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Abstract. Sparse 3D detectors have received significant attention since
the query-based paradigm embraces low latency without explicit dense
BEV feature construction. However, these detectors achieve worse per-
formance than their dense counterparts. In this paper, we find the key to
bridging the performance gap is to enhance the awareness of rich repre-
sentations in two modalities. Here, we present a high-performance fully
sparse detector for end-to-end multi-modality 3D object detection. The
detector, termed SparseLIF, contains three key designs, which are (1)
Perspective-Aware Query Generation (PAQG) to generate high-quality
3D queries with perspective priors, (2) RoI-Aware Sampling (RIAS) to
further refine prior queries by sampling RoI features from each modal-
ity, (3) Uncertainty-Aware Fusion (UAF) to precisely quantify the un-
certainty of each sensor modality and adaptively conduct final multi-
modality fusion, thus achieving great robustness against sensor noises.
By the time of paper submission, SparseLIF achieves state-of-the-art per-
formance on the nuScenes dataset, ranking 1st on both validation set
and test benchmark, outperforming all state-of-the-art 3D object detec-
tors by a notable margin.

Keywords: 3D Object Detection · Sparse Detector · LiDAR-Camera
Fusion

1 Introduction

LiDAR-camera-based 3D detection is essential for accurate and robust autonomous
driving systems. The two modalities naturally provide complementary informa-
tion, i.e., the camera offers high-resolution semantic information while LiDAR
provides accurate geometric information. Therefore, camera and LiDAR sensors
have been simultaneously deployed for reliable 3D object detection.

Various approaches have been proposed to thoroughly explore the compensat-
ing information in LiDAR and camera modalities. Conventional multi-modality
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3D object detection approaches typically transform two modalities into a uni-
fied space for feature fusion. For example, PointPainting [62] and its variants [63,
70, 78] decorate raw point clouds with image pixel features. BEVFusion [34, 44]
transforms image view features into dense BEV space to fuse with LiDAR fea-
tures. The dense paradigm has achieved remarkable success in recent years but
suffers from cumbersome view transformation, resulting in high latency, limited
detection distance, and limited upper-bound performance. Recent works intro-
duce a sparse query-based paradigm without explicit view transformation. Some
pioneering sparse detectors aggregate multi-modality features in one [64, 71] or
two [1] stages using global attention. However, the exhaustive global attention
buries the advantages of the sparse paradigm and makes it difficult to benefit
from long-term temporal information. Lately, a stream of works explores the fully
sparse paradigm, which is free from the usage of global attention and dense BEV
queries. For example, works like FUTR3D [7] and DeepInteraction [75] sample
features from two modalities using reference points. Despite the huge advances,
these methods still lag behind their dense counterparts. Thus, whether fully
sparse multi-modality detectors can achieve superior performance compared to
dense detectors remains an open question.

This paper presents SparseLIF, a high-performance fully sparse multi-modality
3D object detector that outperforms all other dense counterparts and sparse de-
tectors. SparseLIF bridges the performance gap by enhancing the awareness of
rich LiDAR and camera representations in three aspects, i.e., query generation,
feature sampling and multi-modality fusion. First, we argue that the conven-
tion [68], which randomly generates queries, will suffer from extra efforts in learn-
ing to move the query proposals towards ground-truth targets. Here, we propose
the Perspective-Aware Query Generation (PAQG) module to ease learning. In
particular, PAQG injects a lightweight perspective detector composed of the
coupled 2D and monocular-3D sub-networks on image features to predict and
transform top-scored 3D proposals into query proposals. These input-dependent
proposals will narrow the learning path toward ground-truth targets, thus en-
hancing the awareness of rich contexts in high-resolution images. Second, these
queries with perspective priors will interact with features from two modalities
via the RoI-Aware Sampling (RIAS) module. Instead of resorting to cumber-
some global attention, the module locates the region of interest and then sample
complementary features at merely several reference points under the guidance of
prior queries, thus conforming to the fully sparse paradigm and enjoying low la-
tency. Third, we observe that in realistic scenarios, LiDAR and camera usually
suffer from various sensor problems as shown in Fig. 3, which will make sensor in-
puts unreliable and uncertain, thus degrading the performance of multi-modality
detectors. Hence, we propose the Uncertainty-Aware Fusion (UAF) module to
precisely quantify the uncertainty of each modality and guide our model to fo-
cus on the trustworthy modality in multi-modality fusion, thus achieving great
robustness against sensor noises. Our contributions are summarized as follows.

– We point out that the key to bridging the performance gap between sparse
detectors and their dense counterparts is to enhance the awareness of rich
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representations from LiDAR and camera feature spaces in three aspects, i.e.,
query generation, feature sampling, and multi-modality fusion.

– We present a high-performance fully sparse detector for LiDAR-camera-
based 3D object detection. The proposed framework contains three key de-
signs: (1) Perspective-Aware Query Generation (PAQG), which enhances the
perspective awareness of query proposals on rich contexts in high-resolution
images; (2) RoI-Aware Sampling (RIAS), which effectively refine prior queries
by sampling complementary RoI features across two modalities; (3) Uncertainty-
Aware Fusion (UAF), which conducts final multi-modality fusion under the
guidance of quantified modality uncertainty.

– We conduct comprehensive experiments to demonstrate the effectiveness of
our proposed method. As can be seen, SparseLIF outperforms all state-of-
the-art 3D object detectors on the nuScenes dataset, ranking 1st on both
the validation set and test benchmark.

2 Related Work

This section briefly reviews the most related works on three topics: LiDAR-,
Camera- and LiDAR-Camera-based 3D object detection.

2.1 LiDAR-based 3D Object Detection

LiDAR provides accurate geometric information, attracting much attention for
single-modality 3D detection. Earlier methods [8,32,51–53,58,74] directly extract
features from raw point clouds to predict 3D bounding boxes, but suffers from
the complexity when processing large-scale point clouds. Modern approaches
transform unordered points into structured formats such as range-view maps [2,
14,29,35,46,60], pillars [27], voxels [13,57,72,82]. Then, main-stream approaches
apply 2D/3D convolution-based head [27, 77, 81] to predict 3D bounding boxes.
Inspired by the huge success made by transformers, some recent works adopt
transformer blocks in feature encoder [45,56,80] and 3D detection head [1].

2.2 Camera-based 3D Object Detection

Camera-based 3D object detection [21,22,31,33,42,49,68] has witnessed remark-
able progress over the past few years since camera-based approaches have lower
deployment cost compared with the LiDAR-based counterparts.

Inspired by the huge success made by LiDAR-based 3D detection meth-
ods, Pseudo-LiDAR [67] transforms images into pseudo-LiDAR point clouds via
depth estimation, then conducts 3D object detection on those pseudo points with
LiDAR-based approaches. A line of works (e.g . DD3D [48], FCOS3D [66] and
CenterNet [81]) further propose end-to-end, single stage 3D object detectors by
attaching extra 3D bounding box regression head to 2D detector. Those methods
attempt to explicitly estimate depth to assist in 3D detection but show limited
performance due to inaccurate depth estimation.
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To implicitly incorporate depth information, another line of works [49,54,55]
perform 3D detection in BEV space. LSS [50] predicts the categorical depth
distribution for each pixel to lift pixel features into a frustum, then splats all
frustums into BEV grids. Based on LSS [50], BEVDet [22] and BEVDepth [31]
substantially boost performance. Inspired by transformer, BEVformer [33, 73]
and VideoBEV [17] directly extract spatial features from camera views using
cross-attention. Without reliance on depth information, the explicit construction
of dense BEV features still limits inference speed and effective detection distance.

Another stream of works [25] employ a top-down manner that does not suf-
fer from the explicit construction of dense BEV features. Inspired by DETR [5],
DETR3D [68] manipulates predictions directly in 3D space by indexing 2D fea-
tures with a sparse set of 3D object queries. PETR [42] further eases the overhead
of the indexing operation. PETRv2 [43] and Stream PETR [65] utilize the tem-
poral information of previous frames to boost 3D object detection but adopt the
global cross attention, which is computationally expensive. Sparse4D [37–39] and
SparseBEV [40] sparsely sample multi-frame/view/scale features for 4D reference
points then fuse hierarchically, thus achieving 3D detection without relying on
dense view transformation and global attention.

2.3 LiDAR-Camera-based 3D Object Detection

Recently, LiDAR-Camera-based 3D detection [6] has achieved great success in
leveraging semantic and geometric information to reach impressive performance.
Early approaches [24,59,62,63,78] decorate raw point clouds with image features
but compromise rich context information. FrustumPointNet [51], FrustumCon-
vNet [69], and CenterFusion [47] lift image proposals into 3D frustums with
explicit depth estimation but show limited performance due to depth inaccu-
racy.

Lately, motivated by LSS [50], BEVFusion [34,44] ease the reliance on depth
estimation by projecting fine-grained image features into BEV space then con-
ducting fusion with LiDAR features. AutoAlign [10,11] further preserves instance-
wise semantic consistency by feature alignment across two modalities. However,
the explicit and dense view transformation from image to BEV space is cumber-
some (i.e., high latency and limited detection distance) and sensitive to sensor
misalignment. BEVFusion4D [4] further improves performance by incorporating
temporal information. EA-LSS [20] enhances depth estimation at the edge of
objects.

Recent works utilize the sparse query-based paradigm without explicit view
transformation. Transfusion [61] obtains object queries from LiDAR points and
then fuses queries with rich image features using a transformer block. CMT [71]
further develops an end-to-end feature interaction framework for multi-modality
fusion. UniTR [64] introduces a modality-agnostic transformer encoder to pro-
ceed with unified modeling and shared parameters. Despite great success, the
expensive global attention buries the advantages of the sparse paradigm and
makes it difficult to benefit from long-term temporal information.

Another stream of works explores the fully sparse paradigm. SparseFusion [83]
poses detectors on each modality and fuses features of detected instances. How-
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Fig. 1: The overall architecture of SparseLIF, a fully sparse LiDAR-camera-based 3D
object detector. The framework contains a camera backbone to process multi-view
videos and a LiDAR backbone to encode raw point clouds. We then feed the image
features into the Perspective-Aware Query Generation (PAQG) module to generate
queries. The queries will interact with the camera and LiDAR features via the RoI-
Aware Sampling (RIAS) module to extract complementary features for further refine-
ment. Next, the Uncertainty-Aware Fusion (UAF) module quantifies the uncertainty of
RoI features from two modalities and adaptively conducts final multi-modality fusion.
The decoder repeats L times.

ever, the two-stage paradigm suffers from the limited performance of modality-
specific detectors. FUTR3D [7] generalizes the fully sparse paradigm by initial-
izing 3D reference points and projecting them into all available modalities to
sample features. Although methods have recently achieved good performance,
there remains notable performance gap compared to dense counterparts.

3 SparseLIF

SparseLIF is a sparse query-based multi-modality detector. We use common
image backbone (e.g . ResNet [18], V2-99 [28]) and FPN [36] to extract multi-
view/scale/frame camera features, denoted as Xcam = {X vmt

cam }V,M,T
v=1,m=1,t=1, where

V , M , and T denote the number of camera views, feature scales, and temporal
frames respectively. Based on our proposed framework, rich temporal informa-
tion can be easily and sufficiently incorporated. In parallel, we use common 3D
LiDAR backbone (e.g . VoxelNet [82]) and FPN [36] to extract multi-scale LiDAR
features, denoted as Xlid = {X r

lid}Rr=1, where R denotes the number of LiDAR
feature scales. Taking camera features as input, the Perspective-Aware Query
Generation (PAQG) module (Sec. 3.1) adopts the coupled 2D and monocular-
3D image detectors to predict and generate high-quality 3D queries with per-
spective priors. These queries will then interact with the camera and LiDAR
features via the RoI-Aware Sampling (RIAS) module to extract RoI features for
further refinement. Next, the Uncertainty-Aware Fusion (UAF) module (Sec. 3.3)
quantifies the uncertainty of RoI features from two modalities and adaptively
conducts multi-modality fusion for final 3D object predictions.
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Fig. 2: Motivations and details of our proposed PAQG module. (a) 3D detectors strug-
gle with low sensitivity when detecting distant and small objects. (b) 2D detectors
demonstrate excellent pixel-wise perception capabilities on such objects. (c) the PAQG
module adopts the coupled 2D and monocular-3D sub-networks to predict dense boxes
under the supervision of a perspective loss. We pick top-ranked boxes to propose high-
quality queries, and then interact with camera features via a cross-attention module.

3.1 Perspective-Aware Query Generation

Recent works typically generate queries based on randomly distributed reference
points [7, 71], anchor boxes [37] or pillars [40] in 3D space and optimize as net
parameters, regardless of input data. However, it has already been proved in 2D
detection [76] that such input-independent queries will take extra effort in learn-
ing to move the query proposals towards ground-truth object targets. As shown
in Fig. 2, we visualize the predictions of a query-based 3D detector and a 2D
detector, where the 2D detector usually exhibits excellent perception capability
on distant and small objects. Motivated by the strength of 2D detection, our
PAQG module fully utilizes the perception capability to generate 3D queries,
thereby assisting ultimate 3D detection.

The lightweight perspective detector in the PAQG module consists of the cou-
pled 2D (e.g . FCOS [61]) and monocular-3D (e.g . FCOS3D [66]) sub-networks.
Taken the multi-view/scale image features Xcam as input, the monocular-3D
sub-network predicts raw 3D attributes, i.e., depths d, rotation angles, sizes,
and velocities throughout different views. Simultaneously, the 2D sub-network
predicts corresponding 2D attributes, i.e., center coordinates [cx, cy], confidence
scores, and category labels. For each view v, we project the box centers into 3D
space based on corresponding camera extrinsic Ev and intrinsic Iv, i.e.,

c3D = E−1
v I−1

v [cxd, cyd,d,1]. (1)

The 3D center c3D will combine with the predicted size, rotation angle, and
velocity to form 3D boxes. Then, we perform non-maximum suppression in 3D
space to filter intersecting boxes and pick the top Nk boxes ranked by confidence
scores, to initialize queries with image features interacted via an efficient cross-
attention module. Formally,

qi =
1

|V|
∑
v∈V

M∑
m=1

BS(X vm
cam,Pv

cam(c3Di )), (2)

where Pv
cam(c3Di ) projects the 3D center c3Di to v-th image using correspond-

ing camera parameters. Besides, V denotes the set of hit views. BS(·) denotes
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the bilinear sampling function. Since some objects may be overlooked, we pre-
serve Nr randomly initialized query boxes. Finally, our PAQG module generates
total Nq = Nk + Nr query proposals. This way, our PAQG module provides
input-dependent query proposals to elevate the understanding of comprehensive
perspective priors (2D and 3D attributes) for 3D detectors, thereby aiding in
detecting distant and small objects.

3.2 RoI-Aware Sampling

RoI-Aware Sampling (RIAS) module is responsible for sampling RoI features
from each modality to refine the queries Q = {qi}

Nq

i=1 ⊂ RC initialized with
perspective priors via PAQG module. We aim at locating the region of interest
(RoI) to sample features without resorting to cumbersome global attention, thus
enjoying low complexity and benefiting from long-term temporal information.

LiDAR Branch Inspaired by Deformable Attention [84], we merely sample
K = 4 reference points to retrieval RoI features {F ik

lid}Kk=1 from LiDAR feature
map Xlid for each query qi. Formally,

F ik
lid =

R∑
r=1

BS
(
X r

lid,Plid
(
ci +∆irk

lid
))

· σirk
lid , (3)

where ci is the bounding box center of query qi in global 3D space and Plid
projects the center into LiDAR BEV space. BS(·) denotes the bilinear sampling
function. Besides, ∆irk

lid and σirk
lid are predicted sampling offsets and attention

weights using query qi to cover the RoI on sensitive objects. Note that, differ-
ent from global attention, we merely interact with several features mapped to
reference points, thus embracing a fully sparse paradigm.

Camera Branch As for the camera branch, we also sample K = 4 reference
points to retrieval RoI features from the hit views V of camera feature map Xcam,
i.e.,

F itk
cam =

1

|V|
∑
v∈V

M∑
m=1

BS
(
X vmt

cam ,Pvt
cam

(
ci +∆ivmtk

cam
))

· σivmtk
cam , (4)

where Pvt
cam(·) is the project function from global 3D space to feature coordi-

nate using camera parameters and temporal alignment [40]. Besides, ∆ivmtk
cam

and σivmtk
cam are also predicted sampling offsets and attention weights using query

feature.

Channel-Spatial Correlation Aware Mixing To enrich the awareness of the
correlation in spatial and channel dimensions of query qi, we inject AdaMixer [15]
on the retrieved features. For convenience, we organize those retrieved RoI fea-
tures to f ∈ RS×C , where S = K or S = T ×K for LiDAR or camera feature.
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(b) Object Failure (c) Camera Occlusion(a) Limited FoV

Fig. 3: Visualizations of sensor noises in 3D object detection for autonomous driving.
(a) Limited FOV: LiDAR installed in a front-facing manner yields a limited FOV,
e.g . 120◦. (b) Object Failure: the reflection rate of some objects (e.g . the black car)
is below the threshold of LiDAR thus without LiDAR points reflected. (c) Camera
Occlusion: the camera module is usually vulnerable to occlusions (e.g . by dust).

First, we model the channel correlation based on query qi and transform
features f to enhance channel semantics:

Wc = Linear(qi) ∈ RC×C (5)
Mc(f) = ReLU (LayerNorm (fWc)) , (6)

where Wc is the channel correlation shared across different timestamps and dif-
ferent sampling points. Next, we then transpose the feature and model the spatial
correlation to the spatial dimension of it, i.e.,

Ws = Linear(qi) ∈ RS×S (7)

Ms(f) = ReLU
(
LayerNorm

(
fTWs

))
, (8)

where Ws is the spatial correlation shared across different channels. After channel-
spatial correlation aware mixing, the features are flattened and aggregated by a
linear layer.

3.3 Uncertainty-Aware Fusion

Given the RoI features Fcam and Flid from two modalities, the Uncertainty-Aware
Fusion (UAF) module aims to endow our fusion module with the robustness
against sensor noise illustrated in Fig. 3. To this end, we inject the awareness of
the uncertainty of each modality into our fusion module, i.e.,

Q̄ = fUA(Fcam, Ucam, Flid, Ulid), (9)

where Q̄ = {q̄i}
Nq

i=1 ⊂ RC and fUA are the refined query feature and uncertainty-
aware fusion function, respectively. Besides, Ucam and Ulid are the uncertainty
of two modalities.

Inspired by the unquestionable importance of accurate localization in au-
tonomous driving, we formulate the uncertainty as a function of the Euclidean
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distance between the predicted and the ground-truth bounding boxes B. For
convinience, let s ∈ {cam, lid} represents one modality. We have

Us = 1− exp (−Dxy (freg(Fs), B)) , (10)

where freg is the regression function for bounding boxes, and Dxy is the Eu-
clidean distance function in BEV space. However, the ground-truth bounding
boxes are unavailable for models. Thus, we inject a distance predictor on RoI
features of each modality, then rewrite Eq. (10) as

Ûs = 1− exp (−fdist(Fs)) , (11)

where fdist is the distance predictor consisting of MLPs.
As for the uncertainty-aware fusion function fUA, we simply formulate it as

the concatenation of features weighted by uncertainty and rewrite Eq. (9) as

q̄i = FFN
(
Cat

(
Fcam · (1− Ûcam), Flid · (1− Ûlid)

))
, (12)

where Cat and FFN denote concatenation function and feedforward networks,
respectively. In this way, our UAF module quantifies the uncertainty U of each
modality and guides our model to focus on trustworthy modality, thus enjoying
robustness against sensor noises.

4 Experiments

This section provides the experimental settings and results. We conduct de-
tailed ablation studies to verify our design choices in SparseLIF. Meanwhile, we
also demonstrate that our multi-modality detector achieves excellent robustness
against sensor noises. Above all, we compare SparseLIF with other state-of-the-
art 3D object detectors on the popular nuScenes benchmark. The results show
that our SparseLIF achieves superior performance, ranking 1st on both the
validation set and test benchmark.

4.1 Experimental Setups

Implementation Details We implement SparseLIF using the open-source
MMDetection3D [12] based on PyTorch. The detection range is [−54m, 54m]
and [−5m, 3m] for the XY- and the Z-axis. We adopt V2-99 [28] pretrained
by FCOS3D [66] as the image backbone with input image size 1600 × 640. We
adopt VoxelNet [82] as LiDAR backbone with voxel size (0.075m, 0.075m, 0.2m).
The total query number Nq is 900, including Nk = 200 queries generated by
the PAQG module. The perspective detector is implemented by the coupled
FCOS [61] and FCOS3D [66] sub-networks. The lightweight distance predictor
fdist is implemented by a two-layer FFN. The decoder repeats L = 6 times.
In the following experiments, we report the state-of-the-art performance of two
SparseLIF detectors: the single-frame detector SparseLIF-S (V = 6, M = 4,
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Table 1: Quantitative comparisons of SparseLIF with all state-of-the-art 3D detectors
on the nuScenes test benchmark. The notion of modality: Camera (C), LiDAR (L),
and Temporal (T). †: using external training data; ‡: using TTA and complex model
ensemble (e.g . models with different voxel sizes, BEV sizes, backbones/FPNs/heads);
§: we only use very simple self-model ensemble without TTA for SparseLIF-T.

Method Modality mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ mAP↑ NDS↑

TransFusion [1] LC 25.9 24.3 35.9 28.8 12.7 68.9 71.7
FUTR3D [7] LC 28.4 24.1 31.0 30.0 12.0 69.4 72.1
AutoAlignV2 [11] LC 24.5 23.3 31.1 25.8 13.3 68.4 72.4
BEVFusion [44] LC 26.1 23.9 32.9 26.0 13.4 70.2 72.9
BEVFusion [34] LC 25.0 24.0 35.9 25.4 13.2 71.3 73.3
DeepInteraction [75] LC 25.7 24.0 32.5 24.5 12.8 70.8 73.4
BEVFusion4D-S [4] LC - - - - - 71.9 73.7
SparseFusion [83] LC - - - - - 72.0 73.8
MSMDFusion [26] LC 25.5 23.8 31.0 24.4 13.2 71.5 74.0
CMT [71] LC 27.9 23.5 30.8 25.9 11.2 72.0 74.1
EA-LSS [20] LC 24.7 23.7 30.4 25.0 13.3 72.2 74.4
UniTR [64] LC 24.1 22.9 25.6 24.0 13.1 70.9 74.5
FocalFormer3D-F [9] LC 25.1 24.2 32.8 22.6 12.6 72.4 74.5
BEVFusion4D [4] LCT - - - - - 73.3 74.7
DAL [23] LC 25.3 23.8 33.4 17.4 12.0 72.0 74.8
FusionFormer† [19] LCT 26.7 23.6 28.6 22.5 10.5 72.6 75.1
SparseLIF-T LCT 24.1 22.9 27.8 15.4 11.8 74.4 77.0

PAI3D‡ [41] LC 24.5 23.3 30.8 23.3 13.1 71.4 74.2
Lift-Attend-Splat‡ [16] LC 24.3 23.8 34.5 32.8 13.3 75.5 74.9
BEVFusion‡ [44] LC 24.2 22.7 32.0 22.2 13.0 75.0 76.1
DeepInteraction‡ [75] LC 23.5 23.3 32.8 22.6 13.0 75.6 76.3
CMT‡ [71] LC 23.3 22.0 27.1 21.2 12.7 75.3 77.0
BEVFusion4D‡ [4] LCT 22.9 22.9 30.2 22.5 13.5 76.8 77.2
EA-LSS‡ [20] LC 23.4 22.8 27.8 20.4 12.4 76.6 77.6
SparseLIF-T § LCT 24.3 23.1 28.4 15.2 11.7 75.9 77.7

R = 4, and T = 1), the temporal multi-frame detector SparseLIF-T (V = 6,
M = 4, R = 4, and T = 13).

Each model is trained end-to-end using the AdamW optimizer on eight NVIDIA
A100 GPUs with a total batch size of 8. For fair comparisons, we apply the query-
denoising strategy [30], commonly used in sparse detection heads, to address the
unstable matching problem. Each model is trained for 24 epochs with a learning
rate of 2e− 4.

Datasets and Evaluation Metrics We conduct experiments on the popular
nuScenes dataset [3] to evaluate the performance of our proposed method for 3D
object detection in autonomous driving. The nuScenes dataset has 1.4 million
3D detection annotation boxes from 40, 157 samples distributed in 1000 scenes
collected in Boston and Singapore. Each sample is collected with six cameras and
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Table 2: Quantitative comparisons of SparseLIF with all state-of-the-art 3D detectors
on the nuScenes validation set. The notion of modality: Camera (C), LiDAR (L),
and Temporal (T). †: with extra CBGS training strategy. Note that all methods use
corresponding best single model without TTA or model ensemble for comparisons.

Method Modality Image Backbone LiDAR Backbone mAP↑ NDS↑

FUTR3D [7] LC ResNet-101 VoxelNet 64.2 68.0
AutoAlignV2 [11] LC CSPNet VoxelNet 67.1 71.2
TransFusion [1] LC ResNet-50 VoxelNet 67.5 71.3
BEVFusion [44] LC SwinT VoxelNet 68.5 71.4
BEVFusion [34] LC SwinT VoxelNet 69.6 72.1
DeepInteraction [75] LC ResNet-50 VoxelNet 69.9 72.6
CMT [71] LC V2-99 VoxelNet 70.3 72.9
BEVFusion4D-S [4] LC SwinT VoxelNet 70.9 72.9
SparseFusion [83] LC SwinT VoxelNet 71.0 73.1
EA-LSS [20] LC SwinT VoxelNet 71.2 73.1
FusionFormer-S† [19] LC V2-99 VoxelNet 70.0 73.2
SparseLIF-S LC V2-99 VoxelNet 71.2 74.6

BEVFusion4D [4] LCT SwinT VoxelNet 72.0 73.5
FusionFormer† [19] LCT V2-99 VoxelNet 71.4 74.1
SparseLIF-T LCT V2-99 VoxelNet 74.7 77.5

Table 3: Ablation studies of SparseLIF on the nuScenes validation set.

SparseLIF-S Modality Image Backbone LiDAR Backbone PAQG RIAS UAF mAP↑ NDS↑

#1 LC V2-99 VoxelNet 66.2 69.0
#2 LC V2-99 VoxelNet ✓ 69.8 73.3
#3 LC V2-99 VoxelNet ✓ ✓ 71.0 74.3
#4 LC V2-99 VoxelNet ✓ ✓ 70.5 74.1
#5 LC V2-99 VoxelNet ✓ ✓ ✓ 71.2 74.6
#6 LC V2-99 VoxelNet ✓ ✓ 68.0 70.8

a 32-beam LiDAR sensor. We adopt the nuScenes detection evaluation metrics
NDS and mAP over ten classes for our experiments.

4.2 Comparisons with State-of-the-Art 3D Object Detectors

As shown in the top part of Tab. 1, without using any test-time augmen-
tation (TTA) or model ensemble, our SparseLIF-T achieves state-of-the-art
single-model performance, reaching 77.0% NDS on the nuScenes test bench-
mark, significantly outperforming all other 3D detectors by a notable margin.
In particular, we outperform the most competitive method FusionFormer [19]
by 1.9% NDS without using any external training data. Regarding the test
benchmark leaderboard in the bottom part of Tab. 1, many competitive meth-
ods [4,16,20,41,44,71,75] adopt very complex model ensemble (e.g . assembling
models with different voxel sizes, BEV sizes, backbones/FPNs/heads) and TTA,
to strive for top ranking on the test leaderboard. Contrarily, we only use very
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Table 4: Performance analysis of our PAQG module on detection distances and small
object classes on the nuScenes validation set, based on SparseLIF-S. The AP scores
of traffic cone (T.C.) and barrier at 30m- are missing since corresponding annotations
are unavailable.

PAQG 0-10m 10-20m 20-30m 30m-

mAP 75.1 74.3 65.5 56.9
mAP ✓ 76.2 74.8 66.8 58.5

T.C. 82.5 80.6 69.1 -
T.C. ✓ 83.8 82.7 70.4 -

Barrier 72.1 77.5 54.5 -
Barrier ✓ 76.4 80.0 63.1 -

simple self-model ensemble without TTA for SparseLIF-T (i.e., 0.7% NDS im-
provement), achieving the best performance of 77.7% NDS and ranking 1st on
the test leaderboard by the time of paper submission.

SparseLIF is one of the first LiDAR-camera-based 3D detectors [4, 19] with
temporal awareness, while most methods are ignorant or incapable of integrat-
ing temporal information, resulting in sub-optimal performance. For fair com-
parisons, we also compare our single-frame detector SparseLIF-S with other
temporal-ignorant methods on the nuScenes validation set. As shown in the top
part of Tab. 2, SparseLIF-S also outperforms the best competitor by a notable
margin (1.4% NDS). Furthermore, as presented in the bottom part of Tab. 2,
our multi-frame detector SparseLIF-T achieves the NDS of 77.5%, significantly
outperforming all other methods by at least 3.4% on the validation set.

We also conduct latency analysis on the nuScenes dataset. We implement
SparseLIF using Pytorch without any acceleration operations. The overall la-
tency of SparseLIF-S is 340ms on a single NVIDIA A100 GPU. In detail, the
detection head (including the PAQG module, the RIAS module, and the UAF
module, etc.) only takes about 40ms, while the camera and LiDAR backbones
take the rest of the time, which demonstrates the efficiency of our detector. We
can further speed up our detector by configuring the backbones.

4.3 Ablation Studies

In Tab. 3, we conduct ablation studies on the nuScenes validation set to evaluate
the key components in our multi-modality framework, based on the state-of-the-
art single-frame detector SparseLIF-S, which yields highly convincing proofs.
The RIAS module plays a vital role in our multi-modality detector. Adopting the
PAQG module to generate high-quality query proposals, the mAP and NDS are
improved by 1.2% and 1.0% respectively. Adopting the UAF module to conduct
multi-modality fusion, the mAP and NDS are improved by 0.7% and 0.8%
respectively. When SparseLIF-S assembles all modules, the best performance is
reached: 71.2% mAP and 74.6% NDS.

We further present an in-depth analysis of our proposed PAQG module to
reveal its effectiveness on detection distances and small object classes, based
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Table 5: Robustness studies of SparseLIF on the nuScenes validation set, under chal-
lenging scenarios: LiDAR malfunction, camera malfunction and unsynchronization.
Abbreviations: construction vehicle (C.V.), pedestrian (Ped.), and traffic cone (T.C.).

Setting UAF Car Truck Bus Trailer C.V. Ped. Motor Bike T.C. Barrier mAP NDS

FOV
120◦

69.4 49.9 62.6 23.2 20.0 56.6 55.7 50.4 53.2 55.4 49.7 62.1
✓ 74.5 55.1 66.5 33.9 21.7 60.1 61.3 57.3 60.6 62.7 55.4 65.2

180◦
73.6 55.9 64.2 27.3 22.8 65.0 61.1 54.8 59.0 59.0 54.3 65.3

✓ 77.5 59.6 68.5 35.8 23.1 67.7 64.6 60.3 65.4 65.1 58.8 67.6

Object
Failure

84.9 64.2 74.4 37.8 27.9 82.1 75.5 70.3 74.1 70.1 66.1 72.2
✓ 86.2 67.4 75.2 41.6 29.2 82.4 76.4 71.4 75.4 69.8 67.5 73.0

Front 82.2 59.9 65.3 35.3 29.0 86.4 64.8 69.1 78.2 66.2 63.7 71.4
Occlusion ✓ 84.1 62.8 66.7 36.5 30.3 84.8 66.5 70.2 78.5 66.3 64.7 72.0

Stuck 90.2 69.9 81.5 43.8 33.0 90.7 82.9 77.1 82.6 74.9 72.7 75.9
✓ 90.7 72.3 82.0 46.3 33.1 90.8 83.9 76.9 83.0 75.0 73.4 76.5

on the state-of-the-art single-frame detector SparseLIF-S. As shown in Tab. 4,
the PAQG module substantially facilitates distant object detection, e.g . 1.6%
mAP improvement for objects beyond 30m. Regarding small objects, the PAQG
module also significantly improves the AP scores of traffic cone and barrier across
all distances, e.g . 8.6% AP improvement for barrier in 20-30m. We attribute the
performance gains to the enhanced awareness of rich context and perspective
priors boosted by the proposed PAQG module.

4.4 Robustness Studies

To validate the robustness of our multi-modality framework, we evaluate SparseLIF
under LiDAR/camera malfunction and unsynchronization scenarios (see [79] for
more details):

– Limited FOV. We simulate the limited FOV angles of 120◦ and 180◦ by
filtering out LiDAR points.

– Object Failure. Following BEVFusion [34], we simulate this scenario by se-
lecting 50% frames to drop points of objects, where 50% objects are dropped
for each selected frame.

– Front Occlusion. Following BEVFusion [34], we simulate such an occlusion
scenario by filling the entire front-camera image with zero value.

– Stuck. The timestamps of two sensors might not always be synchronized,
yielding stuck data, e.g . the detector wrongly receives data with timestamp
t − 1 at time t. Following BEVFusion [34], we simulate such an unsynchro-
nized scenario on 50% frames.

We directly evaluate our SparseLIF-T model under these scenarios without any
adaption or fine-tuning. As shown in Tab. 5, the UAF module boosts the robust-
ness performance by 3.1% NDS at the most challenging LiDAR malfunction
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Fig. 4: Robustness visualizations under the scenario of limited LiDAR FOV angle of
120◦. We color each box with green and red for prediction and ground truth.

scenario (top), i.e., limited FOV angle of 120◦. Simultaneously, our SparseLIF
also gains robustness improvement by 0.6% NDS under camera malfunction
(middle) and unsynchronization (bottom) scenarios. The experimental results
convincingly demonstrate the capability of our detector against sensor noises.

We further visualize the predictions of our SparseLIF under the most chal-
lenging scenario of limited LiDAR FOV angle of 120◦. As presented in Fig. 4,
our SparseLIF precisely detects objects in golden circles with LiDAR input mal-
functioned, showing the remarkable robustness of our multi-modality detector
attributed to the proposed UAF module.

5 Conclusion

This paper proposes a high-performance fully sparse detector termed SparseLIF
for LiDAR-camera-based 3D object detection. Our SparseLIF achieves state-of-
the-art performance by enhancing the awareness of rich representations in two
modalities. In particular, SparseLIF consists of (1) the PAQG module, which
generates high-quality 3D queries with perspective priors to facilitate the per-
ception of small and distant objects; (2) the RIAS module, which further refines
prior queries by RoI feature sampling to embrace the fully sparse paradigm
with the capability of low latency and integration of more temporal frames; (3)
the UAF module, which quantifies the uncertainty of each modality for multi-
modality fusion to enhance robustness against sensor noises. The experimental
results demonstrate the superiority of our proposed method over all state-of-
the-art 3D object detectors on the nuScenes benchmark. In the future, we will
explore applications of SparseLIF on other tasks, such as occupancy prediction.



SparseLIF 15

References

1. Bai, X., Hu, Z., Zhu, X., Huang, Q., Chen, Y., Fu, H., Tai, C.L.: Transfusion:
Robust lidar-camera fusion for 3d object detection with transformers. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition. pp.
1090–1099 (2022)

2. Bewley, A., Sun, P., Mensink, T., Anguelov, D., Sminchisescu, C.: Range condi-
tioned dilated convolutions for scale invariant 3d object detection. arXiv preprint
arXiv:2005.09927 (2020)

3. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A.,
Pan, Y., Baldan, G., Beijbom, O.: nuscenes: A multimodal dataset for autonomous
driving. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 11621–11631 (2020)

4. Cai, H., Zhang, Z., Zhou, Z., Li, Z., Ding, W., Zhao, J.: Bevfusion4d: Learning
lidar-camera fusion under bird’s-eye-view via cross-modality guidance and tempo-
ral aggregation. arXiv preprint arXiv:2303.17099 (2023)

5. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. In: European conference on computer
vision. pp. 213–229. Springer (2020)

6. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3d object detection network
for autonomous driving. In: Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition. pp. 1907–1915 (2017)

7. Chen, X., Zhang, T., Wang, Y., Wang, Y., Zhao, H.: Futr3d: A unified sensor
fusion framework for 3d detection. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 172–181 (2023)

8. Chen, Y., Liu, S., Shen, X., Jia, J.: Fast point r-cnn. In: Proceedings of the
IEEE/CVF international conference on computer vision. pp. 9775–9784 (2019)

9. Chen, Y., Yu, Z., Chen, Y., Lan, S., Anandkumar, A., Jia, J., Alvarez, J.M.:
Focalformer3d: focusing on hard instance for 3d object detection. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 8394–8405
(2023)

10. Chen, Z., Li, Z., Zhang, S., Fang, L., Jiang, Q., Zhao, F., Zhou, B., Zhao, H.:
Autoalign: pixel-instance feature aggregation for multi-modal 3d object detection.
arXiv preprint arXiv:2201.06493 (2022)

11. Chen, Z., Li, Z., Zhang, S., Fang, L., Jiang, Q., Zhao, F.: Autoalignv2: Deformable
feature aggregation for dynamic multi-modal 3d object detection. arXiv preprint
arXiv:2207.10316 (2022)

12. Contributors, M.: MMDetection3D: OpenMMLab next-generation platform for
general 3D object detection. https://github.com/open-mmlab/mmdetection3d
(2020)

13. Deng, J., Shi, S., Li, P., Zhou, W., Zhang, Y., Li, H.: Voxel r-cnn: Towards high per-
formance voxel-based 3d object detection. In: Proceedings of the AAAI Conference
on Artificial Intelligence. vol. 35, pp. 1201–1209 (2021)

14. Fan, L., Xiong, X., Wang, F., Wang, N., Zhang, Z.: Rangedet: In defense of range
view for lidar-based 3d object detection. In: Proceedings of the IEEE/CVF inter-
national conference on computer vision. pp. 2918–2927 (2021)

15. Gao, Z., Wang, L., Han, B., Guo, S.: Adamixer: A fast-converging query-based
object detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 5364–5373 (2022)

https://github.com/open-mmlab/mmdetection3d


16 Zhang et al.

16. Gunn, J., Lenyk, Z., Sharma, A., Donati, A., Buburuzan, A., Redford, J., Mueller,
R.: Lift-attend-splat: Bird’s-eye-view camera-lidar fusion using transformers. arXiv
preprint arXiv:2312.14919 (2023)

17. Han, C., Sun, J., Ge, Z., Yang, J., Dong, R., Zhou, H., Mao, W., Peng, Y., Zhang,
X.: Exploring recurrent long-term temporal fusion for multi-view 3d perception.
arXiv preprint arXiv:2303.05970 (2023)

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

19. Hu, C., Zheng, H., Li, K., Xu, J., Mao, W., Luo, M., Wang, L., Chen, M., Liu,
K., Zhao, Y., et al.: Fusionformer: A multi-sensory fusion in bird’s-eye-view and
temporal consistent transformer for 3d objection. arXiv preprint arXiv:2309.05257
(2023)

20. Hu, H., Wang, F., Su, J., Wang, Y., Hu, L., Fang, W., Xu, J., Zhang, Z.: Ea-lss:
Edge-aware lift-splat-shot framework for 3d bev object detection. arXiv preprint
arXiv:2303.17895 2 (2023)

21. Huang, J., Huang, G.: Bevdet4d: Exploit temporal cues in multi-camera 3d object
detection. arXiv preprint arXiv:2203.17054 (2022)

22. Huang, J., Huang, G., Zhu, Z., Ye, Y., Du, D.: Bevdet: High-performance multi-
camera 3d object detection in bird-eye-view. arXiv preprint arXiv:2112.11790
(2021)

23. Huang, J., Ye, Y., Liang, Z., Shan, Y., Du, D.: Detecting as labeling: Rethinking
lidar-camera fusion in 3d object detection. arXiv preprint arXiv:2311.07152 (2023)

24. Huang, T., Liu, Z., Chen, X., Bai, X.: Epnet: Enhancing point features with image
semantics for 3d object detection. In: Computer Vision–ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XV 16. pp.
35–52. Springer (2020)

25. Jiang, X., Li, S., Liu, Y., Wang, S., Jia, F., Wang, T., Han, L., Zhang, X.: Far3d:
Expanding the horizon for surround-view 3d object detection. arXiv preprint
arXiv:2308.09616 (2023)

26. Jiao, Y., Jie, Z., Chen, S., Chen, J., Ma, L., Jiang, Y.G.: Msmdfusion: Fusing
lidar and camera at multiple scales with multi-depth seeds for 3d object detection.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 21643–21652 (2023)

27. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: Fast
encoders for object detection from point clouds. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 12697–12705 (2019)

28. Lee, Y., Park, J.: Centermask: Real-time anchor-free instance segmentation. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition. pp. 13906–13915 (2020)

29. Li, B., Zhang, T., Xia, T.: Vehicle detection from 3d lidar using fully convolutional
network. arXiv preprint arXiv:1608.07916 (2016)

30. Li, F., Zhang, H., Liu, S., Guo, J., Ni, L.M., Zhang, L.: Dn-detr: Accelerate detr
training by introducing query denoising. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 13619–13627 (2022)

31. Li, Y., Ge, Z., Yu, G., Yang, J., Wang, Z., Shi, Y., Sun, J., Li, Z.: Bevdepth:
Acquisition of reliable depth for multi-view 3d object detection. In: Proceedings of
the AAAI Conference on Artificial Intelligence. vol. 37, pp. 1477–1485 (2023)

32. Li, Z., Wang, F., Wang, N.: Lidar r-cnn: An efficient and universal 3d object
detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 7546–7555 (2021)



SparseLIF 17

33. Li, Z., Wang, W., Li, H., Xie, E., Sima, C., Lu, T., Qiao, Y., Dai, J.: Bevformer:
Learning bird’s-eye-view representation from multi-camera images via spatiotem-
poral transformers. In: European conference on computer vision. pp. 1–18. Springer
(2022)

34. Liang, T., Xie, H., Yu, K., Xia, Z., Lin, Z., Wang, Y., Tang, T., Wang, B., Tang,
Z.: Bevfusion: A simple and robust lidar-camera fusion framework. Advances in
Neural Information Processing Systems 35, 10421–10434 (2022)

35. Liang, Z., Zhang, M., Zhang, Z., Zhao, X., Pu, S.: Rangercnn: Towards fast and
accurate 3d object detection with range image representation. arXiv preprint
arXiv:2009.00206 (2020)

36. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 2117–2125 (2017)

37. Lin, X., Lin, T., Pei, Z., Huang, L., Su, Z.: Sparse4d: Multi-view 3d object detection
with sparse spatial-temporal fusion. arXiv preprint arXiv:2211.10581 (2022)

38. Lin, X., Lin, T., Pei, Z., Huang, L., Su, Z.: Sparse4d v2: Recurrent temporal fusion
with sparse model. arXiv preprint arXiv:2305.14018 (2023)

39. Lin, X., Pei, Z., Lin, T., Huang, L., Su, Z.: Sparse4d v3: Advancing end-to-end 3d
detection and tracking. arXiv preprint arXiv:2311.11722 (2023)

40. Liu, H., Teng, Y., Lu, T., Wang, H., Wang, L.: Sparsebev: High-performance sparse
3d object detection from multi-camera videos. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 18580–18590 (2023)

41. Liu, H., Xu, Z., Wang, D., Zhang, B., Wang, G., Dong, B., Wen, X., Xu, X.: Pai3d:
Painting adaptive instance-prior for 3d object detection. In: European Conference
on Computer Vision. pp. 459–475. Springer (2022)

42. Liu, Y., Wang, T., Zhang, X., Sun, J.: Petr: Position embedding transformation
for multi-view 3d object detection. In: European Conference on Computer Vision.
pp. 531–548. Springer (2022)

43. Liu, Y., Yan, J., Jia, F., Li, S., Gao, A., Wang, T., Zhang, X.: Petrv2: A unified
framework for 3d perception from multi-camera images. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 3262–3272 (2023)

44. Liu, Z., Tang, H., Amini, A., Yang, X., Mao, H., Rus, D.L., Han, S.: Bevfusion:
Multi-task multi-sensor fusion with unified bird’s-eye view representation. In: 2023
IEEE international conference on robotics and automation (ICRA). pp. 2774–2781.
IEEE (2023)

45. Mao, J., Xue, Y., Niu, M., Bai, H., Feng, J., Liang, X., Xu, H., Xu, C.: Voxel
transformer for 3d object detection. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. pp. 3164–3173 (2021)

46. Meyer, G.P., Laddha, A., Kee, E., Vallespi-Gonzalez, C., Wellington, C.K.: Laser-
net: An efficient probabilistic 3d object detector for autonomous driving. In: Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition.
pp. 12677–12686 (2019)

47. Nabati, R., Qi, H.: Centerfusion: Center-based radar and camera fusion for 3d
object detection. In: Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision. pp. 1527–1536 (2021)

48. Park, D., Ambrus, R., Guizilini, V., Li, J., Gaidon, A.: Is pseudo-lidar needed for
monocular 3d object detection? In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 3142–3152 (2021)

49. Park, J., Xu, C., Yang, S., Keutzer, K., Kitani, K., Tomizuka, M., Zhan, W.: Time
will tell: New outlooks and a baseline for temporal multi-view 3d object detection.
arXiv preprint arXiv:2210.02443 (2022)



18 Zhang et al.

50. Philion, J., Fidler, S.: Lift, splat, shoot: Encoding images from arbitrary camera
rigs by implicitly unprojecting to 3d. In: Computer Vision–ECCV 2020: 16th Eu-
ropean Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16.
pp. 194–210. Springer (2020)

51. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3d object
detection from rgb-d data. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 918–927 (2018)

52. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets
for 3d classification and segmentation. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 652–660 (2017)

53. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. Advances in neural information processing
systems 30 (2017)

54. Reading, C., Harakeh, A., Chae, J., Waslander, S.L.: Categorical depth distribution
network for monocular 3d object detection. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 8555–8564 (2021)

55. Roddick, T., Kendall, A., Cipolla, R.: Orthographic feature transform for monoc-
ular 3d object detection. arXiv preprint arXiv:1811.08188 (2018)

56. Sheng, H., Cai, S., Liu, Y., Deng, B., Huang, J., Hua, X.S., Zhao, M.J.: Im-
proving 3d object detection with channel-wise transformer. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 2743–2752 (2021)

57. Shi, S., Guo, C., Jiang, L., Wang, Z., Shi, J., Wang, X., Li, H.: Pv-rcnn: Point-voxel
feature set abstraction for 3d object detection. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 10529–10538 (2020)

58. Shi, S., Wang, X., Li, H.: Pointrcnn: 3d object proposal generation and detection
from point cloud. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. pp. 770–779 (2019)

59. Sindagi, V.A., Zhou, Y., Tuzel, O.: Mvx-net: Multimodal voxelnet for 3d object
detection. In: 2019 International Conference on Robotics and Automation (ICRA).
pp. 7276–7282. IEEE (2019)

60. Sun, P., Wang, W., Chai, Y., Elsayed, G., Bewley, A., Zhang, X., Sminchisescu,
C., Anguelov, D.: Rsn: Range sparse net for efficient, accurate lidar 3d object
detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 5725–5734 (2021)

61. Tian, Z., Shen, C., Chen, H., He, T.: Fcos: Fully convolutional one-stage object
detection. In: Proceedings of the IEEE/CVF international conference on computer
vision. pp. 9627–9636 (2019)

62. Vora, S., Lang, A.H., Helou, B., Beijbom, O.: Pointpainting: Sequential fusion for
3d object detection. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 4604–4612 (2020)

63. Wang, C., Ma, C., Zhu, M., Yang, X.: Pointaugmenting: Cross-modal augmentation
for 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 11794–11803 (2021)

64. Wang, H., Tang, H., Shi, S., Li, A., Li, Z., Schiele, B., Wang, L.: Unitr: A uni-
fied and efficient multi-modal transformer for bird’s-eye-view representation. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
6792–6802 (2023)

65. Wang, S., Liu, Y., Wang, T., Li, Y., Zhang, X.: Exploring object-centric tem-
poral modeling for efficient multi-view 3d object detection. arXiv preprint
arXiv:2303.11926 (2023)



SparseLIF 19

66. Wang, T., Zhu, X., Pang, J., Lin, D.: Fcos3d: Fully convolutional one-stage monocu-
lar 3d object detection. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 913–922 (2021)

67. Wang, Y., Chao, W.L., Garg, D., Hariharan, B., Campbell, M., Weinberger, K.Q.:
Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detec-
tion for autonomous driving. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 8445–8453 (2019)

68. Wang, Y., Guizilini, V.C., Zhang, T., Wang, Y., Zhao, H., Solomon, J.: Detr3d: 3d
object detection from multi-view images via 3d-to-2d queries. In: Conference on
Robot Learning. pp. 180–191. PMLR (2022)

69. Wang, Z., Jia, K.: Frustum convnet: Sliding frustums to aggregate local point-
wise features for amodal 3d object detection. In: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). pp. 1742–1749. IEEE (2019)

70. Xu, S., Zhou, D., Fang, J., Yin, J., Bin, Z., Zhang, L.: Fusionpainting: Multi-
modal fusion with adaptive attention for 3d object detection. In: 2021 IEEE In-
ternational Intelligent Transportation Systems Conference (ITSC). pp. 3047–3054.
IEEE (2021)

71. Yan, J., Liu, Y., Sun, J., Jia, F., Li, S., Wang, T., Zhang, X.: Cross modal
transformer: Towards fast and robust 3d object detection. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 18268–18278 (2023)

72. Yan, Y., Mao, Y., Li, B.: Second: Sparsely embedded convolutional detection. Sen-
sors 18, 3337 (2018)

73. Yang, C., Chen, Y., Tian, H., Tao, C., Zhu, X., Zhang, Z., Huang, G., Li, H., Qiao,
Y., Lu, L., et al.: Bevformer v2: Adapting modern image backbones to bird’s-eye-
view recognition via perspective supervision. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 17830–17839 (2023)

74. Yang, Z., Sun, Y., Liu, S., Jia, J.: 3dssd: Point-based 3d single stage object detec-
tor. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. pp. 11040–11048 (2020)

75. Yang, Z., Chen, J., Miao, Z., Li, W., Zhu, X., Zhang, L.: Deepinteraction: 3d object
detection via modality interaction. Advances in Neural Information Processing
Systems 35, 1992–2005 (2022)

76. Yao, Z., Ai, J., Li, B., Zhang, C.: Efficient detr: improving end-to-end object de-
tector with dense prior. arXiv preprint arXiv:2104.01318 (2021)

77. Yin, T., Zhou, X., Krahenbuhl, P.: Center-based 3d object detection and track-
ing. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. pp. 11784–11793 (2021)

78. Yin, T., Zhou, X., Krähenbühl, P.: Multimodal virtual point 3d detection. Advances
in Neural Information Processing Systems 34, 16494–16507 (2021)

79. Yu, K., Tao, T., Xie, H., Lin, Z., Liang, T., Wang, B., Chen, P., Hao, D., Wang,
Y., Liang, X.: Benchmarking the robustness of lidar-camera fusion for 3d object
detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 3187–3197 (2023)

80. Yuan, Z., Song, X., Bai, L., Wang, Z., Ouyang, W.: Temporal-channel transformer
for 3d lidar-based video object detection for autonomous driving. IEEE Transac-
tions on Circuits and Systems for Video Technology 32(4), 2068–2078 (2021)

81. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint
arXiv:1904.07850 (2019)

82. Zhou, Y., Tuzel, O.: Voxelnet: End-to-end learning for point cloud based 3d object
detection. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 4490–4499 (2018)



20 Zhang et al.

83. Zhou, Z., Tulsiani, S.: Sparsefusion: Distilling view-conditioned diffusion for 3d
reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 12588–12597 (2023)

84. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: Deformable
transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159
(2020)


	SparseLIF: High-Performance Sparse LiDAR-Camera Fusion for 3D Object Detection

