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Abstract. Zero-shot anomaly detection (ZSAD) targets the identifica-
tion of anomalies within images from arbitrary novel categories. This study
introduces AdaCLIP for the ZSAD task, leveraging a pre-trained vision-
language model (VLM), CLIP. AdaCLIP incorporates learnable prompts
into CLIP and optimizes them through training on auxiliary annotated
anomaly detection data. Two types of learnable prompts are proposed:
static and dynamic. Static prompts are shared across all images, serving
to preliminarily adapt CLIP for ZSAD. In contrast, dynamic prompts are
generated for each test image, providing CLIP with dynamic adaptation
capabilities. The combination of static and dynamic prompts is referred
to as hybrid prompts, and yields enhanced ZSAD performance. Extensive
experiments conducted across 14 real-world anomaly detection datasets
from industrial and medical domains indicate that AdaCLIP outperforms
other ZSAD methods and can generalize better to different categories and
even domains. Finally, our analysis highlights the importance of diverse
auxiliary data and optimized prompts for enhanced generalization capac-
ity. Code is available at https://github.com/caoyunkang/AdaCLIP.
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1 Introduction

Anomaly detection (AD) in images [12,13] holds significant importance across
various domains, including industrial inspection [3,33,48] and medical diagnosis [7].
The primary goal of AD methods is to detect deviations from normal patterns,
either image or pixel-level. Most AD methods rely on unsupervised learning [9,41]
and semi-supervised learning [11, 17, 42] paradigms that require either normal
samples or annotated anomalous samples from the target category for training,
as depicted in Fig. 1. For instance, to train a dedicated model for the category
‘chewing gum’, traditional unsupervised AD methods require a substantial dataset
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comprising normal ‘chewing gum’ images, while semi-supervised approaches
impose an even stricter requirement, requiring annotated abnormal images.

Some scenarios are characterized by the cold start problem, meaning that
it is not feasible to gather enough normal images for training an unsupervised
model, thus preventing both unsupervised and semi-supervised AD solutions.
The emerging zero-shot anomaly detection (ZSAD [24]) paradigm addresses this
issue, aiming at detecting anomalies in images belonging to unseen categories,
without requiring any image of that category for training. Existing ZSAD methods
commonly rely on pre-trained vision-language models (VLMs) due to their broad
generalization capability. Some ZSAD methods employ VLMs for ZSAD without
any additional training [24, 46], while others leverage annotated images from
auxiliary anomaly-detection datasets to tailor VLMs for ZSAD, as Fig. 1 shows.

The pioneering ZSAD method, WinCLIP [24], directly uses pre-trained VLMs
with hand-crafted textual prompts to identify anomalies. Similarly to zero-shot
classification, WinCLIP detects as anomalous images that are close to the selected
prompts in the embedding space. However, WinCLIP exhibits limited detection
performance since its underlying VLM, CLIP [40], is trained on natural image-text
datasets [43] and is not specialized for anomaly detection. Conversely, APRIL-
GAN [14] and AnomalyCLIP [56] address ZSAD by adapting VLMs on auxiliary
anomaly-detection datasets that contain annotated anomalies. This adaptation
scheme is gaining popularity due to the growing availability of annotated AD
datasets [3, 57] spanning diverse categories [3] and domains [18, 57]. Importantly,
the adaptation scheme adheres to the zero-shot learning paradigm, as long as
testing images do not belong to categories presented in the auxiliary AD dataset.

The rationale behind ZSAD approaches is that testing images may exhibit
universal patterns, either normal or anomalous, that VLMs can identify. Addi-
tionally, adapting VLMs on auxiliary data can be beneficial as these data might
contain patterns that are useful for detecting anomalies in novel categories. For
example, the scratches on ‘pill’ images might improve the model’s ability to
detect similar abnormal patterns on ‘chewing gum’ (as illustrated in Fig. 1).

To take the most from auxiliary datasets for ZSAD, we propose AdaCLIP,
which builds upon the mainstream zero-shot learning principle in CLIP. In
particular, AdaCLIP computes similarities between patch embeddings and text
embeddings for textual captions describing normal/abnormal states using CLIP.
To enhance the ZSAD performance, AdaCLIP introduces additional lightweight
learnable parameters in two forms: projection and prompting layers. As in APRIL-
GAN [14], our projection layer is designed to align the dimensions between patch
tokens and text embeddings, while introducing additional learnable parameters
for fine-tuning CLIP. Prompting layers are used to replace the original transformer
layers within CLIP, by concatenating additional prompting tokens and the layer
input. Prompting has proven very effective in adapting VLMs [29]. To ease
the adaptation with auxiliary data, static and dynamic learnable prompts are
introduced, where static prompts are shared across all images and dynamic
prompts are generated based on the testing image. The combination of static
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Fig. 1: Left: Illustrations for training and test data of unsupervised, semi-supervised,
and zero-shot anomaly detection paradigms. Right: Quantitative comparison with
popular methods by pixel-level max-F1 [24] on industrial and medical datasets.

and dynamic prompts, referred to as hybrid prompts, demonstrates significant
generalization capabilities and promising ZSAD performance, as shown in Fig. 1.

In summary, our contributions include the following key components:

– We introduce a novel ZSAD method named AdaCLIP. AdaCLIP comprises
hybrid (static and dynamic) learnable prompts to better exploit the auxiliary
data to enhance ZSAD performance. A hybrid-semantic fusion module is also
developed to extract region-level context about anomaly regions, thereby
enhancing image-level anomaly detection performance.

– We show that different VLMs –not only CLIP– can be effectively adapted for
ZSAD. Additionally, we demonstrate the importance of optimized prompts
for detecting anomalies within individual images.

Our experiments demonstrate that we achieve state-of-the-art (SOTA) per-
formance in ZSAD across 14 datasets spanning industrial and medical domains.
We showcase that our AdaCLIP can effectively leverage information from aux-
iliary datasets, even when referring to categories from different domains (med-
ical/industrial), outperforming alternative ZSAD methods. Additionally, we
underscore that leveraging diverse auxiliary data is beneficial for ZSAD.

2 Related Work

2.1 Traditional Anomaly Detection

Unsupervised Anomaly Detection methods like [8,41] learn exclusively from
normal samples within target categories. Unsupervised AD methods typically
model normal sample distributions during training and subsequently compare
test samples to the learned normal sample distribution to detect anomalies. A
very effective approach consists in extracting features from each sample using
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pre-trained neural networks [6,9,16], and then modeling the features distribution
by knowledge distillation [27, 34, 53], reconstruction [5, 22, 50, 51], or memory
bank-based approaches [23,47].
Semi-supervised Anomaly Detection methods like [11, 17] require both
normal and abnormal images with annotations from target categories for training.
They typically utilize annotated abnormal samples to learn a more compact
description boundary for normal samples. Since some additional abnormal samples
are exploited, they typically present better AD performance in comparison to
unsupervised AD but impose a strict requirement for data.

Despite the promising anomaly detection performance achieved by these
traditional AD methods, their effectiveness tends to diminish when fewer normal
samples are available for training. In contrast, we aim to develop a generic ZSAD
model for anomaly detection across unseen categories without training samlpes.

2.2 Zero-shot Anomaly Detection

Zero-shot learning often requires extensive training data to attain generaliza-
tion abilities [15,24]. Many off-the-shelf VLMs have been developed, presenting
promising zero-shot capabilities. These pre-trained VLMs are leveraged to identify
anomalies across unbounded categories. For instance, WinCLIP [24] employs
CLIP [40] to compute similarities between embeddings of image patches and
embeddings of captions regarding normal/abnormal states, which is subsequently
enhanced by text augmentation in [46]. In contrast, SAA [10] utilizes Grounding
DINO [35] to identify abnormal regions within a test image using text prompts,
followed by refinement with SAM [30]. However, these VLMs are typically trained
on natural image-text pairs and are not specifically designed for AD. Therefore,
APRIL-GAN [14] and CLIP-AD [15] enhance the ZSAD performance of CLIP by
tuning additional projection layers with annotated auxiliary AD data. With these
auxiliary data, AnomalyCLIP [56] preliminarily explores prompt learning and
introduces learnable text prompts to adapt VLMs for ZSAD. AnomalyGPT [19]
also introduces textual prompting learning but for unsupervised AD. In this paper,
we further delve into prompt learning and develop multimodal hybrid learnable
prompts to maximize the utility of auxiliary AD data. Table 4 in Appendix
highlights the significance of AdaCLIP in comparison to other alternatives.

2.3 Prompt Learning

In the realm of VLMs, prompt learning [29] involves incorporating learnable
tokens into the input image or text, effectively tailoring VLMs to specific scenarios.
Early prompt learning methods introduce static prompts to VLMs. For instance,
CoOp [55] integrates learnable tokens in addition to the input text into the
text branch. However, recent advancements in prompt learning methods [52]
have identified that static prompts may be susceptible to distribution diversity.
Consequently, CoCoOp [54] and IDPT [52] propose generating dynamic prompts
based on the inputs for improving modeling capabilities. Whereas previous
prompt learning methods primarily focused on the text encoder of VLMs [54],
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Fig. 2: Framework of AdaCLIP.

recent studies [26,29] have increasingly acknowledged the significance of prompting
the image encoder, i.e., visual prompting, to better exploit the multimodal
capabilities of VLMs. In this paper, we propose multimodal (image+text) hybrid
(static+dynamic) prompts to adapt VLMs for improving anomaly detection.

3 Problem Formulation

Our objective is to develop a model that associates an input image I ∈ RH×W×3

with an image-level anomaly score S and a pixel-level anomaly map M ∈ RH×W ,
indicating whether I and its pixels are normal or abnormal. Typically, the values
of the anomaly score and anomaly map pixels fall within the range [0, 1], where
larger values indicate higher probabilities of being abnormal. We operate within
the ZSAD context, training our model using an auxiliary anomaly detection
dataset Itrain = {(Ii,Gi)}Ntrain

i=1 , which contains categories distinct from those in
the testing dataset Itest = {Ii}Ntest

i=1 . The auxiliary training dataset includes both
normal and abnormal images I along with their annotated masks G ∈ RH×W ,
where pixels have value 0 if normal and 1 if abnormal. By learning from this
auxiliary dataset Itrain, the model is expected to learn normal and abnormal
patterns that are common to different classes, enabling the detection of anomalies
in novel categories.

4 AdaCLIP

4.1 Overview

The framework of AdaCLIP is illustrated in Fig. 2. Given an image I, Ada-
CLIP follows the general ZSAD principle of comparing CLIP embedding as
WinCLIP [24] do. In particular, we detect anomalies by calculating similarities
in CLIP embedding space between the image and textual captions for nor-
mal/abnormal states, such as "A photo of normal [CLS]" and "A photo of



6 Y. Cao et al.

damaged [CLS]", where [CLS] denotes to the name of the testing category, like
‘carpet’, ‘hazelnut’, etc. Notably, AdaCLIP enhances the pre-trained CLIP by
incorporating learnable parameters through prompting layers for image and text
encoders, denoted as LP

I and LP
T respectively, which replace the original trans-

former layers. For the prompting layers, both static prompts PS and dynamic
prompts PD are introduced. AdaCLIP also introduces a projection layer Proj
at the end of the image encoder, and a Hybrid Semantic Fusion (HSF) module
designed to extract semantic-rich image embeddings for computing image-level
anomaly scores S.

4.2 Prompting Layers

AdaCLIP introduces prompting layers LP
I and LP

T to replace the original trans-
former layers in the image and text encoders of CLIP, respectively. Prompting
layers [29] preserves the weights of the transformer (to inherit its generalization
ability) but concatenates learnable prompting tokens P to the vanilla tokens
derived from the input images or texts, as illustrated in Fig. 2. Thanks to the
self-attention mechanism in transformer layers, the learnable prompting token
will contribute to all the output tokens, including the vanilla ones.

More specifically, prompting tokens P ∈ RM×C are concatenated to the
input vanilla tokens T ∈ RN×C of the transformer layer. Here, C denotes the
embedding dimension, while N and M denote the lengths of vanilla tokens and
prompting tokens, respectively, where M ≪ N for lightweight adaptation. Let
LP
j denote the j-th prompting layer, then the feed-forward process is,

[Tj+1,_] = LP
j ([Tj ,Pj ]), j ≤ J, (1)

[Tj+1,Pj+1] = LP
j ([Tj ,Pj ]), j > J, (2)

where [·, ·] denotes concatenation along rows. Learnable prompting tokens are
incorporated up to a limited depth J , while prompting tokens for the remaining
layers are generated through feed-forwarding. Typically, J is set to a small value,
as too many learnable parameters may result in overfitting on auxiliary data.

4.3 Hybrid Learnable Prompts

To effectively utilize auxiliary data for enhanced anomaly detection performance,
we introduce both static and dynamic prompts.
Static Prompts PS. Static prompts PS serve as foundational learning tokens
shared across all images, which are explicitly learned from auxiliary data during
training, as Fig 2 shows. However, their limited adaptation effectiveness is
acknowledged by previous studies [52].
Dynamic Prompts PD. We further introduce dynamic prompts PD to enhance
the modeling capacity for diverse distributions. Dynamic prompts differ from
static prompts as they are generated on each testing image by the Dynamic
Prompt Generator (DPG):

PD = DPG(I). (3)
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In our case DPG is a frozen pre-trained backbone such as CLIP to extract
class tokens, followed by a learnable linear layer to project the class tokens into
dynamic prompts PD. Both dynamic prompts for LP

I in the image encoder and
LP
T in the text encoder are generated from the testing image, as shown in Fig. 2.

AdaCLIP sums up the static and dynamic prompts, referred to as hybrid
prompts, for both prompting layers LP

I and LP
T . By replacing the original trans-

former layers with these prompting layers, the image encoder extracts patch
embeddings FP = {FP

0 , . . .} for the input image I from multiple prompting layers,
while the text encoder generates normal/abnormal text embeddings FT

N , FT
A for

the corresponding textual captions.

4.4 Projection Layer

The original CLIP [40] architecture makes the dimensions of patch embeddings and
text embeddings unmatched, thus we append a projection layer Proj to the image
encoder. In particular, we align the dimensions between patch embeddings (FP )
and the embeddings of normal (FT

N ) and anomalous (FT
A) texts by introducing

a linear layer with bias. In addition, the projection layer adds some learnable
parameters for CLIP adaption.

4.5 Pixel-Level Anomaly Localization

We derive the anomaly score by measuring the cosine similarities between patch
embeddings FP , and text embeddings FT

N and FT
A. We adopt the same approach

as in WinCLIP [24], and define the anomaly map from i-th layer as follows:

Mi = ϕ

(
exp(cos(FP

i ,F
T
A))

exp(cos(FP
i ,F

T
N )) + exp(cos(FP

i ,F
T
A))

)
, (4)

where cos(·, ·) denotes the cosine similarity and ϕ is a reshape and interpolate
function, transforming anomaly scores for patch embeddings into anomaly maps
Mi ∈ RH×W . Then we take anomaly maps from several layers in a multi-hierarchy
manner [24] and aggregate these anomaly maps into a final prediction M. During
training, AdaCLIP optimizes the pixel-level anomaly map M with dice loss [37]
and focal loss [32] on the auxiliary data.

4.6 Hybrid Semantic Fusion Module

AdaCLIP introduces an HSF module to improve image-level AD performance.
Traditional AD methods [9, 14] for image-level AD often select the maximum
values of anomaly maps as anomaly scores, but this is sensitive to noisy predictions.
In contrast, we present the HSF module to aggregate patch embeddings that
are more likely to represent abnormalities, thereby aggregating region-level
information for robust image-level anomaly detection. We refer to the output of
HSF as semantic-rich embedding FI .
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As Fig. 2 shows, the HSF module follows a three-step paradigm: ① Cluster
patch embeddings into K groups using KMeans [2]. ② Compute the anomaly
scores of individual clusters by averaging the scores of the corresponding positions
in the anomaly map M. ③ Select the cluster with the highest anomaly scores,
calculate its centroids, and aggregate them into the final semantic-rich image
embedding FI , which encapsulates semantic information about the most abnormal
clusters. The resulting semantic-rich image embedding effectively improves image-
level AD performance compared to the maximum value-based anomaly detection
methods. More details regarding HSF are presented in Appendix Section 2.2.

4.7 Image-Level Anomaly Detection

After extracting the semantic-rich image embeddings FI , we compute the image-
level anomaly scores S similar to (4), using cosine similarities between FI and
the text embeddings FN

A and FT
A, followed by softmax normalization. Then we

optimize image-level anomaly scores S using focal loss [32].

5 Experiments

5.1 Experimental Setup

Datasets. We conduct experiments using datasets from industrial and medical
domains. Specifically, for the industrial domain, we use MVTec AD [3], VisA [57],
MPDD [25], BTAD [38], KSDD [44], DAGM [49], and DTD-Synthetic [1] datasets.
In the medical domain, we consider brain tumor detection datasets HeadCT [31],
BrainMRI [28], Br35H [21], skin cancer detection dataset ISIC [20], colon polyp
detection datasets ClinicDB [4], and ColonDB [45], as well as thyroid nodule
detection dataset TN3K [18]. A detailed introduction to these datasets can be
found in Appendix Section 1.
Evaluation Metrics. Following previous ZSAD studies [14, 24], we employ the
Area Under the Receiver Operating Characteristic Curve (AUROC) and the
maximum F1 score (max-F1) under the optimal threshold to evaluate both image-
level and pixel-level AD performance. In addition to dataset-level results, we also
report domain-level average performance in the form of (AUROC, max-F1).
Implementation Details. This study employs the pre-trained CLIP (ViT-
L/14@336px)5 as the default backbone and extracts patch embeddings from the
6-th, 12-th, 18-th, and 24-th layers. All images undergo resizing to a resolution of
518× 518 for both training and testing. For the ZSAD task, it is imperative that
the auxiliary data does not contain any categories present in the test set. Although
ClinicDB [4] and ColonDB [45] both comprise colon polyp data, their appearances
differ significantly. Therefore, we default to using the industrial dataset, MVTec
AD [3], and the medical dataset, ClinicDB [4], as auxiliary data. For evaluations
on MVTec AD and ClinicDB, VisA [57] and ColonDB [45] are utilized for training.
The prompting depth J is set to four and the prompting length M is set to five
5 https://github.com/mlfoundations/open_clip
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by default. We train AdaCLIP for five epochs with a learning rate of 0.01. All
experiments are conducted using PyTorch-1.9.2 with a single NVIDIA A6000
48GB GPU. Appendix Section 3 presents further implementation details.

5.2 Main Experimental Results

Comparison Methods. This study compares the proposed AdaCLIP with
two sets of methods: with and without training on auxiliary data. For methods
without training, we reproduce SAA [10] and WinCLIP [24] for comparisons.
Regarding methods with training, we choose the existing ZSAD method based on
CLIP, APRIL-GAN [14], and AnomalyCLIP [56]. In addition, to explore whether
other VLMs excluding CLIP can be adapted for ZSAD, we train DINOV2 [39]
and SAM [30] on the auxiliary data by adding linear layers as segmentation
heads after multiple transformer layers. More details about the implementation
of these methods can be found in Appendix Section 3. Unfortunately, we cannot
directly compare with AnomalyCLIP [56] because its implementation is not
publicly available before our submission date. To enable a fair comparison, we
have evaluated AdaCLIP under the experimental setting of AnomalyCLIP, and
the results are reported in Appendix Section 4.
Zero-shot Anomaly Detection in the Industrial Domain: Table 1 reports
the results in the industrial domain. It distinctly illustrates that methods with
training exhibit superior performance compared to alternative ZSAD methods
without training on auxiliary data. In particular, WinCLIP and SAA which
utilize hand-crafted textual prompts present subpar AD performance. Conversely,
adapting DINOV2 and SAM with auxiliary data demonstrates promising pixel-
level ZSAD performance. The superior performance of the set of ZSAD methods
trained with the auxiliary data underscores that pre-trained VLMs are already
endowed with essential knowledge for anomaly detection. This existing knowledge
can be effectively leveraged for ZSAD through proper adaptation, like the strategy
we employed.

Moreover, as evident in Table 1, the proposed AdaCLIP showcases significant
improvements over other ZSAD methods, e.g ., 3.7% image-level and 3.3% pixel-
level enhancements on max-F1 compared to the second-place method. Also,
AdaCLIP achieves the best overall ranking across all datasets in terms of both
image- and pixel-level performance. This showcases the excellence of AdaCLIP
and validates the efficacy of the introduced prompting layers. We further present
visualizations of the predicted anomaly maps across various datasets in Fig. 3.
AdaCLIP exhibits significantly more accurate segmentation for novel industrial
categories in comparison to other methods. The precise detection results for
challenging categories such as tubes, capsules, and pipe fryum further highlight
the superiority of AdaCLIP.
Zero-shot Anomaly Detection in the Medical Domain. We also conduct
experiments in the medical domain to further investigate the generalization
ability of these ZSAD methods. The results exhibit a similar trend to those
in the industrial domain, where methods with training outperform SAA and
WinCLIP by a significant margin. AdaCLIP emerges as the top performer with
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Table 1: Comparisons of ZSAD methods in the industrial domain. The best
performance is in bold, and the second-best is underlined. † denotes to results taken
from original papers. Rank denotes to the average performance rankings of different
methods on various datasets.

Metric Dataset w/o supervised training w/ supervised training

SAA [10] WinCLIP [24] DINOV2 [39] SAM [30] APRIL-GAN [14] AdaCLIP

Image-level
(AUROC, max-F1)

MVTec AD (63.5, 87.4) (91.8, 92.9)† (74.4, 87.4) (70.8, 86.0) (82.3, 88.9) (89.2, 90.6)
VisA (67.1, 75.9) (78.1, 80.7)† (75.2, 78.5) (61.9, 73.9) (81.7, 80.7) (85.8, 83.1)

MPDD (42.7, 73.9) (61.4, 77.5) (62.4, 74.9) (63.0, 77.0) (66.0, 76.0) (76.0, 82.5)
BTAD (59.0, 89.7) (68.2, 67.6) (79.3, 69.3) (89.4, 85.7) (85.2, 82.0) (88.6, 88.2)
KSDD (68.6, 37.6) (93.3, 79.0) (94.9, 77.5) (65.8, 37.9) (95.7, 85.2) (97.1, 90.7)
DAGM (87.1, 88.8) (91.7, 87.6) (90.7, 89.2) (82.7, 83.6) (93.5, 91.8) (99.1, 97.5)

DTD-Synthetic (94.4, 93.5) (95.1, 94.1) (85.8, 93.5) (81.9, 91.1) (98.1, 96.8) (95.5, 94.7)

Average (68.9, 78.1) (82.8, 82.8) (80.4, 81.5) (73.6, 76.4) (86.1, 85.9) (90.2, 89.6)
Rank (5.3, 4.4) (3.4, 3.4) (4.0, 4.1) (4.7, 5.0) (2.1, 2.6) (1.4, 1.4)

Pixel-level
(AUROC, max-F1)

MVTec AD (75.5, 38.1) (85.1, 31.6)† (85.9, 39.6) (85.4, 29.4) (83.7, 39.8) (88.7, 43.4)
VisA (76.5, 31.6) (79.6, 14.8)† (95.0, 30.3) (92.6, 18.2) (95.2, 32.3) (95.5, 37.7)

MPDD (81.7, 18.9) (71.2, 15.4) (95.6, 31.1) (94.8, 22.1) (95.1, 30.6) (96.1, 34.9)
BTAD (65.8, 14.8) (72.6, 18.5) (91.9, 43.4) (93.8, 46.9) (89.5, 38.4) (92.1, 51.7)
KSDD (78.8, 6.6) (95.8, 21.3) (99.3, 50.6) (91.2, 18.4) (98.2, 56.2) (97.7, 54.5)
DAGM (62.7, 32.6) (81.3, 13.9) (90.9, 52.0) (88.6, 40.7) (90.3, 57.9) (91.5, 57.5)

DTD-Synthetic (76.7, 60.6) (79.5, 16.1) (97.0, 63.4) (95.0, 56.7) (97.8, 72.7) (97.9, 71.6)

Average (73.9, 29.0) (80.7, 18.8) (93.7, 44.3) (91.7, 33.2) (92.8, 46.9) (94.2, 50.2)
Rank (5.9, 4.7) (4.9, 5.6) (2.3, 3.0) (3.6, 4.3) (3.0, 2.0) (1.4, 1.4)

Table 2: Comparisons of ZSAD methods in the medical domain. The best
performance is in bold, and the second-best is underlined. Rank denotes to the average
performance rankings of different methods on various datasets.

Metric Dataset w/o supervised training w/ supervised training

SAA [10] WinCLIP [24] DINOV2 [39] SAM [30] APRIL-GAN [14] AdaCLIP

Image-level
(AUROC, max-F1)

HeadCT (46.8, 68.0) (84.1, 79.8) (71.4, 72.4) (78.4, 76.4) (93.6, 86.4) (91.4, 85.2)
BrainMRI (34.4, 76.7) (89.8, 86.3) (78.3, 82.7) (71.5, 78.9) (89.7, 89.5) (94.8, 91.2)

Br35H (33.2, 67.3) (81.6, 74.4) (69.1, 70.5) (59.0, 67.2) (95.6, 91.0) (97.7, 92.4)

Average (38.1, 70.7) (85.2, 80.2) (72.9, 75.2) (69.7, 74.1) (93.0, 89.0) (94.6, 89.6)
Rank (6.0, 5.7) (2.7, 3.0) (4.3, 4.3) (4.7, 5.0) (2.0, 1.7) (1.3, 1.3)

Pixel-level
(AUROC, max-F1)

ISIC (83.8, 74.2) (67.1, 48.5) (94.2, 79.6) (94.2, 81.0) (92.1, 77.4) (89.3, 71.4)
ColonDB (71.8, 31.5) (61.1, 19.6) (87.3, 56.5) (86.1, 45.7) (88.7, 52.6) (90.4, 58.2)
ClinicDB (66.2, 29.1) (67.1, 24.4) (83.3, 56.2) (83.5, 43.0) (82.5, 51.8) (84.4, 58.2)
TN3K (66.8, 32.6) (67.2, 30.0) (73.3, 35.7) (70.1, 32.5) (75.9, 36.4) (77.2, 41.9)

Average (72.1, 41.8) (65.6, 30.6) (84.5, 57.0) (83.5, 50.5) (84.8, 54.6) (85.3, 57.4)
Rank (5.5, 4.5) (5.5, 6.0) (2.5, 2.3) (3.0, 3.5) (2.8, 2.8) (1.8, 2.0)

the highest average rankings, showcasing robust generalization capabilities across
different domains. As depicted in Fig. 3, AdaCLIP demonstrates precise detection
of various anomalies across diverse medical categories, such as identifying skin
cancer regions in photographic images and detecting thyroid nodules in ultrasound
images. AdaCLIP achieves notably superior performance in locating abnormal
lesion/tumor regions compared to other ZSAD methods. More quantitative and
qualitative results in Appendix Section 5-7 further illustrate the superior ZSAD
performance of AdaCLIP.
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Fig. 3: Visualization of anomaly maps of different ZSAD methods. The
proposed AdaCLIP can get the most precise segmentation results for novel categories
in both industrial and medical domains.

5.3 Ablation Study

Influence of Prompts. Table 3 presents the detection performance of AdaCLIP
with different combinations of static prompts and dynamic prompts, namely V1
(w/o PS , w/o PD), V2 (w/ PS , w/o PD), V3 (w/o PS , w/ PD), and V4 (w/ PS ,
w/ PD). The superior performance of V2 and V3 to V1 shows that both prompts
are useful. V4 with hybrid prompts brings the most significant improvements.
This is because static prompts struggle to capture diverse anomalies, while
solely dynamic prompts are not sufficient. The combined hybrid prompts offer
robust and flexible adaptation, thereby offering better ZSAD performance. Fig. 4
visualizes the patch embeddings and anomaly maps to delve into the influence
of prompts. It clearly shows that both prompts are useful in highlighting the
abnormal patch embeddings, facilitating precise predictions. However, with solely
static or dynamic prompts, the prediction results are not perfect. In comparison,
the model (V4) with hybrid prompts can detect anomalies more accurately. We
also evaluate the influence of multimodal prompts and find it crucial to prompt
both the text and image encoders, as shown in Appendix Section 2.1.
Analysis on Prompting Depth and Length. Fig. 5 visualizes the ZSAD
performance of AdaCLIP under different prompting depths (J) and prompting
lengths (M). Significantly, the performance of AdaCLIP does not exhibit con-
tinuous improvement with larger J and M . This is because the incorporation of
more learnable prompting parameters introduces a risk of overfitting the auxiliary
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Image GT V1 (w/o ��, w/o ��) V2 (w/ ��, w/o ��) V3 (w/o ��, w/ ��) V4 (w/ ��, w/ ��) Optimized Prompts

Industrial Domain Medical Domain

Image

GT

SAA

WinCLIP

DINOV2
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Nut

Blotchy Tubes Capsules Chewing 
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Fig. 4: Visualization of Patch Embeddings and Anomaly Maps under Dif-
ferent Prompts. PCA is utilized to reduce the dimension of patch embeddings for
enhanced visualization. For individual models, the left shows patch embeddings and
the right displays anomaly maps.

Table 3: Ablation Results of Static prompts PS and
Dynamic prompts PD.

Model PS PD Medical Domain Industrial Domain

Image-level Pixel-level Image-level Pixel-level

V1 ✘ ✘ (87.9, 58.3) (83.9, 54.3) (86.7, 85.0) (92.8, 45.9)
V2 ✔ ✘ (88.8, 60.4) (84.8, 56.4) (89.1, 88.7) (94.1, 48.2)
V3 ✘ ✔ (88.4, 60.0) (84.4, 57.0) (86.9, 87.1) (93.5, 46.1)
V4 ✔ ✔ (94.6, 89.6) (85.3, 57.4) (90.2, 89.6) (94.2, 50.2)

Table 4: Ablation results on HSF.

HSF Medical Domain Industrial Domain

Image-level Pixel-level Image-level Pixel-level

✘ (91.8, 88.7) (85.7, 57.7) (86.0, 85.8) (93.8, 49.9)
✔ (94.6, 89.6) (85.3, 57.4) (90.2, 89.6) (94.2, 50.2)

Colon
ColonDB

Colon
ClinicDB

Skin
ISIC

Image GT Medical Industrial Both
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Fig. 5: ZSAD performance
(max-F1) under different
prompting depths J and
prompting lengths M .

training dataset. To mitigate this, we employ the default setting J = 4 and
M = 5, ensuring consistently high AD performance across both domains.
Influence of HSF. Table 4 showcases the impact of HSF. The results reveal a
significant improvement of image-level ZSAD performance across both medical
and industrial domains with the introduction of HSF compared to maximum-
based image-level AD (without HSF). For instance, the image-level AUROC
increases from 86.0% to 90.2% in the industrial domain. This improvement is
attributed to the ability of HSF to aggregate the semantics of abnormal regions
from multiple hierarchies. Conversely, relying on the maximum value of anomaly
maps for image-level AD yields suboptimal results. Additional analysis of HSF is
provided in Appendix Section 2.2.
Influence of Annotated Auxiliary Data. We conduct experiments in the
medical domain to explore the influence of annotated auxiliary data, as illustrated
in Table 5 and Fig. 6. Relying exclusively on medical datasets for training results
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Table 5: ZSAD Performance in the Med-
ical Domain with Varied Training Data.
Top: Image-level AD. Bottom: Pixel-
level AD.

Dataset Medical Industrial Both

HeadCT (76.0, 72.3) (81.6, 78.8) (91.4, 85.2)
BrainMRI (57.6, 76.0) (86.4, 85.3) (94.8, 91.2)

Br35H (68.7, 68.9) (68.8, 69.4) (97.7, 92.4)
Average (67.4, 72.4) (78.9, 77.8) (94.6, 89.6)

ISIC (68.5, 49.5) (89.2, 72.3) (89.3, 71.4)
ColonDB (89.4, 55.4) (78.5, 31.3) (90.4, 58.2)
ClinicDB (91.3, 65.1) (78.2, 39.5) (84.4, 58.2)
TN3K (69.7, 33.6) (75.9, 41.4) (77.2, 41.9)

Average (79.7, 50.9) (80.5, 46.1) (85.3, 57.4)

Industrial Domain Medical Domain

Image

GT

SAA

WinCLIP

DINOV2

SAM

VAND

AdaCLIP

Hazelnut Metal 
Nut

Blotchy Tubes Capsules Chewing 
gum

Macaroni Pipe 
Fryum

Colon Colon Skin Thyroid

AII AIPAMI AMP

Colon
ColonDB

Colon
ClinicDB

Skin
ISIC

Image GT Medical Industrial Both

Fig. 6: Anomaly Maps Visualization
Across Different Training Sets. Cate-
gories and corresponding datasets for indi-
vidual samples are listed on the left.

in subpar ZSAD performance, as illustrated by the notable underperformance
on ISIC when trained solely with medical data. This can be attributed to the
lack of data diversity within the selected medical dataset, such as ColonDB [45]
or ClinicDB [4]. The utilized industrial datasets offer more diverse anomalies,
thereby providing greater generalization capacity when trained with them. No-
tably, training with ColonDB brings surprisingly promising results on ClinicDB,
even surpassing more diverse training sets. This is because ColonDB and Clin-
icDB both focus on colon polyp detection and thus, these two datasets share
similarities despite being acquired through different imaging techniques, as shown
in Fig. 6. Generally, using more diverse auxiliary training sets can improve the
generalization ability.
Influence of Backbones. Table 6 illustrates the impact of different back-
bones. AdaCLIP demonstrates significantly improved results in both medical
and industrial domains with a larger backbone, ViT-L/14@336px, compared
to ViT-B/16. Moreover, the additional parameters are lightweight compared to
the original CLIP parameters, comprising only 4.6% (40.7 MB) of the original
parameters added to ViT-L/14@336px (890.8 MB). This effectively demonstrates
that existing VLMs can be adapted to ZSAD using lightweight parameters.

5.4 Analysis

Rationale behind the ZSAD Scheme with Auxiliary Data. The ZSAD
scheme with auxiliary data successfully tailors existing VLMs, including DINOV2,
SAM, and CLIP, for ZSAD. To explore the reason why training with auxiliary
data can improve ZSAD performance, we visually analyze the distributions
of patch embeddings from these models across two datasets featuring diverse
anomalies, i.e., MVTec and VisA. In Fig. 7, it becomes evident that abnormal
patch embeddings in both MVTec and VisA exhibit distinctive characteristics
compared to the normal ones. Meanwhile, the normal embeddings in these
two datasets exhibit similar distributions. Consequently, the decision boundary
learned in MVTec is applicable to VisA despite not being trained on VisA. This
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Table 6: Comparison between various back-
bones. Sizes of original CLIP and added pa-
rameters by AdaCLIP parameters are re-
ported in Mega Bytes.

Backbone ViT-B/16 ViT-L/14@336px

Size (Ori., Added) (334.6, 19.6) (890.8, 40.7)

Industrial
Domain

Image-level (81.3, 78.3) (94.6, 89.6)
Pixel-level (82.5, 52.7) (85.3, 57.4)

Medical
Domain

Image-level (83.9, 84.6) (90.2, 89.6)
Pixel-level (91.7, 42.1) (94.2, 50.2)

Colon
ColonDB

Colon
ClinicDB

Skin
ISIC

Image GT Medical Industrial Both

CLIPDINOV2 SAM

MVTec Normal VisA NormalMVTec Abnormal VisA Abnormal

AMI AMP

AII AIPCLIP

DINOV2
MVTec Normal

VisA Normal

MVTec Abnormal

VisA Abnormal

SAM

Fig. 7: t-SNE [36] visualization of nor-
mal/abnormal patch embeddings.

phenomenon can be attributed to the high-level similarities in normalities and
abnormalities present in both datasets as perceived by VLMs. The awareness of
these similarities can be harnessed by learning annotated auxiliary data.
Enhancing ZSAD Performance through Prompt Optimization. The
influence of prompting tokens on predictions becomes apparent in both Table 3
and Fig. 4. While prompts generated by AdaCLIP are promising, the potential
for further improving ZSAD performance exists through prompt optimization.
We leverage model V4 in Table 3 and refine its prompts for specific images
using corresponding anomaly masks for training. The results are depicted in the
right two columns of Fig. 4, illustrating that optimized prompts result in more
discernible abnormal patch embeddings and finer anomaly maps, particularly
noticeable in the bottom two rows. This underscores the significance of devising
methods to generate optimal prompts tailored to individual images.

6 Conclusion

In this study, we introduce AdaCLIP, a generic ZSAD model to detect anomalies
across arbitrary novel categories without any reference image. AdaCLIP leverages
annotated auxiliary AD data for training and effectively adapts pre-trained
CLIP for ZSAD by integrating learnable hybrid prompts. Additionally, a HSF
module is proposed to extract region-level anomaly information to enhance image-
level AD performance. Through extensive experimentation across 14 datasets
spanning industrial and medical domains, AdaCLIP demonstrates promising AD
performance in novel categories from different domains.
Discussion and Limitations. Our experimental results demonstrate the po-
tential of AdaCLIP as a powerful solution for ZSAD. We believe that leveraging
more diverse annotated auxiliary anomaly detection datasets can improve the
generalization capability of AdaCLIP. In fact, like any other ZSAD method,
AdaCLIP might fail when testing data that significantly depart from auxiliary
training data, as shown in Sec. 7.1 in the Appendix.
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