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Abstract. Surface anomaly detection is a vital component in manu-
facturing inspection. Current discriminative methods follow a two-stage
architecture composed of a reconstructive network followed by a dis-
criminative network that relies on the reconstruction output. Currently
used reconstructive networks often produce poor reconstructions that
either still contain anomalies or lack details in anomaly-free regions.
Discriminative methods are robust to some reconstructive network fail-
ures, suggesting that the discriminative network learns a strong nor-
mal appearance signal that the reconstructive networks miss. We re-
formulate the two-stage architecture into a single-stage iterative pro-
cess that allows the exchange of information between the reconstruction
and localization. We propose a novel transparency-based diffusion pro-
cess where the transparency of anomalous regions is progressively in-
creased, restoring their normal appearance accurately while maintaining
the appearance of anomaly-free regions using localization cues of previ-
ous steps. We implement the proposed process as TRANSparency DifFU-
SION (TransFusion), a novel discriminative anomaly detection method
that achieves state-of-the-art performance on both the VisA and the
MVTec AD datasets, with an image-level AUROC of 98.5% and 99.2%,
respectively. Code: https://github.com/MaticFuc/ECCV_TransFusion
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1 Introduction

The primary objective of surface anomaly detection is the identification and lo-
calization of anomalies in images. In the standard problem setup, only anomaly-
free (normal) images are used to learn a normal appearance model and any
deviations from the learned model are classified as anomalies. Surface anomaly
detection is commonly used in various industrial domains [6, 7, 45] where the
limited availability of abnormal images, along with their considerable diversity,
makes training supervised models impractical.

Many of the recent surface anomaly detection methods follow the discrimina-
tive [21, 40, 41, 43, 44] paradigm. Discriminative methods are trained to localize
simulated anomalies. Discriminative methods typically follow a two-stage archi-
tecture: a normal-appearance model followed by a discriminative network. The

https://github.com/MaticFuc/ECCV_TransFusion
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Fig. 1: a) Different than previous discriminative approaches, the proposed approach
simultaneously reconstructs and localizes the anomalies through an iterative process,
which results in a more potent normality model capable of detecting harder near-
distribution anomalies. b) The reformulated diffusion model iteratively erases the
anomalous regions during the reverse process. Training on synthetic anomalies (top)
generalizes well to real anomalies (marked with red circles) seen at inference (bottom),
leading to accurate output masks Mfinal that closely match the ground truth Mtrue.

normal-appearance model learns the anomaly-free object appearance and en-
ables the detection of visual deviations. The discriminative network accurately
localizes the anomalies and provides the per-pixel anomaly segmentation mask
using the rich signal of the output of the normal-appearance model. Typically,
the normal-appearance model is implemented as a reconstructive network. While
the discriminative paradigm hailed the best performances in the past, it started
to lag behind with the introduction of more challenging datasets [45].

The failures in reconstructive networks that hurt discriminative methods’
downstream anomaly detection capability can be characterised by two core is-
sues. First, reconstructive methods may overgeneralize, which causes them to
reconstruct even anomalous regions, leading to false negative detections. Sec-
ond, due to the limited image generation capabilities of the commonly used
reconstructive architectures, fine-grained details in normal regions tend to be
erased, leading to loss-of-detail in normal regions, causing false positive detec-
tions. Some samples of these failures can be seen in Figure 1 a). In an attempt
to address these two problems, the autoencoder-based reconstructive network of
DRÆM [40] has been replaced with a diffusion model in previous works [43].
While the quality of reconstructions was somewhat improved, the loss-of-detail
and overgeneralization problems remain in many cases, suggesting that simply
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replacing the reconstructive subnetwork with a more powerful image generation
model is insufficient.

In some cases, discriminative methods can successfully localize an anomaly
despite the reconstruction network’s failure. This suggests that the discrimina-
tive network has the ability to learn the normal appearance signals that the re-
construction network misses. Similarly, discriminative methods can fail to local-
ize an anomaly despite the reconstruction network’s success. Interaction between
the reconstruction and localization normal-appearance signals might enable the
extraction of additional information that is complementary to the information
provided by each network and improves downstream anomaly detection perfor-
mance. This interaction is not done with the current two-stage architecture most
discriminative methods follow.

To address the problems of discriminative methods, we propose a novel
transparency-based diffusion process reformulated explicitly for surface anomaly
detection. Through the proposed diffusion process, the transparency of anomalies
is iteratively increased so that they are gradually replaced with the corresponding
normal appearance (Figure 1 b), effectively erasing the anomalies. Throughout
the proposed process, the anomalies are simultaneously localized and restored to
their anomaly-free appearance. This enables a precise anomaly-free reconstruc-
tion of the anomalous regions – addressing overgeneralization. Additionally, lo-
calization information is used to keep the anomaly-free regions intact – address-
ing the loss-of-detail problem (Figure 1 a). To implement the transparency-
based diffusion process, we propose TransFusion (TRANSparency DifFUSION),
a surface anomaly detection method that integrates the powerful appearance
modelling capabilities of diffusion models in the discriminative anomaly detec-
tion paradigm. Compared to the previously used reconstructive networks in-
side discriminative methods that attempted to implicitly detect and restore the
anomaly-free appearance of anomalous regions in a single step [40,41,44], Trans-
Fusion can maintain more accurate restorations of anomalous regions without
the overgeneralization problem and without loss-of-detail in the anomaly-free
regions. Due to the iterative nature of the reformulated diffusion process, Trans-
Fusion is able to focus on various visual characteristics of anomalies at various
time-steps, even potentially addressing the regions previous iterations may have
missed. Additionally, the localization information of previous steps can be used
as a cue in the reconstruction process, highlighting the potentially anomalous re-
gions. This enables high-fidelity anomaly-free reconstructions and improves the
downstream anomaly detection performance significantly, compared to previous
discriminative approaches.

The main contributions of our work are as follows:

– We propose a novel transparency-based diffusion process reformulated ex-
plicitly for the problem of surface anomaly detection. The proposed diffusion
process iteratively increases the transparency of anomalies and simultane-
ously provides their explicit localization.

– We propose TransFusion - A strong discriminative anomaly detection model
that implements the transparency-based diffusion process. TransFusion di-
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rectly addresses the overgeneralization and loss-of-detail problems of recent
discriminative anomaly detection methods, leading to a strong anomaly de-
tection performance even in difficult near-in-distribution scenarios.

We perform extensive experiments on two challenging datasets and show that
TransFusion achieves state-of-the-art results in anomaly detection on two stan-
dard challenging datasets – VisA [45] and MVTec AD [6], with an AUROC
of 98.5% and 99.2%, respectively. TransFusion sets a new state-of-the-art in
anomaly detection in terms of the mean across both datasets, achieving a 98.9%
AUROC.

2 Related Work

Surface anomaly detection has been a subject of intense research in recent
years, and various approaches have been proposed to address this task. Methods
can be divided into three main paradigms: reconstructive, embedding-based, and
discriminative.

Reconstructive methods train an autoencoder-like network [9,28,42] or a gen-
erative model [1, 22, 30, 37] and assume that anomalies will be poorly recon-
structed compared to the normal regions making them distinguishable by re-
construction error. The poor reconstruction assumption does not always hold,
leading to poor performance.

Embedding-based methods use feature maps [16, 21] extracted with a pre-
trained network to learn normality on these maps. Patchcore [25] creates a core-
set memory bank out of the extracted normal features. Several normalizing-flow-
based [13,26,33,39] approaches have been proposed as well. Some methods utilize
a student-teacher [8,11,27] network and assume that the student will not be able
to produce meaningful features for the anomalies as it had not seen them during
training. All these methods assume that the distribution of normal regions will
be well represented in the training data and fail on rare normal regions unseen
during training, producing false positives.

Discriminative methods use synthetically generated defects [18,21,38,40,41,
44] to train their model with the idea that the model can then generalize on real
anomalies. In seminal works of this paradigm, such as DRÆM [40], a two-stage
architecture was proposed. First, a reconstructive module is trained to restore
the normal appearance, and then, a discriminative network is trained to segment
synthetic anomalies. This idea has been followed by the vast majority of mod-
els [18, 38, 41, 43, 44] inside this paradigm. The normal appearance can also be
modelled using pretrained features [21, 38, 44]. DiffAD [43] has tried to improve
DRAEM [40] by exchanging the reconstructive subnetwork with a more power-
ful appearance modelling model, a diffusion model, but the overgeneralization
and loss-of-detail problems remained. This suggests that the standard two-stage
approach is not optimal for harder near-distribution anomalies.
Diffusion models recently emerged as state-of-the-art in image generation [14].
They have been extended to various domains, such as audio [15,17] and text gen-
eration [3, 19]. Methods have also been proposed that tackle problems such as
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Fig. 2: TransFusion’s training and inference pipelines. Training examples are created
from normal images x by generating the anomaly mask M and the anomaly appearance
ϵ and imposing them on x according to the transparency schedule βt. The resulting
image xt contains synthetic anomalies. TransFusion is guided by an augmented mask
Ma. TransFusion outputs the estimated anomaly mask Mt, the anomaly appearance
ϵt, and the normal appearance nt. At inference, TransFusion infers Mt, ϵt, and nt from
the input image and constructs the next step image according to Eq. 4. The predicted
mask Mt and the constructed xt−1 are used as the input in the next step.

semantic segmentation [2, 36] and object detection [10]. It has also been shown
that the Gaussian noise-based diffusion process is not necessary for all prob-
lems [4, 10].
Diffusion-based anomaly detection Wyatt et. al. [37] proposed AnoDDPM
which is based on a standard diffusion architecture [14]. AnoDDPM was applied
to a medical image dataset and achieved state-of-the-art results. Lu et. al. [22]
proposed using a DDPM to simultaneously predict the noise and to generate
features that mimic the features extracted from a pretrained convolutional neural
network. DiffAD [43] exchanged the autoencoder from DRÆM [40] with a latent
diffusion model to limited success. All recent diffusion approaches face problems
with loss-of-detail in the normal regions. As a result, they exhibit a high rate of
false positives. This suggests that naively applying the standard diffusion process
is insufficient for surface anomaly detection.

3 TransFusion

Discriminative anomaly detection approaches attempt to reconstruct the normal
visual appearance of anomalies and localize them based on the output of the re-
construction module. An appropriate diffusion model is defined to reformulate
this two-stage approach as an iterative one-stage process in order to achieve
better detection robustness and reconstruction capability. Previous work [4] has
established that a variety of iterative processes can be used to achieve the de-
sired diffusion effect. In the proposed transparency-based diffusion process re-
formulation, images are thought of as a composition of anomalous and normal
components, partitioned by the anomaly mask M . The anomalous regions are
expressed as a linear interpolation between the anomalous and the normal ap-
pearance at each step to frame the anomaly localisation and restoration as an
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iterative process. This equates to the transparency of the anomalous regions
increasing throughout the diffusion process (Figure 1 b). In this section, we de-
scribe TransFusion in detail.

3.1 Transparency-based diffusion model

In the transparency-based diffusion process reformulation, each image I is ex-
pressed as a composition of the normal appearance N , the anomaly appearance
A, the anomaly mask M , and the blending factor between the anomalous and
the normal appearance β, i.e., the transparency level of the anomaly:

I = M ⊙N + β(M ⊙A) + (1− β)(M ⊙N), (1)

where M is a binary mask where the anomalous pixels are set to 1 and M is the
inverse of M . The anomalous region is an interpolation between the anomaly ap-
pearance A and the normal appearance N in the region specified by the anomaly
mask M . The transparency of the anomalous region is defined by β. The restora-
tion of the normal appearance from an anomalous image I can be modelled as an
iterative process of gradually increasing the anomaly transparency until only the
normal appearance remains. This is not a trivial task, since the accurate local-
ization M , normal appearance N , and anomaly appearance A must be inferred
from the input image I.

During training, images containing synthetic anomalies and their correspond-
ing anomaly masks are used. For each step in the forward process, the value of β is
gradually increased, thus decreasing the transparency of anomalies, and increas-
ing their prominence. Let xt denote the anomalous image I at time step t. The
transparency schedule is denoted as β0 < β1 < ... < βT−1 < βT , where β0 = 0
and βT = 1. Eq. (1) is rewritten to correspond to timestep t by substituting the
variables A with ϵt, M with Mt, and N with nt:

xt = M t ⊙ nt + βt(Mt ⊙ ϵt) + (1− βt)(Mt ⊙ nt). (2)

The image with more transparent anomalies xt−1 at iteration t − 1 is then
computed:

xt−1 = M t−1 ⊙ nt−1 + βt−1(Mt−1 ⊙ ϵt−1) + (1− βt−1)(Mt−1 ⊙ nt−1). (3)

βt decreases between steps t and t−1, while the correct values of Mt, nt and ϵt
are predefined and remain constant throughout the forward process. We can thus
write Mt = Mt−1 = . . . = M , ϵt = ϵt−1 = . . . = A and nt = nt−1 = . . . = N .
After substituting Mt−1 for Mt, ϵt−1 for ϵt and nt−1 for nt in Eq. (3), subtracting
it from Eq. (2) and then rearranging it, the transition between steps xt and xt−1

is computed:

xt−1 = xt − (βt − βt−1)(Mt ⊙ ϵt) + (βt − βt−1)(Mt ⊙ nt). (4)

At each time step in the reverse process, the value of xt moves towards the
anomaly-free x0 by an amount influenced by βt − βt−1. The anomaly’s trans-
parency is therefore gradually increased, reconstructing the normal appearance



TransFusion 7

until the final anomaly-free restoration x0 is reached. This requires an accurate
estimation of the anomaly mask Mt, the normal appearance nt and the anomaly
appearance ϵt at each time step.

3.2 Architecture

The architecture of TransFusion, depicted in Figure 2, is based on ResUNet [12],
which is commonly used in diffusion models. TransFusion has three prediction
heads, which output the anomaly appearance ϵt, anomaly mask Mt, and the
normal appearance nt, enabling the generation of the image in the next reverse
step according to Eq. (4). The anomaly and normal appearance heads consist of a
single convolutional layer, while the anomaly mask head consists of a BatchNorm,
SiLU and a convolutional layer.

The input to the diffusion model at each timestep consists of four elements:
the current reconstruction estimate xt, the mask estimate Mt, the 2D sinusoidal
positional encoding PE [34], and the timestep t. All the elements are channel-
wise concatenated except for the timestep embedding, which is added to the
features. PE helps the model to learn the global composition of some objects.
During training, images containing synthetic anomalies are generated from an
anomaly-free image x, the anomaly mask M , and the anomaly appearance ϵ.
The input image xt is generated according to Eq. 2, where nt = x, ϵt = ϵ and
Mt = M , and the β schedule for the sampled timestep t. Losses for the prediction
head outputs nt, Mt and ϵt are calculated using x, M and ϵ as ground truth
values, respectively.

Separate loss functions are used for each prediction head. The normal ap-
pearance prediction head uses the structural similarity (SSIM) loss [35] and the
L1 loss:

Ln = SSIM(nt, x) + L1(nt, x). (5)

The anomaly mask head uses the focal loss [20] and the Smooth L1 loss, com-
monly used in discriminative anomaly detection [38,40]:

Lm = αLfoc(Mt,M) + L1Smooth(Mt,M). (6)

The weighting parameter α is set to 5 in all experiments. The anomaly appearance
prediction head employs the standard L2 reconstruction loss:

La = L2(ϵt, ϵ). (7)

To ensure the consistency between difusion steps, where xt−1 is computed
from the estimated Mt, ϵt, nt and the previous step xt using Eq. (4), an additional
consistency loss function Lc is employed. Lc compares the predicted xt−1 with
the ground truth x̃t−1 computed using the ground truth M , ϵ, and x:

Lc = L2(xt−1, x̃t−1). (8)

The complete TransFusion loss is then given as:

L = Ln + Lm + La + Lc. (9)
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Fig. 3: TransFusion inference. For every fourth timestep, the input image xt and the
predictions for the mask Mt, anomaly appearance ϵt and normal appearance nt are
shown. As seen in the top row, TransFusion first reconstructs larger anomalies and
inpaints the details near the end of the reconstruction process.

3.3 Synthetic anomaly generation

We directly adopt the synthetic anomaly generation from MemSeg [38], which
is an extension to the synthetic anomaly generation proposed by DRÆM [40].
Synthetic anomalies are generated by pasting out-of-distribution regions on the
anomaly-free inputs, outputting the image containing synthetic anomalies I and
the anomaly mask M . M is generated using Perlin noise [24]. Synthetic anoma-
lous examples are shown in the top part of Figure 1 b). Depending on the
timestep used, anomalies are generated at different transparency levels.

It would be unrealistic to expect that the current mask estimate Mt would be
perfect during inference. To mimic this observation during training, the previous
mask estimate imperfection is simulated. The simulated previous mask estimate
is obtained by thresholding the Perlin noise map used for generating M , resulting
in a reduction or an expansion of the size of Mt. Mt is also dropped during
training in 25% of training samples.

3.4 Inference

At inference, Figure 2, the starting mask estimate is initialized to all zero values.
Then, the reverse process of T time steps is performed. T is set to 20 in all exper-
iments unless stated otherwise. At each time step t, the current approximation
of the reconstructed image xt is channel-wise concatenated with the binarized
previous mask estimate Mt+1 and positional encoding PE. This composite input
and the current timestep t are fed into the diffusion model. The model’s output
consists of the current mask estimate Mt, an anomaly appearance estimation ϵt,
and a normal appearance estimation nt (Figure 2, bottom middle). Based on
these outputs, the next step xt−1 is predicted using Eq. (4) (Figure 2, bottom
right). Anomaly mask Mt is binarized by thresholding and used in the next step.
An example of the inference process is visualized in Figure 3. The reverse pro-
cess iteratively reduces the transparency of the anomalous regions, progressively
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restoring the anomaly-free appearance of the image. At time step 0, the result
is a fully reconstructed anomaly-free image x0.

The final anomaly mask Mfinal is derived from Mdisc, the pixel-wise mean of
anomaly masks Mt, with t going from 1 to T , produced throughout the reverse
process and from Mrecon, the reconstruction error between the initial image x
and the diffusion model output x0.

To obtain the final mask Mfinal, a weighted combination of Mdisc and Mrecon

is performed:
Mfinal = (λMdisc + (1− λ)Mrecon) ∗ fn, (10)

where the influence of Mdisc and Mrecon is weighted by λ (λ=0.95 in all ex-
periments), fn is a mean filter of size n × n (in our case 7 × 7) and ∗ is the
convolution operator. The mean filter smoothing is performed to aggregate the
local anomaly map responses for a robust image-level score estimation. The
image-level anomaly score AS is obtained by the maximum value of Mfinal:

AS = max(Mfinal). (11)

Including both Mdisc and Mrecon gives the final mask Mfinal a balanced
anomaly representation, allowing it to benefit from both discriminative and re-
constructive cues.

4 Experiments

4.1 Datasets

Experiments are performed on two standard anomaly detection datasets: the
VisA dataset [45] and the MVTec AD dataset [6]. The VisA dataset is comprised
of 10,821 images distributed across 12 object categories, while the MVTec AD
dataset contains 5,354 images encompassing 5 texture categories and 10 object
categories. Notably, both datasets provide pixel-level annotations for the test
images, enabling accurate evaluation and analysis.

4.2 Evaluation metrics

Standard anomaly detection evaluation metrics are used. The image-level anomaly
detection performance is evaluated by the Area Under the Receiver Operator
Curve (AUROC), while for the pixel-level anomaly localization the Area Under
the Per Region Overlap (AUPRO) is utilized.

4.3 Implementation details

During both training and inference, 20 steps (T = 20) are used in the diffusion
process with a linear transparency (β) schedule ranging from 0 to 1. The model
was trained for 1500 epochs using the AdamW optimizer with a batch size of 8.
The learning rate was set to 10−5 and was multiplied by 0.1 after 800 epochs.
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Synthetic anomalies were added to half of the training batch. Rotation augmen-
tation was used following DRÆM [40]. A standard preprocessing approach is
employed to ensure experimental consistency. Each image is resized to dimen-
sions of 256×256 and subsequently center-cropped to 224×224 following recent
literature [21,25,38]. The image is then linearly scaled between -1 and 1 follow-
ing recent diffusion model literature [14,31]. Following the standard protocol for
unsupervised anomaly detection, a separate model was trained for each category,
and the same hyperparameters were set across both datasets and all categories.

4.4 Experimental results

Anomaly detection results on VisA are shown in Table 1. TransFusion achieves
the best results on 5 out of the 12 categories and outperforms the previous best
state-of-the-art method by 0.4 percentage points in terms of the mean AUROC
performance. On the MVTec AD dataset, TransFusion achieves state-of-the-art
results with a mean anomaly detection AUROC of 99.2%. Results are shown in
Table 2.

Due to the significant differences in anomaly types between the VisA and
MVTec AD datasets, very few recent methods exhibit the generalization capa-
bility necessary to achieve top results for both datasets. Table 3 shows results
on both VisA and MVTec AD. Additionally, the average scores across both
datasets are shown. TransFusion outperforms all recent methods in terms of the
average anomaly detection AUROC by 0.3 percentage points and, more notably,
outperforms the next best discriminative method by a significant margin of 4.0
percentage points, reducing the error by 78.5%.

TransFusion also achieves the second highest score in anomaly localization
when averaged across both datasets, achieving an AUPRO of 91.6%. In terms
of anomaly detection, TransFusion outperforms competing methods significantly
on the VisA dataset and achieves state-of-the-art performance on MVTec AD.
TransFusion also outperforms other diffusion-based methods, AnoDDPM [37],
DiffAD [43] and AnomDiff [22], by a significant margin, which suggests that
simply relying on a standard diffusion process for reconstruction may not be
sufficient for anomaly detection. TransFusion also significantly outperforms pre-
vious state-of-the-art discriminative methods, such as DRÆM [40], DSR [41],
DiffAD [43] and SimpleNet [21], on the VisA dataset in terms of anomaly detec-
tion. This suggests that simultaneous localization and reconstruction provide a
more potent normality model in comparison to the previous two-stage paradigm.

4.5 Qualitative comparisons

A qualitative comparison with the state-of-the-art methods DRÆM [40] and Ef-
ficientAD [5] can be seen in Figure 4. Note that TransFusion outputs very precise
anomaly masks and does not produce significant false positives in the background
as opposed to other state-of-the-art methods (Columns 3, 4, 14). Due to being
a discriminative network, TransFusion outputs masks (Columns 1-14) that are
much sharper than those of EfficientAD, which outputs a feature reconstruction
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Method AnoDDPM AnomDiff PatchCore RD4AD AST EfficientAD DiffAD DRÆM DSR SimpleNet TransFusion
[37] [22] [25] [11] [27] [5] [43] [40] [41] [21] -

Candle 64.9 64.9 98.1 92.2 99.4 98.4 90.4 94.4 98.8 95.6 98.3
Capsules 76.5 80.0 85.7 90.1 85.4 93.5 87.6 76.3 99.1 76.7 99.6
Cashew 94.4 90.9 98.5 99.6 95.1 97.2 81.4 90.7 97.6 91.7 93.7
Chewing gum 91.3 98.1 99.0 99.7 100 99.9 94.0 94.2 93.8 99.1 99.6
Fryum 81.5 89.2 97.2 96.6 99.1 96.5 87.1 97.4 82.9 95.3 98.3
Macaroni1 58.8 77.8 95.7 98.4 93.9 99.4 87.6 95.0 87.3 90.8 99.4
Macaroni2 74.5 61.0 78.1 97.6 72.1 96.7 90.7 96.2 83.4 65.2 96.5
PCB1 42.1 86.7 98.3 97.6 99.2 98.5 75.0 54.8 90.5 60.1 98.9
PCB2 90.7 76.5 97.2 91.1 98.4 99.5 94.6 77.8 96.6 93.3 99.7
PCB3 92.3 80.4 96.2 95.5 97.4 98.9 94.7 94.5 94.8 94.9 99.2
PCB4 98.3 93.8 99.0 96.5 99.6 98.9 97.7 93.4 93.5 98.2 99.6
Pipe fryum 72.5 89.4 99.4 97.0 99.4 99.6 92.7 99.4 97.5 93.3 99.6

Average 78.2 83.7 94.3 96.0 94.9 98.1 89.5 88.7 91.6 87.9 98.5

Table 1: Comparison of TransFusion in anomaly detection (AUROC) with SOTA on
VisA. First, second and third place are marked. The names of all previous discriminative
approaches are typeset in bold.

Method AnoDDPM AnomDiff PatchCore RD4AD AST EfficientAD DiffAD DRÆM DSR SimpleNet TransFusion
[37] [22] [25] [11] [27] [5] [43] [40] [41] [21] -

Carpet 93.5 99.9 98.7 95.3 99.1 99.3 98.3 97.0 100 97.5 99.2
Grid 93.8 99.7 98.2 100 98.7 99.9 100 99.9 100 99.1 100
Leather 99.5 100 100 97.1 100 100 100 100 100 100 100
Tile 99.4 98.0 98.7 99.3 99.1 99.9 100 99.6 100 100 99.8
Wood 99.0 98.1 99.2 99.2 99.2 100 100 99.1 96.3 100 99.4

Bottle 98.4 99.3 100 100 100 99.9 100 99.2 100 100 100
Cable 52.7 91.2 99.5 95.0 98.5 95.2 94.6 91.8 93.8 99.9 97.9
Capsule 89.0 84.1 98.1 96.3 99.7 97.9 97.5 98.5 98.1 97.7 98.5
Hazelnut 84.5 97.9 99.9 100 100 99.4 100 100 95.6 100 100
Metal nut 92.8 99.2 100 100 98.5 99.6 99.5 98.7 98.5 100 100
Pill 80.9 64.7 96.6 96.6 99.1 98.6 97.7 98.9 97.5 99.0 98.3
Screw 20.3 89.9 98.1 97.0 99.7 96.9 97.2 93.9 96.2 98.2 97.2
Toothbrush 86.4 96.9 100 90.8 96.6 100 100 100 99.7 99.7 100
Transistor 65.0 92.3 100 96.7 99.3 99.9 96.1 93.1 97.8 100 98.3
Zipper 98.2 85.5 99.4 98.5 99.1 99.7 100 100 100 99.5 100

Average 83.5 93.1 99.1 98.5 99.2 99.1 98.7 98.0 98.2 99.6 99.2

Table 2: Comparison of TransFusion in anomaly detection (AUROC) with SOTA on
MVTec AD.

Method Venue Disc. VisA MVTec AD Average
Det. Loc. Det. Loc. Det. Loc.

AnoDDPM CVPRW’22 78.2 60.5 83.5 50.7 80.9 55.6
DRÆM ICCV’21 ✓ 88.7 73.1 98.0 92.8 93.3 83.0
SimpleNet CVPR’23 ✓ 87.9 68.9 99.6 89.6 93.8 79.3
DiffAD ICCV’23 ✓ 89.5 71.2 98.7 84.8 94.1 78.0
DSR ECCV’22 ✓ 91.6 68.1 98.2 90.8 94.9 79.5
Patchcore CVPR’22 94.3 79.7 99.1 92.7 97.0 86.2
AST WACV’23 94.9 81.5 99.2 81.2 97.1 81.4
RD4AD CVPR’22 96.0 70.9 98.5 93.9 97.3 82.4
EfficientAD WACV’24 98.1 94.0 99.1 93.5 98.6 93.7
TransFusion ECCV’24 ✓ 98.5 88.8 99.2 94.3 98.9 91.6

Table 3: Results in anomaly detection (AUROC) and anomaly localization (AUPRO)
on both VisA and MVTec AD.

error. DRÆM is unable to accurately detect small near-in-distribution anomalies
(Columns 3, 5, 6, 14) mostly present in the VisA [45] Dataset. We hypothesize
that this is due to the problems encountered in two-stage discriminative ap-
proaches, such as DRÆM.
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Fig. 4: Qualitative comparison of the masks produced by TransFusion and three other
state-of-the-art methods. The anomalous images are shown in the first row. The mid-
dle four rows show the anomaly mask generated by DRÆM [40], EfficientAD [5] and
TransFusion, respectively. The last row shows the ground truth anomaly mask.
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Fig. 5: Qualitative reconstruction results. TransFusion better restores anomalies to
their normal appearance and better preserves the details in the normal regions than
competing methods DRÆM [40] and DiffAD [43]. A few of the larger differences are
highlighted in red.

TranFusion exhibits a strong reconstructive ability. A qualitative compari-
son can be seen in Figure 5. Compared to DRÆM [40], TransFusion outputs
higher-quality reconstructions and even produces realistic results in difficult re-
construction cases, such as strong deformations, while maintaining fine-grained
details in normal regions. TransFusion better addresses the loss-of-detail prob-
lem than the previously proposed method DiffAD [43]. The reconstructions sug-
gest that simultaneous reconstruction and localization produce more powerful
normal-appearance models.

4.6 Ablation study

The results of the evaluation of individual components of TransFusion and it’s
training process are shown in Table 4.
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Group Condition VisA MVTec AD
Det. Loc. Det. Loc.

w/o PE -1.4 -0.1 -1.9 -3.2Input strategies w/o Simulated Mask -1.2 -8.6 -2.4 -6.2
w/o Ln -31.8 -45.3 -26.0 -43.2
w/o Lm -1.5 -3.2 -2.2 -2.7
w/o La -1.1 -1.5 -1.0 -1.0Loss Function

w/o Lc -0.9 -0.3 -0.7 -0.8
Only M1 -1.5 -0.3 -1.4 -2.6
Only Mdisc -0.1 +0.1 -0.2 +0.1Final mask calc.
Only Mrecon -0.9 -13.5 -0.7 -5.9
5 steps -1.0 -4.3 -0.7 -1.2
10 steps -0.5 -1.1 -0.7 -1.0Diffusion step num.
50 steps -0.3 +0.7 -0.5 -0.8
Quadratic -2.0 +1.2 -2.0 +0.4Transparency sched. Root -1.7 -2.7 -0.7 -1.6

TransFusion Linear, 20 steps 98.5 88.8 99.2 94.3

Table 4: Ablation study results. Detection results are reported in AUROC and local-
ization results are reported in AUPRO. In each row, the difference to the actual model
is shown. The highest discrepancy for each experiment group is marked in blue.

Input strategies. In addition to the image xt, the Positional Encoding (PE)
and the simulated previous mask are input during training. The impact of PE
and the simulated previous mask is evaluated by excluding each individually from
the architecture. Excluding PE leads to a 1.4 percentage points (p. p.) drop on
VisA and a 1.9 p. p. drop on MVTec AD. Excluding the simulated previous mask
leads to a 1.2 p. p. drop on VisA and a 2.4 p. p. drop on MVTec AD, showing
the benefit of the localization information gained from the previous step. There
is also a significant drop (8.6 p. p. on VisA and 6.2 p. p. on MVTec AD) in
localization when excluding the simulated mask, highlighting its importance for
precise localization.
Importance of loss functions. The importance of each loss function was
evaluated by excluding one loss function at a time and training the model. Re-
moving La, Lc or Lm reduces the overall anomaly detection performance by
approximately 1 p. p. on VisA and MVTec AD, demonstrating their usefulness.
Notably, removing Ln leads to a major drop in performance (31.8 p. p. AUROC
on VisA, 26 p. p. AUROC on MVTec AD), showing the necessity of learning a
strong normal appearance model of the object. Without Ln, TransFusion may
focus on learning the synthetic anomaly appearance, leading to poor generaliza-
tion.
Final mask calculation. The anomaly mask calculation methods using either
only the last mask estimate M1, the discriminative mask Mdisc, or the recon-
struction mask Mrecon are evaluated. Using only Mrecon leads to a 0.9 p. p. drop
on VisA and a 0.7 p. p. MVTec AD in terms of AUROC. Mdisc can accurately
localize the anomalies even without Mrecon, leading to only a 0.1 and 0.2 p.
p. drop on VisA and MVTec AD, respectively. The impact of mask averaging
throughout the diffusion process is significant since using only the last estimated
mask (Last Mask Est.) causes a 1.5 and 1.4 p. p. drop in anomaly detection
performance on the VisA and MVTec AD, respectively.
Number of diffusion steps. The impact of the number of diffusion steps on the
anomaly detection performance is evaluated. Although a lower number of steps
leads to a poorer normal appearance restoration, TransFusion remains robust
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Method DRÆM [40] Patchcore [25] DiffAD [43] TransFusion

Inference [s] 0.05 0.22 1.00 0.34

Table 5: Results for average inference time of a single sample with NVIDIA A100
GPU. Inference times are reported in seconds.

across various time-step settings, achieving similar results across both VisA and
MVTec AD, even achieving state-of-the-art results on VisA at only 5 timesteps.
A higher number of diffusion steps also increases the result in localization on
VisA.
Transparency schedule. The impact of replacing the linear β schedule with
alternative schedules is evaluated. The Root and the Quadratic schedule are
examined, where the β values change from 0 to 1 using a quadratic or a square-
root function, respectively. Using a Quadratic schedule causes a 2 p. p. drop in
performance on both VisA and MVTec AD. The Root schedule leads to a 1.7
and a 0.7 p. p. drop on the VisA and the MVTec AD, respectively. Interestingly,
using a quadratic schedule improves anomaly localization by a 1.2 p. p. on VisA
and a 0.4 p. p. on MVTec AD.
Inference efficiency. Inference times of various methods can be seen in Table 5.
Due to the complexity of diffusion models, TransFusion is slower than some
competing methods however, it is faster than other diffusion-based methods.
Additionally, reducing the number of inference steps does not drastically reduce
performance (Table 4). Speeding up diffusion models is an active field [23,29,32]
and may be helpful to increase the inference speed of TransFusion in the future.

5 Conclusion

A novel, transparency-based diffusion process is proposed, where the trans-
parency of the anomalous regions is gradually increased, effectively removing
them and restoring their normal appearance. TransFusion, a novel discrimina-
tive anomaly detection method that implements the transparency-based diffu-
sion process, is proposed. With simultaneous localization and reconstruction,
TransFusion is able to produce accurate anomaly-free reconstructions of anoma-
lies while maintaining the appearance of normal regions, thus addressing both the
overgeneralization and loss-of-detail problems of commonly used reconstructive
models inside discriminative approaches. TransFusion achieves state-of-the-art
results in anomaly detection on the standard VisA and MVTec AD datasets,
achieving an AUROC of 98.5% and 99.2% for both datasets, respectively. The
versatility of TransFusion and its robustness to near-in-distribution anomalies
are further validated by the state-of-the-art performance across both datasets,
where TransFusion achieves 98.9% mean AUROC, surpassing the previous state-
of-the-art method by a significant margin of 0.3 percentage points. The results
indicate that custom diffusion processes crafted specifically for surface anomaly
detection are a promising direction for future research.
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