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In this document, we provide additional experiments, visualizations, details
and insights regarding our Pathformer3D model. The specific sections of this
document are listed below.

– We discuss a few detail about the components of Pathformer3D(Sec. 1).
– We discuss the coordinate discontinuity issue of 2D equirectangular projec-

tion(Sec. 2).
– We show more images of qualitative compare(Sec. 3).
– We provide more information about ablation experiments(Sec. 4).
– We report the ablation results on another two datasets(Sec. 5).
– We report the qualitative performance results of the ablation experiments(Sec. 6).
– We provide a study of the characteristics of center offset(Sec. 7).
– We provide a study of the characteristics of time saliency(Sec. 8).

1 Additional Architecture Details

Here, we provide additional details regarding the model architecture that were
not mentioned in the main text due to space constraints.

1.1 3D Contextual Visual Feature Representation

3D feature extraction In our model, we attempted to use a network model
called SphereNet [3] to extract features from 360° images. The SphereNet ar-
chitecture employs a convolution method called SphereConv, which projects the
360° image onto a sphere and then performs convolution operations. After each
SphereConv operation, BatchNorm and LeakyReLU operations are applied, with
the LeakyReLU’s negative slope set to -0.2. We used a total of 3 SphereConv
operations, and the resulting feature maps of different dimensions were upsam-
pled and concatenated to obtain the final feature map. To illustrate this point,
we show the architecture of the SphereNet we used in Fig. 1.
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Fig. 1: The architecture of SphereNet.

3D feature encoder The 3D feature encoder is constituted by a singular linear
embedding layer, an addition of a 3D position encoding, and M = 4 uniquely
stacked layers of the standard Transformer encoder. Each of these encoder layers
include elements of self-attention, layer normalization, and two consecutive linear
transformations, consequently yielding an output tensor that bears the same
shape as the input tensor.

1.2 Fixation Sequence Generation

Fixation decoder The Fixation decoder is constructed of a linear embedding,
an addition operation introducing 1D position encoding, along with N = 4
stacked Transformer decoder layers. Each decoder layer includes masked self-
attention, cross-attention, and two consecutive linear transformations, eventu-
ally producing an output tensor of the same size as the joint query vector Q′

0.
The self-attention layer computes the attention scores between current and all
historical fixations, while the cross-attention layer is responsible for computing
the attention scores between the fixations and the output of the 3D Transformer
Encoder.

Fixation generation We have employed a 3D Mixture Density Network to
predict fixation distribution parameters, where the probability distribution is de-
rived from K = 5 Gaussian distributions. When predicting parameters with the
3D Mixture Density Network, we utilized multiple independent Multi-Layer Per-
ceptions (MLP), each containing two consecutive linear operations. We applied
a ReLu function as an activation function following the first linear operation.

When predicting the weight (π), we incorporated a softmax function after
the second linear layer to ensure the sum of all 3D Gaussian distributions equals
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to 1. When predicting means (u), a Tanh operation is used after the second
Linear operation, constraining the predicted position within a range of [−1, 1].
We decompose the operation of predicting the covariance matrix (

∑
) into pre-

dicting the related variance (σ) and correlation coefficient (ρ). When predicting
σ, we used the exp function after the second Linear operation to ensure that
the variance is larger than 1. As for ρ, we used the Tanh function to make the
correlation coefficient between [−1, 1].

2 The Coordinate Discontinuity of 2D Equirectangular
Projection

The coordinates of fixations in the 2D Equirectangular Projection of 360° im-
ages can be represented in two ways. They can be given by 2D coordinates
p = (Y,X),Y ∈ [0, 1], X ∈ [0, 1], or latitude and longitude p = (ϕ, λ),ϕ ∈[
−π

2 ,
π
2

]
, λ ∈ [−π, π]. However, both representation methods for depicting scan-

path in 360° images encounter the issue of discontinuity. For instance, two points
with the same latitude but different longitudes of λ = −180◦ and λ = 180◦ actu-
ally represent the same position. However, in the above two coordinate systems,
they represent two different positions which are far away from each other.

To tackle the above problems, we represent fixations in a 3D Cartesian co-
ordinate system, where each position is given in the form of p = (x, y, z). By
adopting this 3D coordinate system, we can effectively solve the discontinuity
issue of the coordinate systems used in the 2D equirectangular projection. In
addition, the representations in the three coordinate systems can be flexibly
transformed using the following formulas.

ϕ = (Y − 0.5)π;λ = (X − 0.5)2π (1)
x = cos(ϕ) cos(λ); y = cos(ϕ) sin(λ); z = sin(ϕ) (2)

3 More Qualitative Comparison Results

We show more qualitative comparison results in Fig. 2. As we can see, our method
can generate scanpaths that are closest to the ground truths.

4 More Details about Alation Studies

In the main text, due to space constraints, we did not specifically describe the
structure of each model. In this section, we will further supplement some addi-
tional details about the ablation experiment models.

4.1 Pure ViT

In this structure, we executed scanpath prediction in spherical coordinate sys-
tem, and adopted a method similar to ViT [4] to extract image features. Specif-
ically, we first resize the 2D Equirectangular Projection of 360° image to 128×
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Fig. 2: More Qualitative results. The four images from left to right are sourced from
Sitzmann [11], Salient360! [9], AOI [13], and JUFE [5], respectively. From top to
bottom, the images represent the perspectives of Ground Truth, Our model, Scan-
DMM [12], ScanGAN [6], and SaltiNet [1].

256 × 3 (height, width, depth) with a block size of 8 × 8. Next, we unroll each
small feature block to obtain a feature map with dimensions of H = 128/8 =
16,W = 256/8 = 32, C = 8 × 8 × 3 = 192. We then directly transform this
feature sequence to the encoder’s internal dimension of D = 128 using the Lin-
ear Embedding layer of Transformer Encoder. The remaining operations remain
unchanged.

4.2 Pure 2D CNN

We executed scanpath prediction also in spherical coordinate system and re-
placed the SphereConv in SphereNet [3] with Conv2d. After each convolution
operation, the size of the feature map is halved, and the dimension of the feature
map is doubled. Other operations such as batch normalization and LeakyRelu
from SphereNet are kept unchanged.

4.3 Saliency

In this structure, we follow VSPT [8] to use saliency information to help predict
the scanpaths. EPSNet [14] is a recently proposed method for generating saliency
maps for 360° images. The structure of its generator is the same as the SalGan [7]
used in VSPT [8], which principally utilizes VGG16 [10] for feature extraction
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and then employs multiple upsampling operations to generate a saliency map.
To adopt the same method as VSPT [8], we extracted two feature maps with
dimensions of 512 and 64 generated in the upsampling process, then stacked
them together along the channel level, followed by an average pooling operation
using an 8 × 8 convolution kernel, and then flattening the downscaled feature
map. This results in a feature vector with L = (160/8) × (320/8) = 800, C =
512 + 64 = 576. Then, the Embedding operation of the Transformer Encoder
maps this image sequence to the D=128 dimension, with all other operations
remaining unchanged.

4.4 w/o EncoderLayer

In this structure, M = 4 Transformer encoder layers are removed and the output
of the Embedding operation in the 3D feature encoder is directly fed into the
Fixation Decoder.

4.5 w/o MDN + MSE LOSS

In this structure, we used the same decoder structure as in VPT360 [2], namely
removing the MDN and directly predicting the 3D coordinates of the next point
through a linear operation after the Scanpath Decoder. We also adopted the
same loss function as theirs.

In the training procedure, mean square error (MSE) is used as a loss func-
tion due to its simplicity to measure the distance between the predicted se-
quence and the ground truth sequence. This model uses two types of loss for
its loss function: the speed loss of each element and the distance loss between
the predicted and actual values. The motion velocity v is the root mean square
value of the position in current moment and the position in the last moment,
where V =

√
(pt − pt−1)2 =

√
(xt − xt−1)2 + (yt − yt−1)2 + (zt − zt−1)2. Our

loss function is then defined as the combination of position MSE and motion
velocity MSE as:

L = αMSE(p̂, p) + βMSE(v̂, v) (3)

where p̂ denotes the motion velocity in predicted position p̂ and v denotes the
motion velocity in ground truth position p. The hyper-parameters α and β are
used to balance the scale of two loss components. We set (α, β) = (0.75, 0.25) in
this work.

5 Ablation Results on Another Two Datasets

In the ablation experiment in the main body of this paper, due to space con-
straints, we only showed the ablation experiment results on Salient360! [9] and
JUFE [5] datasets. Here, in Tab. 1, we have listed the ablation experiment re-
sults on the Sitzmann [11] and AOI [13] datasets. From this, we can see that
our model still maintains a commendable advantage when compared to other
ablation experiment models.
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Table 1: Ablation study on Sitzmann [11] and AOI [13] dataset. The best result for
each metric is highlighted in bold, while the second-best result is underlined.

Method
Sitzmann AOI

LEV ↓ DTW ↓ TDE ↓ ScanMatch ↑ REC ↑ SS ↑ LEV ↓ DTW ↓ TDE ↓ ScanMatch ↑ REC ↑ SS ↑
Pure ViT 45.334 1997.981 19.554 0.476 3.331 0.270 14.113 581.322 32.131 0.373 7.571 0.235

Pure 2D CNN 45.173 2023.814 20.739 0.482 3.54 0.271 14.088 575.113 32.660 0.374 7.753 0.229
Saliency 48.046 2078.388 22.549 0.421 2.304 0.261 14.236 582.077 32.221 0.367 7.646 0.221

w/o Feature Encoder 45.062 2018.401 19.790 0.468 3.845 0.274 14.026 587.800 31.766 0.378 8.052 0.230
w/o MDN + MSE Loss 43.439 2135.792 26.321 0.445 3.002 0.125 14.822 595.722 31.040 0.333 8.104 0.209

K=1 45.819 1951.336 20.511 0.474 3.375 0.277 14.296 585.208 31.755 0.366 7.389 0.226
K=3 44.049 2117.464 23.581 0.490 4.056 0.261 14.096 593.456 32.338 0.372 7.889 0.204
K=8 46.167 1950.403 19.688 0.472 3.154 0.266 14.308 577.013 31.692 0.366 7.451 0.219

Parallel 44.766 1884.471 22.236 0.501 3.809 0.285 13.990 531.416 31.746 0.373 7.969 0.278
Ours 44.837 1903.825 19.273 0.472 3.927 0.280 13.904 561.895 30.987 0.376 8.286 0.225

6 Qualitative Performance Results of The Ablation
Experiments

We qualitatively presented the scanpaths of the most representative models in
our ablation experiments, and the results are shown in Fig. 3. From this we can
see that different structures have some unique characteristics.

Although the ‘parallel’ model tends to have fixations predominantly located
within salient regions, there is a significant issue of large displacements between
fixations due to not treating this task as a sequential task. The ‘w/o MDN + MSE
Loss’ model can’t generate realistic scanpaths, failing to focus well on significant
areas, and the distance between fixations is too close. The ‘w/o Encoder’ model
can also generate more realistic scanpaths to a certain extent, but it can be seen
from quantitative results that more realistic scanpaths can often be obtained
by adding encoder. The fixations generated by ‘saliency’ models do not exhibit
a strong concentration around the central region in dimension 0. These models
often rely heavily on saliency information extraction models and tend to have
larger parameter sizes and longer runtime compared to other methods.

7 Center Offset

In 360° images, human fixations often exhibit a stronger focus on the central
region in dimension 0. To verify this characteristic, we generated a scanpath for
the images used for evaluation in Sitzmann [11] and salient360! [9] datasets. We
then attempted to compute saliency maps using all the generated scanpaths. We
also applied the same processing to the scanpaths of ScanDMM [12], ScanGAN
[6], and real human gaze data.

For the fixation point distribution, we expand latitude and longitude to a 2D
coordinate system, where the horizontal coordinate is longitude and the range
is [−180, 180], and the vertical coordinate is latitude and the range is [−90, 90].
The distribution of fixations is obtained from the fixations on all pictures in the
data set through Gaussian blurring. As shown in Fig. 4a and Fig. 4b, it can be
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Fig. 3: Qualitative performance results of the ablation experiments. From left to right.
The first two columns of images are from the Sitzmann [11] dataset, while the following
three rows are from the Salient360! [9] dataset. From top to bottom, the scanpaths
correspond to the Ground Truth, Ours, Parallel,w/o MDN + MSE Loss, w/o Encoder,
Saliency model.

.

seen that the fixations of real human beings are mostly distributed around the
region where the latitude is 0 and are evenly distributed in longitude. Our results,
similar to ScanDMM [12] and ScanGAN [6], also exhibit this characteristic.

8 Time Saliency

We conducted a study on the relationship between image saliency and time.
For each image, we generated 1000 scanpaths with a length of 30 fixations. We
divided the time into six intervals with a 5-second interval, resulting in saliency
maps for these six time intervals.

It is evident that the overall attention is distributed on informative objects.
Fig. 5 illustrates the attention visualization results of our model at different time
steps. Moreover, when attention is allocated to a particular object, it undergoes
a process of initially staying focused for a duration, gradually converging, and
then dispersing. For example, in the first 15 seconds, the attention on the chess
piece on the right gradually intensifies, and after 15 seconds, the attention shifts
to other regions. This attention pattern predicted by our model is valuable for
guiding various visual tasks and cognitive research.
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(a) Center Offset from Sitzmann

(b) Center Offset from Salient360!

Fig. 4: Qualitative results of Center Offset
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Fig. 5: Time Saliency
.
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