeadCT Brain Radiology
(CT) 1 (100,100)

✔ ✘ BrainMRI Brain Radiology
(MRI) 1 (98,155)

✔ ✘ Br35H Brain Radiology
(MRI) 1 (1500,1500)

✘ ✔ ISIC Skin Photography 1 (0,379)
✘ ✔ ClinicDB Colon Endoscopy 1 (0,612)
✘ ✔ ColonDB Colon Endoscopy 1 (0,380)

✘ ✔ TN3K Thyroid Radiology
(Ultralsound) 1 (0,614)

https://www.mvtec.com/company/research/datasets/mvtec-ad
https://github.com/amazon-science/spot-diff
https://github.com/stepanje/MPDD
https://avires.dimi.uniud.it/papers/btad/btad.zip
https://data.vicos.si/datasets/KSDD/KolektorSDD.zip
https://hci.iwr.uni-heidelberg.de/content/weakly-supervised-learning-industrial-optical-inspection
https://drive.google.com/drive/folders/10OyPzvI3H6llCZBxKxFlKWt1Pw1tkMK1
https://www.kaggle.com/datasets/felipekitamura/head-ct-hemorrhage
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/datasets/ahmedhamada0/brain-tumor-detection
https://challenge.isic-archive.com/data/
https://paperswithcode.com/dataset/cvc-clinicdb
http://mv.cvc.uab.es/projects/colon-qa/cvccolondb
https://ieeexplore.ieee.org/document/9434087/references##references
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2 Module Details

2.1 Hybrid Learnable Prompts

We introduce hybrid learnable prompts for adapting the pre-trained CLIP [12] for
the ZSAD task. Figure 1 presents the details of hybrid learnable prompts. In par-
ticular, we utilize a pre-trained and frozen CLIP image encoder to extract image
embeddings that contain high-level semantic information. Then for image and
text encoders, we employ a simple linear layer to project the image embeddings
into dynamic prompts, respectively. These dynamic prompts are then summed
with static prompts from the initial J layers as final hybrid prompts for the
image and text encoders. While CoCoOp [15] employs a similar design of hybrid
(static+dynamic) prompts, our proposed AdaCLIP prompts both image and text
encoders for improved adaptation. We further examine the impact of prompt-
ing encoders, with results presented in Table 2. The data indicates that solely
prompting the text encoder, as CoCoOp does, results in a performance decrease
of 7.2% (0.1%) in image (pixel)-level AUROCs for the medical domain and 2.0%
(0.7%) for the industrial domain. Therefore, our multimodal prompting approach
more effectively leverages the multimodal capabilities of CLIP, enhancing its
potential for zero-shot anomaly detection.

2.2 Hybrid Semantic Fusion

Previous maximum value-based image-level anomaly detection methods [4, 8]
may exhibit sensitivity to prediction noise. In contrast, we propose a Hybrid
Semantic Fusion (HSF) module aimed at fusing region-level anomalies into
a semantic-rich image embedding to enhance image-level anomaly detection
performance. Specifically, patch embeddings from individual hierarchies are
clustered using the KMeans++ algorithm [1]. We hypothesize that these clusters
should represent different regions within the image, with clusters having the
highest average anomaly scores likely corresponding to abnormal regions. To
validate this assumption, we visualize the clustering results in Fig. 2. It is apparent
that the clusters delineate distinct regions within the image. Also, the cluster
with the highest average anomaly score typically denotes the abnormal region.
Consequently, the HSF module aggregates the centroids of these clusters with the
highest average anomaly scores into the semantic-rich image embedding, which
encapsulates multi-hierarchy context pertaining to region-level anomalies, thereby
significantly enhancing image-level anomaly detection. As shown in Table 3, we
investigated anomaly detection performance with varying K ∈ [10, 20, 40, 80]. HSF
consistently enhances image-level detection results compared to the maximum
value-based method, achieving improvements of 2.4% (2.9%), 2.8% (4.2%), 3.8%
(2.4%), and 0.3% (4.1%) in image-level AUROCs for medical (industrial) domains,
respectively. A larger K results in smaller clusters, and when clusters become
sufficiently small, HSF degrades to the maximum value-based method. Optimal
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Fig. 1: Illustration of Hybrid Learnable Prompts. This illustration depicts the
utilization of two linear layers in conjunction with a shared pre-trained CLIP image
encoder to generate dynamic prompts for both the image and text encoders. These
dynamic prompts, along with the static prompts from the initial J layers, are then
combined to prompt the encoders effectively.

Table 2: Influence of prompting encoders. The best performance is in bold.

Prompting Encoder Medical Domain Industrial Domain

Image Text Image-level Pixel-level Image-level Pixel-level

✔ ✘ (86.6, 49.9) (80.6, 42.9) (87.6, 85.1) (93.9, 48.2)
✘ ✔ (87.4, 59.0) (85.2, 57.0) (88.2, 86.9) (93.5, 49.8)
✔ ✔ (94.6, 89.6) (85.3, 57.4) (90.2, 89.6) (94.2, 50.2)

performance is ideally obtained when clusters match the size of testing anomalies.
However, due to the variability in anomaly sizes across testing categories and
samples, achieving an optimal K for both medical and industrial domains is
challenging, as indicated in Table 3. Therefore, we set K = 20 by default.

3 Comparison Method Details

We compare the proposed AdaCLIP with several SOTA methods. Table 4
highlights the key differences between these methods. Notably, AnomalyGPT [7]
and AnomalyCLIP [16] are the most relevant concurrent works. In comparison
to AdaCLIP, AnomalyGPT uses learnable static prompts but lacks zero-shot
anomaly detection capability. While AnomalyCLIP also utilizes prompting learn-
ing to enhance ZSAD performance, it solely adds static prompts to the text
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Fig. 2: Illustration of HSF. Top to bottom: input images, ground truths, anomaly
maps, clustering results, and clusters with average anomaly scores. It clearly demon-
strates that HSF can identify abnormal regions and then extract region-level features.
The resulting semantic-rich image embedding comprises multi-hierarchy region-level
features, enhancing robust image-level anomaly detection.

Table 3: Ablation on the number (K) of clusters in HSF.

HSF Medical Domain Industrial Domain

Image-level Pixel-level Image-level Pixel-level

✘ (91.8, 88.7) (85.7, 57.7) (86.0, 85.8) (93.8, 49.9)

K=10 (94.2, 89.6) (86.9, 59.4) (88.9, 87.3) (93.9, 50.1)
K=20 (94.6, 89.6) (85.3, 57.4) (90.2, 89.6) (94.2, 50.2)
K=40 (95.6, 90.5) (85.4, 56.0) (88.4, 87.8) (93.3, 48.4)
K=80 (92.1, 88.9) (87.1, 58.9) (90.1, 89.4) (94.1, 50.8)

encoder of CLIP. In the proposed AdaCLIP, both static and dynamic prompts
for both text and image encoders are developed. Due to the unavailability of a
publicly accessible implementation for AnomalyCLIP, we report the comparison
results against AnomalyCLIP in Section 4. Implementation and reproduction
details of other comparison methods are given as follows:

– SAA [5]: SAA is a novel ZSAD model that integrates Grounding DINO [10]
and SAM [9] for anomaly detection without any training. Various manual
prompts can be adjusted to enhance ZSAD performance. In the case of
MVTec AD and VisA datasets, we adhere to the officially provided prompts 5.
For datasets not covered in the original implementation, default prompts in
SAA are utilized for ZSAD.

– WinCLIP [8]: WinCLIP represents a SOTA ZSAD method. It devises an
extensive array of manual text prompts tailored specifically for anomaly

5 https://github.com/caoyunkang/Segment-Any-Anomaly
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detection and employs a window scaling strategy for anomaly segmentation.
We strictly adhere to the text prompts outlined in the original paper.

– APRIL-GAN [6]: APRIL-GAN enhances WinCLIP by employing training
on auxiliary AD datam. We adopt the official implementation 6 and adhere
to the training settings outlined in the paper, specifically training on both
industrial and medical datasets concurrently to improve generalization ability.

– DINOV2 [11]: DINOV2 represents a recent advancement in visual foundation
models. We adapt DINOV2 for the ZSAD task by training on auxiliary
data like AdaCLIP. Specifically, we utilize the ViT-S/14 architecture7 as
the backbone. Similar to AdaCLIP, we incorporate additional learnable
projection layers after the multi-hierarchy patch embeddings and employ the
same training set for optimizations. Patch embeddings from the 3rd, 6th, 9th,
and 12th layers are selected for multi-hierarchy representations.

– SAM [9]: SAM is recognized as another prominent visual foundation model,
primarily crafted for image segmentation tasks. We repurpose SAM for
ZSAD by training on auxiliary AD data as well. Specifically, we discard the
prompting encoder and mask decoder of SAM and only utilize the backbone
of ViT-L architecture8 for patch embedding extraction. Similar to AdaCLIP,
we append trainable projection layers to the patch embeddings from the 6th,
12th, 18th, and 24th layers.

– AdaCLIP: As mentioned in the main body, we use the publicly available
pre-trained CLIP (ViT-L/14@336px)9 as the default backbone. We apply the
data pre-processing pipeline officially given by CLIP to all images.

Table 4: Comparison between ZSAD-related methods. The proposed AdaCLIP
introduces both static and dynamic prompts for the text and image encoders for
enhanced ZSAD performace.

Method Zero-shot
Capacity

Supervised
Training

Manual
Prompts

Learnable Prompts Prompting Encoder

Static Dynamic Text Image

AnomalyGPT [7] ✘ ✔ ✔ ✔ ✘ ✔ ✘

SAA [5] ✔ ✘ ✔ ✘ ✘ ✘ ✘

WinCLIP [8] ✔ ✘ ✔ ✘ ✘ ✔ ✘

APRIL-GAN [6] ✔ ✔ ✔ ✘ ✘ ✘ ✘

AnomalyCLIP [16] ✔ ✔ ✔ ✔ ✘ ✔ ✘

DINOV2 [11] ✔ ✔ ✘ ✘ ✘ ✘ ✘

SAM [9] ✔ ✔ ✘ ✘ ✘ ✘ ✘

AdaCLIP ✔ ✔ ✔ ✔ ✔ ✔ ✔

6 https://github.com/ByChelsea/VAND-APRIL-GAN
7 https://github.com/facebookresearch/dinov2
8 https://github.com/facebookresearch/segment-anything
9 https://github.com/mlfoundations/open_clip
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Table 5: Comparisons between frozen and learnable projection layers. The best perfor-
mance is in bold.

Proj Medical Domain Industrial Domain

Image-level Pixel-level Image-level Pixel-level

Frozen (84.4, 81.1) (79.3, 47.4) (82.9, 82.6) (90.1, 41.0)
Learnable (94.6, 89.6) (85.3, 57.4) (90.2, 89.6) (94.2, 50.2)

4 Comparison with AnomalyCLIP

AnomalyCLIP [16] represents a concurrent ZSAD method, introducing learn-
able object-agnostic prompts for ZSAD, under the assumption of the existence
of generic normality and abnormality in an image from whatever category. Due
to differences in experimental settings between AnomalyCLIP and our study, as
well as the unavailability of publicly available code for AnomalyCLIP (before
our submission date), we opt to evaluate AdaCLIP within the framework of
AnomalyCLIP for fair comparisons. Specifically, we employ MVTec [2] as the
default auxiliary dataset, whereas evaluations on MVTec AD are conducted using
VisA [17] for training. The results are depicted in Table 6 and Table 7. The results
clearly demonstrate that the proposed AdaCLIP outperforms AnomalyCLIP in
average image-level anomaly detection performance across both industrial and
medical domains, primarily attributed to the proposed Hybrid Semantic Fusion
module. It should be noted that AdaCLIP slightly lags behind AnomalyCLIP
in pixel-level detection performance, as AnomalyCLIP incorporates specific de-
sign elements to enhance pixel-level anomaly localization, such as a Diagonally
Prominent Attention Map mechanism, V-V self-attention, and improved loss
functions. In summary, AdaCLIP achieves comparable performance to Anomaly-
CLIP, while also providing a more thorough investigation into learnable prompts
and emphasizing the importance of tailored prompts for individual images.

In addition, we found that AnomalyCLIP differs from AdaCLIP regarding the
design of projection layers. Specifically, AnomalyCLIP utilizes the pre-trained and
frozen projection layer from CLIP, whereas our proposed AdaCLIP introduces
learnable projection layers. To study their differences, we replaced the original
learnable projection layers with frozen pre-trained layers, and the comparison
results are presented in Table 5. The results clearly show that frozen projection
layers lead to significant drops in all metrics. We attribute these drops to the
smaller number of learnable parameters with frozen layers, which may limit the
adaptation of CLIP to zero-shot anomaly detection.

5 Comparison with SOTA Full-shot Methods

In this section, we are interested in the performance gap between AdacLIP and
the recently published SOTA full-shot methods, such as PatchCore [13] and
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Table 6: Comparisons between the proposed AdaCLIP and AnomalyCLIP [16] within
the experimental setting of AnomalyCLIP. The results of AnomalyCLIP are directly
taken from the original reports. The best performance is in bold.

Metric Dataset AnomalyCLIP AdaCLIP

Image-level
(AUROC)

MVTec AD 91.5 89.6
VisA 82.1 83.9

MPDD 77.0 76.8
BTAD 88.3 88.6
KSDD 84.7 94.1
DAGM 97.5 98.3
DTD 93.5 95.5

Average 87.8 89.5

Pixel-level
(AUROC)

MVTec AD 91.1 90.3
VisA 95.5 95.6

MPDD 96.5 96.4
BTAD 94.2 92.1
SDD 90.6 96.7

DAGM 95.6 91.0
DTD 97.9 96.9

Average 94.5 94.1

CDO [4]. Since some datasets do not provide normal training data, we conduct
experiments on seven public industrial datasets. As Table 8 shows, AdaCLIP
achieves comparable anomaly detection and localization performance compared
to PatchCore and CDO, and it even outperforms them in some datasets. This
illustrates that AdaCLIP can effectively detect anomalies even in unseen categories
by training on auxiliary data. With more extensive data and advanced adapting
techniques, future ZSAD methods have opportunities to surpass these SOTO
full-shot methods, making ZSAD a viable generic anomaly detection solution.

6 Category-Level Quantitative Results

Some datasets contain several categories. In this section, their category-level
quantitative results are presented from Table 9 to Table 14 in details.

7 Additional Qualitative Results
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Table 7: Comparisons between the proposed AdaCLIP and AnomalyCLIP [16] within
the experimental setting of AnomalyCLIP. The results of AnomalyCLIP are directly
taken from the original reports. The best performance is in bold.

Metric Dataset AnomalyCLIP AdaCLIP

Image-level
(AUROC)

HeadCT 93.4 91.5
BrainMRI 90.3 94.8

Br35H 94.6 97.7

Average 92.8 94.7

Pixel-level
(AUROC)

ISIC 89.7 88.3
ColonDB 81.9 79.1
ClinicDB 82.9 84.4
TN3K 81.5 77.4

Average 84.0 82.3

Fig. 3: Failure cases of AdaCLIP. Three categories are illustrated with anomaly
detection failures. Each category is depicted with its normal state in the left column, and
two cases of logical anomalies in the middle and right columns. The top row presents the
input images, while the second row shows the ground truth. The bottom row displays
the anomaly maps generated by AdaCLIP.

7.1 Failure Cases

While the proposed AdaCLIP can achieve promising detection results for arbitrary
categories without any references, it may fail to detect anomalies lacking structural
deviations. Specifically, the anomalies depicted in Figure 3 exhibit no evident
structural deviations. Their abnormality stems from their departure from the
expected contextual norms, such as the normal positioning of transistors, among
others. However, detecting these anomalies without references poses significant
challenges. In the future, it may be worthwhile to explore the integration of more
intricate textual prompts describing the normal state to enhance the detection of
such anomalies in the absence of references.
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Table 8: Comparisons between the proposed ZSAD method AdaCLIP and
full-shot unsupervised AD methods PatchCore and CDO. The best performance
is in bold, and the second-best is underlined.

Metric Dataset PatchCore [13] CDO [4] AdaCLIP

Image-level
(AUROC, max-F1)

MVTec AD (98.8, 98.3) (97.1, 97.0) (89.2, 90.6)
VisA (92.7, 89.8) (95.0, 91.4) (85.8, 83.1)

MPDD (94.4, 93.5) (95.8, 94.1) (76.0, 82.5)
BTAD (94.4, 96.6) (97.6, 94.3) (88.6, 88.2)
SDD (93.6, 76.4) (96.0, 83.5) (97.1, 90.7)

DAGM (95.0, 93.6) (95.1, 92.5) (99.1, 97.5)
DTD (97.5, 96.4) (96.8, 95.7) (95.5, 94.7)

Average (95.2, 92.1) (96.2, 92.6) (90.2, 89.6)

Pixel-level
(AUROC, max-F1)

MVTec AD (98.4, 62.2) (98.2, 60.1) (88.7, 43.4)
VisA (98.6, 43.9) (99.0, 43.5) (95.5, 37.7)

MPDD 98.8, 47.7 (99.0, 46.9) (96.1, 34.9)
BTAD (97.5, 54.4) (98.1, 60.4) (92.1, 51.7)
SDD (95.6, 36.9) (97.9, 35.7) (97.7, 54.5)

DAGM (97.2, 59.4) (97.3, 58.3) (91.5, 57.5)
DTD (98.2, 56.8) (98.3, 59.9) (97.9, 71.6)

Average (97.7, 51.6) (98.2, 52.1) (94.2, 50.2)

7.2 Results in the Industrial Domain

In this section, we provide additional qualitative results in the industrial domain.
Further details can be observed in Figure 4 to Figure 23.

7.3 Results in the Medical Domain

This section showcases additional qualitative results in the medical domain,
spanning from Figure 24 to Figure 26.
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Table 9: Comparisons of ZSAD methods on MVTec AD. The best performance
is in bold, and the second-best is underlined.

Metric Category w/o supervised training w/i supervised training

SAA [5] WinCLIP [8] DINOV2 [11] SAM [9] APRIL-GAN [6] AdaCLIP

Image-level
(AUROC, max-F1)

bottle (75.5, 89.4) (99.2, 97.6) (99.4, 98.4) (94.6, 96.0) (92.9, 94.0) (94.4, 91.6)
cable (63.7, 76.0) (86.5, 84.5) (49.9, 76.0) (59.6, 76.0) (62.6, 77.5) (90.6, 87.8)

capsule (42.0, 90.5) (72.9, 91.4) (65.2, 90.5) (54.5, 90.5) (79.1, 90.8) (91.5, 92.4)
carpet (99.5, 98.3) (100.0, 99.4) (87.6, 90.8) (80.5, 88.0) (99.2, 98.3) (82.1, 86.5)
grid (83.7, 86.4) (98.8, 98.2) (97.7, 96.4) (90.4, 90.3) (89.3, 89.3) (90.0, 90.8)

hazelnut (83.2, 83.3) (93.9, 89.7) (43.8, 77.8) (58.0, 79.1) (76.8, 81.2) (80.2, 82.6)
leather (99.3, 97.8) (100.0, 100.0) (100.0, 99.4) (90.4, 90.9) (99.7, 98.9) (99.8, 99.5)

metal_nut (34.8, 89.4) (97.1, 96.3) (44.3, 89.4) (60.6, 89.4) (45.6, 89.4) (83.5, 90.5)
pill (50.6, 91.6) (79.1, 91.6) (69.7, 91.6) (68.2, 92.5) (90.4, 92.5) (82.9, 92.8)

screw (46.4, 85.9) (83.3, 87.4) (77.5, 85.6) (68.6, 86.2) (70.1, 86.3) (87.0, 89.7)
tile (95.7, 93.9) (100.0, 99.4) (74.2, 83.6) (41.9, 83.6) (93.4, 93.9) (90.5, 91.4)

toothbrush (22.2, 83.3) (87.5, 87.9) (64.0, 83.3) (68.3, 85.7) (72.2, 84.9) (93.6, 95.2)
transistor (37.0, 57.1) (88.0, 79.5) (51.7, 57.1) (53.3, 57.1) (72.8, 68.2) (82.1, 77.5)

wood (99.8, 99.2) (99.4, 98.3) (97.0, 96.6) (96.4, 96.7) (96.8, 95.2) (98.3, 96.7)
zipper (19.4, 88.2) (91.5, 92.9) (93.9, 93.9) (76.0, 88.5) (93.4, 92.7) (91.5, 93.9)

Average (63.5, 87.4) (91.8, 92.9) (74.4, 87.4) (70.7, 86.0) (82.3, 88.9) (89.2, 90.6)

Pixel-level
(AUROC, max-F1)

bottle (66.5, 37.7) (89.5, 58.1) (81.6, 57.8) (90.5, 51.0) (80.8, 60.5) (90.4, 54.3)
cable (69.2, 30.0) (77.0, 19.7) (60.7, 9.2) (76.3, 18.1) (71.7, 18.8) (79.8, 19.6)

capsule (62.1, 17.4) (86.9, 21.7) (80.3, 23.4) (90.4, 16.0) (72.8, 29.6) (82.3, 31.8)
carpet (83.7, 57.8) (95.4, 49.7) (99.3, 72.6) (92.9, 43.5) (97.1, 70.8) (97.3, 61.4)
grid (63.3, 25.5) (82.2, 18.6) (92.3, 35.5) (86.5, 25.1) (84.6, 34.1) (96.9, 43.7)

hazelnut (89.8, 47.1) (94.3, 37.6) (91.7, 23.0) (92.8, 26.9) (95.8, 32.8) (97.8, 51.8)
leather (89.7, 68.8) (96.7, 39.7) (98.3, 54.3) (89.3, 40.1) (99.0, 56.5) (99.2, 53.4)

metal_nut (64.0, 36.1) (61.0, 32.4) (67.2, 32.6) (75.5, 33.4) (65.5, 28.8) (74.3, 34.8)
pill (91.7, 53.6) (80.0, 17.6) (90.4, 32.8) (88.3, 24.0) (87.0, 36.6) (86.4, 37.6)

screw (68.8, 15.0) (89.6, 13.5) (98.1, 52.7) (97.0, 25.5) (96.4, 22.1) (98.4, 41.9)
tile (86.6, 71.0) (77.6, 32.6) (82.6, 56.8) (61.2, 21.9) (80.2, 63.3) (88.5, 61.9)

toothbrush (66.8, 8.0) (86.9, 17.1) (87.6, 11.5) (85.7, 10.4) (90.6, 21.6) (94.9, 31.9)
transistor (66.9, 20.1) (74.7, 30.5) (65.2, 17.1) (70.6, 17.2) (60.5, 16.5) (63.2, 17.5)

wood (84.3, 63.0) (93.4, 51.5) (95.9, 62.8) (91.7, 57.1) (89.1, 64.2) (87.9, 57.9)
zipper (78.4, 19.7) (91.6, 34.4) (97.1, 51.3) (92.3, 30.5) (84.3, 41.2) (93.8, 52.1)

Average (75.5, 38.1) (85.1, 31.6) (85.9, 39.6) (85.4, 29.4) (83.7, 39.8) (88.7, 43.4)

Fig. 4: Visualization of anomaly maps generated by AdaCLIP for the bottle
category in MVTec AD. The first row displays the input images, while the second
row shows the ground truth. The bottom row illustrates the anomaly maps generated
by AdaCLIP.
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Table 10: Comparisons of ZSAD methods on VisA. The best performance is in
bold, and the second-best is underlined.

Metric Category w/o supervised training w/i supervised training

SAA [5] WinCLIP [8] DINOV2 [11] SAM [9] APRIL-GAN [6] AdaCLIP

Image-level
(AUROC, max-F1)

candle (63.8, 68.6) (95.4, 89.4) (81.3, 75.4) (58.4, 68.1) (81.0, 74.7) (96.0, 90.2)
capsules (58.1, 76.9) (85.0, 83.9) (92.1, 88.4) (38.3, 77.5) (91.8, 89.2) (85.1, 82.1)
cashew (87.0, 86.1) (92.1, 88.4) (56.0, 80.0) (43.0, 80.0) (89.4, 88.3) (91.8, 86.6)

chewinggum (91.9, 88.4) (96.5, 94.8) (85.4, 85.8) (78.7, 80.0) (97.0, 95.9) (96.4, 94.8)
fryum (39.6, 80.0) (80.3, 82.7) (75.5, 84.1) (71.7, 81.3) (78.1, 83.2) (93.0, 91.0)

macaroni1 (88.7, 82.2) (76.2, 74.2) (89.1, 83.4) (50.1, 66.7) (82.2, 78.0) (91.6, 83.1)
macaroni2 (67.3, 67.6) (63.7, 69.8) (78.7, 72.6) (47.7, 66.7) (58.7, 66.7) (64.1, 70.3)

pcb1 (53.4, 66.9) (73.6, 71.0) (65.0, 73.1) (69.3, 71.2) (67.5, 68.7) (81.1, 76.9)
pcb2 (59.2, 66.7) (51.2, 67.1) (54.3, 67.3) (56.6, 66.7) (73.9, 71.6) (75.3, 73.7)
pcb3 (54.0, 66.5) (73.4, 71.0) (57.3, 66.7) (63.0, 66.9) (69.1, 67.1) (64.7, 67.2)
pcb4 (46.9, 66.5) (79.6, 74.9) (72.1, 71.6) (77.3, 74.1) (94.9, 90.6) (93.4, 87.2)

pipe_fryum (95.8, 94.6) (69.7, 80.7) (96.1, 93.8) (88.3, 87.3) (96.6, 94.2) (96.6, 94.4)

Average (67.1, 75.9) (78.1, 79.0) (75.2, 78.5) (61.9, 73.9) (81.7, 80.7) (85.8, 83.1)

Pixel-level
(AUROC, max-F1)

candle (54.1, 12.8) (88.9, 22.5) (98.5, 42.2) (97.1, 14.6) (98.5, 41.3) (98.9, 46.6)
capsules (81.5, 39.8) (81.6, 9.2) (98.6, 62.2) (88.7, 6.4) (97.5, 49.0) (98.6, 52.8)
cashew (56.4, 13.8) (84.7, 13.2) (90.7, 10.9) (90.2, 13.1) (92.2, 22.7) (95.9, 39.2)

chewinggum (94.9, 83.3) (93.3, 41.1) (99.6, 77.6) (98.4, 59.3) (99.4, 78.4) (99.6, 77.9)
fryum (92.6, 42.8) (88.5, 22.1) (92.8, 25.7) (93.4, 26.1) (93.4, 29.6) (94.4, 30.5)

macaroni1 (84.1, 42.3) (70.9, 7.0) (98.9, 27.1) (96.1, 7.4) (98.8, 29.1) (99.5, 35.0)
macaroni2 (81.5, 29.9) (59.3, 1.0) (98.0, 21.7) (95.5, 3.9) (97.2, 4.6) (98.8, 10.2)

pcb1 (73.7, 42.1) (61.2, 2.4) (91.3, 10.8) (89.1, 5.2) (92.1, 13.1) (93.7, 19.8)
pcb2 (80.7, 3.5) (71.6, 4.7) (91.3, 12.1) (89.3, 8.4) (90.6, 24.2) (84.3, 27.7)
pcb3 (71.9, 11.2) (85.3, 10.3) (89.8, 12.0) (83.4, 9.4) (91.0, 23.5) (91.8, 32.2)
pcb4 (66.7, 10.2) (94.4, 32.0) (94.8, 30.2) (92.8, 26.9) (94.7, 37.3) (96.1, 43.3)

pipe_fryum (79.7, 47.1) (75.4, 12.3) (96.1, 31.8) (97.1, 38.1) (96.7, 35.2) (94.6, 37.4)

Average (76.5, 31.6) (79.6, 14.8) (95.0, 30.3) (92.6, 18.2) (95.2, 32.3) (95.5, 37.7)

Table 11: Comparisons of ZSAD methods on MPDD. The best performance is
in bold, and the second-best is underlined.

Metric Category w/o supervised training w/i supervised training

SAA [5] WinCLIP [8] DINOV2 [11] SAM [9] APRIL-GAN [6] AdaCLIP

Image-level
(AUROC, max-F1)

bracket_black (37.2, 74.6) (40.7, 74.6) (70.2, 79.3) (59.2, 75.9) (50.7, 75.2) (62.0, 81.4)
bracket_brown (63.4, 81.0) (33.2, 79.7) (42.1, 79.7) (48.8, 80.0) (70.9, 80.7) (71.3, 81.7)
bracket_white (73.1, 74.1) (41.8, 67.4) (57.4, 68.2) (56.7, 71.6) (68.0, 71.8) (74.7, 75.0)

connector (31.9, 48.3) (78.6, 65.1) (35.7, 50.0) (76.0, 61.1) (48.1, 50.0) (69.9, 66.3)
metal_plate (36.9, 84.5) (95.5, 95.1) (84.9, 87.9) (93.3, 91.4) (65.1, 85.4) (84.6, 95.4)

tubes (13.5, 81.2) (78.4, 83.1) (84.3, 84.0) (44.2, 81.7) (93.4, 93.2) (93.3, 95.2)

Average (42.7, 73.9) (61.4, 77.5) (62.4, 74.9) (63.0, 77.0) (66.0, 76.0) (76.0, 82.5)

Pixel-level
(AUROC, max-F1)

bracket_black (93.9, 1.8) (46.4, 0.2) (96.9, 22.3) (96.0, 4.4) (96.5, 13.8) (93.2, 9.1)
bracket_brown (66.9, 5.3) (56.4, 1.4) (92.0, 13.3) (89.7, 11.2) (89.9, 9.0) (93.8, 15.9)
bracket_white (97.1, 30.5) (72.2, 1.0) (97.6, 1.9) (99.3, 5.4) (99.3, 9.0) (97.1, 3.9)

connector (71.5, 8.2) (78.8, 10.7) (93.2, 14.9) (93.1, 17.7) (93.5, 26.2) (97.4, 37.7)
metal_plate (73.8, 56.9) (95.7, 69.7) (95.9, 72.9) (96.9, 77.2) (92.5, 60.8) (95.8, 72.9)

tubes (87.3, 10.6) (77.6, 9.5) (98.1, 61.5) (94.0, 16.8) (99.0, 64.8) (99.2, 70.1)

Average (81.7, 18.9) (71.2, 15.4) (95.6, 31.1) (94.8, 22.1) (95.1, 30.6) (96.1, 34.9)
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Table 12: Comparisons of ZSAD methods on BTAD. The best performance is
in bold, and the second-best is underlined.

Metric Category w/o supervised training w/i supervised training

SAA [5] WinCLIP [8] DINOV2 [11] SAM [9] APRIL-GAN [6] AdaCLIP

Image-level
(AUROC, max-F1)

Class01 (6.6, 82.4) (89.3, 87.6) (80.3, 84.3) (96.2, 93.9) (87.3, 88.2) (91.6, 90.8)
Class02 (72.3, 93.0) (72.2, 93.0) (88.2, 94.3) (76.1, 93.0) (75.2, 93.0) (78.0, 94.6)
Class03 (98.2, 93.7) (43.0, 22.2) (69.5, 29.2) (96.1, 70.1) (93.0, 64.7) (96.3, 79.1)

Average (59.0, 89.7) (68.2, 67.6) (79.3, 69.3) (89.4, 85.7) (85.2, 82.0) (88.6, 88.2)

Pixel-level
(AUROC, max-F1)

Class01 (49.6, 6.6) (84.0, 21.8) (86.0, 44.0) (90.6, 43.7) (83.9, 41.2) (87.1, 55.3)
Class02 (73.7, 26.4) (86.4, 33.1) (96.0, 68.7) (94.7, 59.5) (92.2, 58.3) (92.9, 59.8)
Class03 (74.0, 11.5) (47.5, 0.7) (93.6, 17.4) (96.2, 37.4) (92.3, 15.7) (96.2, 40.1)

Average (65.8, 14.8) (72.6, 18.5) (91.9, 43.4) (93.8, 46.9) (89.5, 38.4) (92.1, 51.7)

Table 13: Comparisons of ZSAD methods on DAGM. The best performance is
in bold, and the second-best is underlined.

Metric Category w/o supervised training w/i supervised training

SAA [5] WinCLIP [8] DINOV2 [11] SAM [9] APRIL-GAN [6] AdaCLIP

Image-level
(AUROC, max-F1)

Class1 (96.2, 90.9) (68.4, 67.8) (81.0, 76.5) (96.3, 93.3) (91.3, 85.6) (96.2, 93.8)
Class2 (100.0, 100.0) (99.8, 99.0) (99.4, 98.0) (100.0, 100.0) (99.8, 99.0) (100.0, 99.7)
Class3 (100.0, 99.3) (99.0, 95.6) (100.0, 100.0) (94.2, 89.1) (100.0, 100.0) (100.0, 100.0)
Class4 (36.8, 66.7) (89.0, 80.7) (55.9, 67.1) (45.1, 66.7) (67.2, 69.2) (96.6, 89.5)
Class5 (100.0, 99.7) (95.2, 89.0) (99.7, 98.0) (88.0, 83.5) (99.7, 99.0) (100.0, 100.0)
Class6 (72.0, 66.9) (99.8, 98.7) (91.0, 85.7) (86.3, 80.8) (99.9, 99.0) (100.0, 100.0)
Class7 (99.7, 98.2) (96.3, 90.3) (99.3, 98.7) (98.5, 93.8) (100.0, 99.3) (100.0, 100.0)
Class8 (100.0, 99.7) (74.2, 9.9) (81.7, 74.3) (73.2, 70.8) (97.2, 93.7) (99.3, 97.8)
Class9 (100.0, 100.0) (96.4, 90.4) (99.5, 96.7) (49.2, 67.2) (97.8, 94.6) (99.6, 96.9)
Class10 (66.6, 66.7) (98.9, 94.5) (99.4, 96.9) (96.8, 90.4) (81.9, 78.3) (99.5, 97.4)

Average (87.1, 88.8) (91.7, 87.6) (90.7, 89.2) (82.7, 83.6) (93.5, 91.8) (99.1, 97.5)

Pixel-level
(AUROC, max-F1)

Class1 (63.9, 39.4) (76.0, 12.3) (84.3, 32.1) (90.5, 42.9) (83.3, 42.0) (85.4, 47.6)
Class2 (74.9, 55.5) (80.9, 9.3) (94.3, 57.2) (98.9, 65.8) (96.7, 63.9) (97.8, 66.7)
Class3 (57.4, 25.9) (86.8, 19.4) (87.7, 59.4) (87.8, 40.0) (88.1, 65.5) (89.8, 65.7)
Class4 (50.0, 2.7) (85.6, 17.4) (83.6, 18.5) (79.4, 13.5) (79.6, 21.0) (84.8, 23.9)
Class5 (61.3, 37.1) (83.4, 15.4) (92.3, 64.4) (90.2, 42.5) (92.3, 69.5) (95.0, 69.7)
Class6 (73.0, 35.3) (76.9, 19.6) (97.8, 71.2) (95.0, 70.6) (96.8, 79.6) (94.5, 77.3)
Class7 (65.5, 45.7) (85.9, 24.5) (92.2, 66.1) (83.2, 51.0) (89.9, 70.8) (94.1, 72.1)
Class8 (48.7, 16.8) (69.7, 3.5) (84.5, 21.9) (83.8, 17.7) (88.1, 56.4) (87.2, 60.2)
Class9 (61.8, 38.2) (80.1, 2.0) (97.6, 62.4) (80.3, 3.7) (94.7, 62.4) (91.3, 48.3)
Class10 (70.4, 29.2) (87.9, 15.1) (94.5, 66.7) (97.2, 59.0) (93.9, 48.1) (94.7, 43.8)

Average (62.7, 32.6) (81.3, 13.9) (90.9, 52.0) (88.6, 40.7) (90.3, 57.9) (91.5, 57.5)
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Table 14: Comparisons of ZSAD methods on DTD-Synthetic. The best perfor-
mance is in bold, and the second-best is underlined.

Metric Category w/o supervised training w/i supervised training

SAA [5] WinCLIP [8] DINOV2 [11] SAM [9] APRIL-GAN [6] AdaCLIP

Image-level
(AUROC, max-F1)

Blotchy_099 (100.0, 100.0) (99.3, 99.4) (80.6, 88.9) (58.3, 88.9) (100.0, 100.0) (100.0, 99.4)
Fibrous_183 (99.1, 98.7) (97.0, 94.9) (52.5, 88.9) (64.6, 88.9) (99.3, 97.6) (99.9, 99.4)
Marbled_078 (98.3, 97.5) (98.4, 97.5) (66.4, 90.9) (89.4, 91.7) (100.0, 100.0) (99.8, 99.4)
Matted_069 (99.3, 98.1) (97.5, 96.1) (59.3, 88.8) (46.8, 88.8) (99.4, 98.1) (90.9, 93.8)
Mesh_114 (82.5, 81.6) (76.0, 82.5) (95.0, 92.1) (81.8, 83.1) (93.0, 91.1) (83.2, 84.3)

Perforated_037 (98.4, 98.1) (99.5, 98.8) (100.0, 100.0) (96.3, 96.8) (97.1, 95.6) (92.5, 83.6)
Stratified_154 (96.3, 96.3) (97.6, 96.2) (99.0, 98.1) (98.5, 98.1) (100.0, 100.0) (100.0, 100.0)
Woven_001 (98.1, 96.4) (95.7, 93.6) (99.8, 99.3) (95.2, 91.9) (100.0, 100.0) (100.0, 100.0)
Woven_068 (94.6, 91.6) (96.6, 94.3) (96.7, 94.9) (99.7, 99.4) (99.2, 97.4) (91.8, 93.2)
Woven_104 (90.2, 93.0) (98.1, 98.1) (91.1, 94.1) (99.9, 99.4) (99.4, 98.1) (92.6, 91.1)
Woven_125 (98.9, 97.5) (99.4, 98.7) (94.3, 95.0) (99.9, 99.4) (99.9), 99.4 (100.0, 100.0)
Woven_127 (77.5, 72.9) (86.1, 78.5) (94.3, 90.5) (52.4, 66.7) (90.6, 84.0) (95.8, 92.8)

Average (94.4, 93.5) (95.1, 94.1) (85.8, 93.5) (81.9, 91.1) (98.1, 96.8) (95.5, 94.7)

Pixel-level
(AUROC, max-F1)

Blotchy_099 (84.0, 80.3) (67.3, 11.4) (97.0, 60.8) (97.1, 44.9) (99.7, 77.8) (99.3, 81.1)
Fibrous_183 (81.8, 76.1) (87.2, 28.2) (96.0, 45.3) (94.5, 54.2) (99.5, 78.8) (99.6, 67.3)
Marbled_078 (79.7, 71.7) (78.0, 14.9) (95.9, 47.2) (98.1, 71.0) (99.6, 78.7) (99.7, 78.4)
Matted_069 (70.0, 55.9) (90.2, 17.8) (89.5, 22.9) (84.7, 12.4) (99.2, 72.3) (96.9, 67.9)
Mesh_114 (68.7, 50.8) (76.1, 9.5) (96.7, 72.6) (93.6, 49.7) (94.7, 66.1) (97.3, 68.7)

Perforated_037 (80.9, 59.0) (76.9, 8.4) (99.0, 75.3) (95.1, 67.6) (95.8, 68.0) (95.8, 70.0)
Stratified_154 (81.6, 70.4) (71.8, 26.9) (99.1, 81.1) (98.0, 71.3) (99.0, 77.4) (99.3, 66.9)
Woven_001 (80.0, 70.4) (83.0, 10.2) (99.7, 77.2) (98.3, 71.9) (99.6, 77.7) (99.5, 78.8)
Woven_068 (73.4, 49.8) (92.1, 21.9) (98.4, 66.5) (99.0, 76.4) (97.5, 71.2) (96.4, 64.6)
Woven_104 (84.2, 52.8) (79.4, 18.2) (98.4, 66.8) (98.6, 72.0) (96.3, 69.2) (98.7, 70.8)
Woven_125 (75.3, 64.6) (84.8, 20.2) (99.7, 82.5) (99.7, 79.2) (99.7, 82.3) (99.5, 83.1)
Woven_127 (60.3, 25.5) (66.7, 6.2) (94.6, 62.1) (83.9, 10.0) (93.1, 53.4) (93.3, 62.0)

Average (76.7, 60.6) (79.5, 16.1) (97.0, 63.4) (95.0, 56.7) (97.8, 72.7) (97.9, 71.6)

Fig. 5: Visualization of anomaly maps generated by AdaCLIP for the capsule
category in MVTec AD. The first row displays the input images, while the second
row shows the ground truth. The bottom row illustrates the anomaly maps generated
by AdaCLIP.
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Fig. 6: Visualization of anomaly maps generated by AdaCLIP for the hazelnut
category in MVTec AD. The first row displays the input images, while the second
row shows the ground truth. The bottom row illustrates the anomaly maps generated
by AdaCLIP.

Fig. 7: Visualization of anomaly maps generated by AdaCLIP for the leather
category in MVTec AD. The first row displays the input images, while the second
row shows the ground truth. The bottom row illustrates the anomaly maps generated
by AdaCLIP.

Fig. 8: Visualization of anomaly maps generated by AdaCLIP for the
metal_nut category in MVTec AD. The first row displays the input images,
while the second row shows the ground truth. The bottom row illustrates the anomaly
maps generated by AdaCLIP.
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Fig. 9: Visualization of anomaly maps generated by AdaCLIP for the pill
category in MVTec AD. The first row displays the input images, while the second
row shows the ground truth. The bottom row illustrates the anomaly maps generated
by AdaCLIP.

Fig. 10: Visualization of anomaly maps generated by AdaCLIP for the wood
category in MVTec AD. The first row displays the input images, while the second
row shows the ground truth. The bottom row illustrates the anomaly maps generated
by AdaCLIP.

Fig. 11: Visualization of anomaly maps generated by AdaCLIP for the candle
category in VisA. The first row displays the input images, while the second row
shows the ground truth. The bottom row illustrates the anomaly maps generated by
AdaCLIP.
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Fig. 12: Visualization of anomaly maps generated by AdaCLIP for the
capsules category in VisA. The first row displays the input images, while the second
row shows the ground truth. The bottom row illustrates the anomaly maps generated
by AdaCLIP.

Fig. 13: Visualization of anomaly maps generated by AdaCLIP for the cashew
category in VisA. The first row displays the input images, while the second row
shows the ground truth. The bottom row illustrates the anomaly maps generated by
AdaCLIP.

Fig. 14: Visualization of anomaly maps generated by AdaCLIP for the
chewinggum category in VisA. The first row displays the input images, while the
second row shows the ground truth. The bottom row illustrates the anomaly maps
generated by AdaCLIP.
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Fig. 15: Visualization of anomaly maps generated by AdaCLIP for the
macaroni1 category in VisA. The first row displays the input images, while the
second row shows the ground truth. The bottom row illustrates the anomaly maps
generated by AdaCLIP.

Fig. 16: Visualization of anomaly maps generated by AdaCLIP for the pcb1
category in VisA. The first row displays the input images, while the second row
shows the ground truth. The bottom row illustrates the anomaly maps generated by
AdaCLIP.

Fig. 17: Visualization of anomaly maps generated by AdaCLIP for the pcb2
category in VisA. The first row displays the input images, while the second row
shows the ground truth. The bottom row illustrates the anomaly maps generated by
AdaCLIP.
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Fig. 18: Visualization of anomaly maps generated by AdaCLIP for the pcb3
category in VisA. The first row displays the input images, while the second row
shows the ground truth. The bottom row illustrates the anomaly maps generated by
AdaCLIP.

Fig. 19: Visualization of anomaly maps generated by AdaCLIP for the pcb4
category in VisA. The first row displays the input images, while the second row
shows the ground truth. The bottom row illustrates the anomaly maps generated by
AdaCLIP.

Fig. 20: Visualization of anomaly maps generated by AdaCLIP for the
pipe_fryum category in VisA. The first row displays the input images, while the
second row shows the ground truth. The bottom row illustrates the anomaly maps
generated by AdaCLIP.
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Fig. 21: Visualization of anomaly maps generated by AdaCLIP for the metal
plate category in MPDD. The first row displays the input images, while the second
row shows the ground truth. The bottom row illustrates the anomaly maps generated
by AdaCLIP.

Fig. 22: Visualization of anomaly maps generated by AdaCLIP for the tubes
category in MPDD. The first row displays the input images, while the second row
shows the ground truth. The bottom row illustrates the anomaly maps generated by
AdaCLIP.

Fig. 23: Visualization of anomaly maps generated by AdaCLIP for the class03
category in BTAD. The first row displays the input images, while the second row
shows the ground truth. The bottom row illustrates the anomaly maps generated by
AdaCLIP.
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Fig. 24: Visualization of anomaly maps generated by AdaCLIP for the
Clinicdb dataset. The first row displays the input images, while the second row shows
the ground truth. The bottom row illustrates the anomaly maps generated by AdaCLIP.

Fig. 25: Visualization of anomaly maps generated by AdaCLIP for the
Colondb dataset. The first row displays the input images, while the second row shows
the ground truth. The bottom row illustrates the anomaly maps generated by AdaCLIP.

Fig. 26: Visualization of anomaly maps generated by AdaCLIP for the ISIC
dataset. The first row displays the input images, while the second row shows the
ground truth. The bottom row illustrates the anomaly maps generated by AdaCLIP.
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