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Abstract. Creating high-fidelity 3D human head avatars is crucial for
applications in VR/AR, telepresence, digital human interfaces, and film
production. Recent advances have leveraged morphable face models to
generate animated head avatars from easily accessible data, representing
varying identities and expressions within a low-dimensional parametric
space. However, existing methods often struggle with modeling complex
appearance details, e.g., hairstyles and accessories, and suffer from low
rendering quality and efficiency. This paper introduces a novel approach,
3D Gaussian Parametric Head Model, which employs 3D Gaussians to
accurately represent the complexities of the human head, allowing pre-
cise control over both identity and expression. Additionally, it enables
seamless face portrait interpolation and the reconstruction of detailed
head avatars from a single image. Unlike previous methods, the Gaussian
model can handle intricate details, enabling realistic representations of
varying appearances and complex expressions. Furthermore, this paper
presents a well-designed training framework to ensure smooth conver-
gence, providing a guarantee for learning the rich content. Our method
achieves high-quality, photo-realistic rendering with real-time efficiency,
making it a valuable contribution to the field of parametric head models.
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1 Introduction

Creating high-fidelity 3D human head avatars holds significant importance across
various fields, including VR/AR, telepresence, digital human interfaces, and film
production. The automatic generation of such avatars has been a focal point in
computer vision research for many years. Recent methods [12,13,17,38,55,56,61–
63, 65] can create an animated head avatar through conveniently collected data
such as monocular video data or even a picture [22, 26]. Serving as the most
fundamental tool in these methods, the 3D morphable models (3DMM) [14,
25], which represent varying identities and expressions within a low-dimensional
space, have been proven to be a highly successful avenue in addressing this
challenging problem.

Since the traditional parametric 3DMMs are typically limited by the topol-
ogy of the underlying template mesh and only focus on the face part, some
works [15,16,28,59] propose to use implicit Signed Distance Field (SDF) as the
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Fig. 1: We utilize hybrid datasets comprising captured multi-view video data and
rendered image data from 3D scans for training our model. The trained model can
be manipulated using decoupled identity and expression codes to produce a diverse
array of high-fidelity head models. When presented with an image, our model can be
adjusted to reconstruct the portrait in the image and edit the expression according to
any other desired expressions.

geometric representation to model the entire head. Despite their flexibility, these
methods fall short in recovering high-frequency geometric and texture details like
hairstyles, glasses or accessories. On the other end of the spectrum, Neural Radi-
ance Field (NeRF) [34] based methods [19,64] learn parametric head models by
directly synthesizing images, thus eliminating the need of geometry modeling.
However, NeRF is built upon volumetric rendering, which involves sampling and
integrating points distributed throughout space. Therefore, NeRF-based meth-
ods typically suffer from low rendering efficiency and have to trade it off with
rendering resolution, thereby greatly reducing rendering quality. Moreover, skip-
ping geometric reconstruction would probably lead to poor 3D consistency.

More recently, 3D Gaussian Splatting (3DGS) [21], which uses explicit Gaus-
sian ellipsoids to represent 3D scenes, has attracted significant attention from
the research community. Experiments have verified the superior quality of the
rendered results and excellent rendering efficiency compared to previous NeRF-
based or surface-based methods even on dynamic scenes [32,48,57,58]. Motivated
by this progress, we propose a novel 3D Gaussian Parametric Head Model,
which, for the first time, marries the power of 3DGS with the challenging task of
parametric head modeling. Our 3D gaussian parametric head model decouples
the control signals of the head into the latent spaces of identity and expression,
as is also done in SDF-based face model NPHM [15]. These latent spaces are then
mapped to the offsets of the Gaussian positions, which effectively represent the
variance of shape and appearance of different identities and expressions. Bene-
fiting from the differentiability of Gaussian splatting, our model can be learned
from multi-view video data corpus in an end-to-end manner, without relying on
geometry supervision.

Unfortunately, training our 3D Gaussian parametric head model is not quite
straightforward, because Gaussian ellipsoids are unstructured and each Gaussian
ellipsoid has its own independent learnable attribute. Such a characteristic makes
3DGS powerful in overfitting a specific object or scene, but poses great challenges
for generative head modeling. Without proper initialization and regularization,
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the learned parametric head model may suffer from unstable training or a large
number of Gaussian points becoming redundant and noisy, as shown in Fig. 4.

To overcome these challenges, we propose a well-designed two-stage training
strategy to ensure smooth convergence of our model training. Specifically, we first
roughly train all the networks on a mesh-based guiding model. Subsequently, the
network parameters are migrated to the Gaussian model, and all Gaussian points
are initialized with the trained mesh geometry to ensure that they are located
near the actual surface. Compared to naive initialization with FLAME [25],
our initialization strategy leads to a better guess of the positions of Gaussian
points, making the subsequent training of the model converge stably and the
areas like hairs better recovered. Moreover, we propose to use 3D landmark loss
to supervise the deformation of the model learning expressions, which can speed
up the convergence and avoid artifacts under exaggerated expressions. Lastly,
our method supports training from both 3D head scans and multi-view 2D face
datasets, which enhances the versatility and comprehensiveness of facial data
collection and model training.

After training on large corpus of multi-view head videos, our parametric
Gaussian head model can generate photorealistic images that accurately de-
pict the diverse range of facial appearances, naturally handling complex and
exaggerated expressions, while also enabling real-time rendering. Additionally,
our method supports single-image fitting and surpasses previous techniques in
both reconstruction accuracy and identity consistency. Furthermore, the model
resulting from our fitting process allows for the control of various expressions
while maintaining naturalness and consistent identity even under exaggerated
expressions. The contributions of our method can be summarized as:

– We propose 3D Gaussian Parametric Head Model, a novel parametric head
model which utilizes 3D Gaussians as the representation and enables photo-
realistic rendering quality and real-time rendering speed.

– We propose a well-designed training strategy to ensure that the Gaussian
model converges stably while learning rich appearance details and complex
expressions efficiently.

– Our 3D Gaussian Parametric Head Model enables the generation of a de-
tailed, high-quality face avatar from a single given image, as well as perform-
ing expression and identity editing upon it.

2 Related Work

Parametric Head Models. Parametric head models are used to represent fa-
cial features, expressions, and identities effectively and efficiently. They allow
for the creation of realistic human faces with adjustable parameters, making
them essential in computer graphics, animation, and virtual reality. Therefore,
research in this field has always been a hot topic. Traditional 3D Morphable Mod-
els (3DMM) [2,6,14,25,47] are constructed by non-rigidly registering a template
mesh with fixed topology to a series of 3D scans. Through this registration pro-
cess, a 3DMM can be computed using dimensionality reduction techniques such
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as principal component analysis (PCA). The resulting parametric space captures
the variations in facial geometry and appearance across a population. However,
while 3DMMs offer a powerful way to represent faces, they do have limitations.
These models rely heavily on the correspondence between the 3D scans and the
template for accurate fitting and may struggle to represent local surface details
like wrinkles or hairstyles that deviate significantly from the template mesh. Re-
cent advances in implicit representation have led to the great development of
neural parametric head models. Some methods [15, 16, 49, 59] propose implicit
Signed Distance Field (SDF) based head models, which are not constrained by
topology thus can recover more complex content like hair compared to previous
mesh-based Methods. Other methods [3, 19, 44, 64] propose to use NeRF [34] as
the representation of the parametric head models, which can directly synthe-
size photorealistic images without geometric reconstruction. Cao, et al. [5] use
a hybrid representation [30] of mesh and NeRF to train their model on unpub-
lished large-scale light stage data. However, rendering efficiency is typically low
in NeRF-based methods, often resulting in a trade-off with rendering resolution.

3D GAN based Head Models. 3D Generative Adversarial Networks (GANs)
have revolutionized the field of computer vision, particularly in the domain of
human head and face modeling, enabling the generation of face avatars from
input images. Traditional methods often require labor-intensive manual work or
rely on multi-view images to create 3D models. 3D GANs as a more automated
and data-driven approach, which are just trained on single-view 2D images but
generate detailed and realistic 3D models of human head [7–9, 11, 18, 35, 52].
Panohead [1] additionally introduces images of hairstyles on the back of char-
acters and trains a full-head generative model. Based on the previous meth-
ods, IDE-3D [42] proposes to use semantic map to edit the 3D head model.
Next3D [43] and AniFaceGAN [50] extend to use the FLAME model [25] to
condition the generated head model, so that the expression and pose of the
generated head model can be controlled. AniPortraitGAN [51] further replaces
FLAME model with SMPLX model [36] to generate upper body avatars, thus
the shoulders and the neck can also be controlled. These 3D GAN-based models
primarily leverage the coarse FLAME model for expression control, often leading
to a loss of expression details in the generated faces. In contrast, our method di-
rectly learns the expression distribution from the dataset, capturing more facial
appearance details.

3D Gaussians. Recently, 3D Gaussian splatting [21] has shown superior per-
formance compared to NeRF, excelling in both novel view synthesis quality and
rendering speed. Several methods have expanded Gaussian representation to dy-
namic scene reconstruction [32, 48, 57, 58]. For human body avatar modeling,
recent approaches [20, 27] propose training a 3D Gaussian avatar animated by
SMPL [31] or a skeleton from multi-view videos, surpassing previous methods in
rendering quality and efficiency. In the realm of human head avatar modeling,
recent techniques [10, 23, 33, 37, 37, 39, 40, 45, 53, 54] also utilize 3D Gaussians to
create high-fidelity and efficient head avatars. These approaches center on the
creation of a high-fidelity person-specific avatar using data of a single person. In
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Fig. 2: The pipeline of our method. Our training strategy can be divided into a Guiding
Geometry Model for initialization, and a final 3D Gaussian Parametric Head Model.
Deformations of each model are further decoupled into identity-related and expression-
related deformations. Rendering involves using DMTet to transform the initial model
into a mesh and 3D Gaussian Splatting for the Gaussian model. Features from both
models are finally upsampled to high-resolution portrait images through a convolutional
network Ψ . During inference, our output exclusively comes from the Gaussian model.

contrast, our method focuses on a versatile prior model that can accommodate
varying appearances. Once trained, our model is also capable of person-specific
avatar reconstruction by fitting to the input image data provided.

3 Method

In this section, we present the 3D Gaussian Parametric Head Model. In con-
trast to previous mesh-based or NeRF-based models, initializing and training
Gaussian-based models pose distinct challenges. This section introduces the
dataset and preprocessing, the carefully designed guiding geometry model, the
Gaussian Parametric Head Model, and outlines their respective training pro-
cesses. Additionally, we will also provide the training details and demonstrate
how to utilize our method when given a single input image.

3.1 Data Preprocessing

We used three datasets for our model training, including a multi-view video
dataset NeRSemble [24], and two 3D scans datasets NPHM [15] and FaceV-
erse [47]. We do not use the 3D geometry of the scans directly, but render them
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into multi-view images and use only the images form the 3 datasets as supervi-
sion. In order to better utilize these three different datasets, we need to do pre-
processing. First, we resize the images to 512 resolution and adjust the camera
parameters. Then, we use BackgroundMattingV2 [29] to extract the foreground
characters in the NeRSemble dataset and record the masks. This step is not
required for the two synthetic datasets. Next, we use face alignment [4] to detect
2D landmarks in all the images. Through these 2D landmarks, we fit a Basel
Face Model (BFM) [14] for each expression of each identity, and record the head
pose and 3D landmarks of the BFM. We will use the above processed camera
parameters, images, masks, head pose of BFM and 3D landmarks of BFM to
train our model.

3.2 Model Representation

The representation of Gaussian distribution poses challenges due to its unordered
and unstructured nature, leading to difficulties in the continuous spread of gradi-
ents to neighboring points in space during backpropagation. This often results in
convergence failure when Gaussians are randomly initialized. On the other hand,
surface-based representations such as mesh are just suitable for rough geometry
learning. A direct idea is to utilize an existing 3DMM, such as FLAME [25], as
the initial position for the points in 3D Gaussian splatting [21]. However, this
coarse initialization still fails to converge the positions of 3D points to the cor-
rect locations, as shown in Fig. 4. The network tends to alter the shape of the
ellipsoid to achieve a suitable fitting result, leading to inaccurate geometry of
the point cloud and blurriness in the rendered image.

To address this problem, a more detailed initialization process is necessary for
capturing the diverse head variations using 3D Gaussian splatting. Specifically,
we draw inspiration from Gaussian Head Avatar [54] and leverage the implicit
signed distance field (SDF) representation to train a guiding geometry model.
This guiding geometry model serves as the initial value for the Gaussian model,
providing a more effective starting point for the optimization process. We define
the initial model as Guiding Geometry Model and the refined model as 3D
Gaussian Parametric Head Model.

Guiding Geometry Model. The guiding geometry model receives an iden-
tity code zid and an expression code zexp as input, producing a mesh with
vertices V , faces F , and per-vertex color C that aligns with the specified iden-
tity and expression. To achieve this, we use an MLP denoted as fmean(·) to
implicitly model the SDF, which represents the mean geometry:

s, γ = fmean(x), (1)

where s denotes the SDF value, γ denotes the feature from the last layer and
x denotes the input position. Then, we convert the implicit SDF through Deep
Marching Tetrahedra (DMTet) [41] into an explicit mesh with vertex positions
V0, per-vertex feature Γ and faces F . Next, we need to transform the mean
shape into a neutral-expression shape on condition of the input identity code
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zid. To inject identity information into the vertices of the mesh, we first use
an injection MLP finj(·), which takes the identity code zid and the per-vertex
feature Γ as input and produces the identity-conditioned per-vertex feature vec-
tors H = finj(z

id, Γ ). Subsequently, utilizing a tiny MLP fid(·), we predict the
displacement δVid for each vertex. This displacement is used to transform the
mean shape into the neutral-expression shape conditioned on the id code zid.

After completing deformations related to identity, the next step is to capture
the deformation induced by facial expressions. We introduce another tiny MLP
fexp(·). This MLP takes the feature vectors H obtained in the previous step
and the expression code zexp as input, and the output is the displacement δVexp

for each vertex. Using this displacement, we update the vertex positions to Vcan.
Additionally, we feed the same feature vectors H and expression code zexp to a
color MLP, fcol(·), to predict the 32-channel color C for each vertex. The vertex
positions to Vcan and 32-channel color C can be described as:

Vcan = V0 + fid(H) + fexp(H,zexp), C = fcol(H,zexp). (2)

Finally, we utilize the estimated head pose parameters R and T obtained
during data preprocessing to transform the mesh from the canonical space to
the world spaceV = R · Vcan + T . After generating the final vertex positions,
colors and faces {V,C, F} of the mesh, we render the mesh into a 256-resolution
32-channel feature map IF and a mask M through differentiable rasterization
with a given camera pose. Subsequently, the feature map is interpreted as a
512-resolution RGB Ihr image through a lightweight convolutional upsampling
network Ψ(·), as shown in Fig. 2.

3D Gaussian Parametric Head Model. The Gaussian model also takes
an identity code zid and an expression code zexp as input, producing the po-
sitions X, color C, scale S, rotation Q and opacity A of the 3D Gaussians.
Similar to the guiding geometry model, we initially maintain an overall mean
point cloud, with the mean positions X0. However, we no longer generate the
per-vertex feature Γ through fmean(x). Instead, we directly generate it at once
and bind it to the Gaussian points as optimizable variables Γ0. This is possible
since the number of Gaussian points is fixed at this stage. Then we need to trans-
form the mean point cloud into a neutral-expression point cloud, conditioned by
the id code zid. To achieve this, we utilize the same injection MLP finj(·) and
identity deformation MLP fid(·) defined in the guiding geometry model, which
can generate feature vectors H = finj(z

id,Γ0) that encode identity information
for each point and predict the identity-related displacement of each point. Then,
we also need to predict the expression code zexp-conditioned displacement. The
resulting positions Xcan and the 32-channel color C of each point, similar to the
approach presented in the guiding geometry model, can be described as:

Xcan = X0 + fid(H).+ fexp(H,zexp), C = fcol(H,zexp). (3)

Unlike the representations of SDF and DMTet, Gaussians have additional
attributes that need to be predicted. Here, we introduce a new MLP to predict
Gaussian attributes in the canonical space, including the scale S, rotation Qcan,
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and opacity A. In order to ensure the stability of the generated results, we
refrain from directly predicting these values. Instead, we predict their offsets
{δS, δQ, δA} relative to the overall mean values {S0,Q0,A0}:

{S,Qcan, A} = {S0,Q0,A0}+ fatt(H,zexp). (4)

Following this, we utilize the estimated head pose parameters R and T , ob-
tained during data preprocessing, to transform the canonical space variables
Xcan and Qcan into the world space: X = R · Xcan + T, Q = R · Qcan. For
model rendering, we leverage differentiable rendering [21] and neural rendering
techniques to generate images. The generated 3D Gaussian parameters, which
include {X,C, S,Q,A}, are conditioned by the identity code zid and expression
code zexp. Finally, we input this feature map into the same upsampling network
Ψ(·) of the guiding geometry model to generate a 512-resolution RGB image.

In the 3D Gaussian Parametric Head Model, we leverage the previously
trained guiding geometry model to initialize our variables and networks, rather
than initiating them randomly and training from scratch. Specifically, we ini-
tialize the Gaussian positions X0 using the vertex positions of the mean mesh
V0. Meanwhile, we generate the per-vertex feature Γ from fmean(x) at the be-
ginning and bind it to the points as an optimizable variable Γ0 as described
above. Additionally, all identity codes zid, expression codes zexp, and the net-
works {finj(·),fid(·),fexp(·),fcol(·),Ψ(·)} are directly inherited from the guid-
ing geometry model. Note that, the attribute MLP fatt(·) is a newly introduced
network, hence it is initialized randomly. Finally, the overall mean values of
the Gaussian attributes {S0,Q0,A0} are initialized following the original 3D
Gaussian Splatting [21].

3.3 Loss Functions

To ensure the accurate convergence of the model, we employ various loss func-
tions as constraints, including the basic photometric loss and silhouette loss,
to enforce consistency with ground truth of both the rendered high-resolution
images Ihr and the rendered masks M :

Lhr = ||Ihr − Igt||1, Lsil = IOU(M,Mgt), (5)

with Igt representing the ground truth RGB images, Mgt representing the ground
truth masks. We further encourage the first three channels of the low-resolution
feature map Ilr to closely match the ground-truth RGB image Igt by introducing
an L1 loss:

Llr = ||Ilr − Igt||1. (6)

The geometric deformation caused by expressions is typically complex and
cannot be learned through image supervision alone. Therefore, we provide ad-
ditional coarse supervision for expression deformation learning using 3D land-
marks. Specifically, we define the 3D landmarks P0 in the canonical space, and
then predict their displacements and transform them to the world space as P
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just like the transformation of the original vertices V0 above. Then, we construct
the landmark loss function:

Llmk = ||P − P gt||2, (7)

with P gt denoting the ground truth 3D landmarks, which are estimated by
fitting a BFM model to the training data during preprocessing.

Moreover, to guarantee the decoupling of identity and expression deforma-
tions learned by the model and minimize redundancy, we introduce the following
regularization loss function that aims to minimize the magnitude of both defor-
mations:

Lreg = ||δVid||2 + ||δVexp||2. (8)

During the training of the Guiding Geometry Model, we also construct
a Laplacian smooth term Llap to penalize surface noise or breaks. Overall, the
total loss function is formulated as:

L = Lhr + λsilLsil + λlrLlr + λlmkLlmk + λregLreg + λlapLlap (9)

with all the λ denoting the weights of each term. In practice, we set λsil =
0.1, λlr = 0.1, λlmk = 0.1, λreg = 0.001 and λlap = 100. During training, we
jointly optimize the bolded variables above: {zid, zexp, finj(·), fmean(·), fid(·),
fexp(·), fcol(·), Ψ(·), P0}. Notably, the defined canonical 3D landmarks P0 are
initialized by computing the average of the estimated 3D landmarks from the
training dataset.

During the training stage of the 3D Gaussian Parametric Head Model,
we also calculate the perceptual loss [60] to encourage the model to learn more
high-frequency details Lvgg = V GG(Ihr, Igt). Similar to training the guiding
geometry model, we enforce the first three channels of the feature map to be
RGB channels as Eqn. 6, introduce landmarks guidance terms as Eqn. 7 and the
regular term for the displacement of points as Eqn. 8. Consequently, the overall
loss function can be formulated as:

L = Lhr + λvggLvgg + λlrLlr + λlmkLlmk + λregLreg (10)

with the weights λvgg = 0.1, λlr = 0.1, λlmk = 0.1 and λreg = 0.001. In this
training stage, we also jointly optimize all the bolded variables and networks
mentioned above, including the overall mean positions and attributes of the
Gaussians and the 3D landmarks: {zid, zexp, finj(·), fid(·), fexp(·), fcol(·),
fatt(·), Ψ(·), X0, Γ0, S0, Q0, A0, P0}.

3.4 Inference Details

Image-based Fitting. When a single RGB portrait image is input, we first
align the image according to the processing rules of the training set. Subse-
quently, we employ gradient descent to fit the image rendered by the 3D Gaus-
sian Parametric Head Model to this input image using the photometric loss Llr
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and Lhr defined in Eqn. 10. This process helps regress the identity code zid

and expression code zexp. We just optimize for 200 iterations with learning rate
1 × 10−3 for both latent codes. Following this, we fix the latent codes zid and
zexp, such that the variables H, Xcan are also fixed. We further optimize the
color MLP fcol(·) and the canonical positions Xcan which represent the geom-
etry of the current specific subject, using the same loss function. In this step,
we only optimize for 100 iterations with learning rate 1× 10−4 for both fcol(·)
and Xcan. This optimization process aims to add some details that cannot be
recovered by the trained model itself, ultimately resulting in the reconstructed
head model. The entire process has a total of 300 iterations and takes only 30
seconds.

Expression Editing. Given a source portrait image providing the subject
whose expression is to be edited and a target portrait image providing the tar-
get expression. We first obtain the head model of the source subject through
optimization as the above-mentioned Image-based Fitting strategy. Then for the
target portrait image, we also obtain the head model and corresponding expres-
sion code in the same way. Finally, we input the target expression code to the
head model of the source subject, so that the expression of the source subject
can be edited to the target one.

4 Experiments

4.1 Datasets

NeRSemble dataset contains over 260 different identities, and collects 72fps
multi-view videos from 16 synchronized cameras for each identity. The total
length of the videos of a single identity is approximately 6000-11000 frames. In
the experiment, we selected 140 of the identities for training and the rest for
evaluation. For each identity video, we selected about 150 frames from all 16
views as training data.

NPHM dataset contains 5200 3D human head scans. These scans come from
255 different identities, each with about 20 different expressions. We selected
approximately 1600 scans of 80 identities for training. Since our method utilizes
2D images as training supervision, we render each scan from 80 different views to
generate synthetic image data and record the camera parameters and the masks.

FaceVerse dataset is an East Asian human head scan dataset. It contains
2310 scans from 110 different identities, and each identity contains 21 expres-
sions. We selected 1620 scans data of 80 identities for training. Similarly, for
each scan, we render multi-view synthetic image data from 80 different views
and record the camera parameters and the masks.

4.2 Evaluation

Disentanglement. We tested the performance of the 3D Gaussian Parametric
Model under the control of different identity codes and different expression codes.
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Fig. 3: We generate the head models with randomly sampled identity codes and ex-
pression codes as condition. Each row corresponds to the same identity code, and each
column corresponds to the same expression code.

Fig. 4: We compared our initialization strategy with using the vertices of FLAME
model. The left side shows the rendered image, and the right side shows the positions
of the Gaussian points.

We randomly sampled 2 identity codes and 5 expression codes to generate 10
head models. Each horizontal row corresponds to the same identity code, and
each column corresponds to the same expression code, as shown in Fig. 3. It can
be observed that our model performs well in identity consistency and expression
consistency, and the two components are fully disentangled.

Ablation on Initialization. To evaluate the effectiveness of our initializa-
tion strategy with guiding geometry model outlined in Section 3, we compare it
against a FLAME-based initialization strategy. To use FLAME model for the
initialization, we first fit a FLAME model to overall mean 3D landmarks which
are estimated during data preprocessing. Then, we sample 100,000 points near
the surface of the FLAME mesh as an initialization of the mean Gaussian posi-
tions X0. For the per-vertex features bound to each point Γ , we just set them to
zero. And for all the networks {finj(·),fid(·),fexp(·),fcol(·),Ψ(·)} and fatt(·)
are randomly initialized as there is no available prior. The initialization process
for the Gaussian attributes {S0,Q0,A0} remains the same as in our strategy.

We show the visualization results in Figure 4, with the Gaussian model ren-
dering image on the left and the Gaussian positions displayed as point clouds
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Fig. 5: The comparison of the different representations with super resolution.

on the right. Our initialization strategy using the guiding geometry model can
ensure that all the Gaussian points fall evenly on the actual surface of the model,
thereby ensuring reconstruction quality. When using the FLAME model for the
initialization, a large number of points wander inside or outside the actual sur-
face of the model, causing noise or redundancy and leading the model to lose
some high-frequency information and making it difficult to fully converge. We
also perform a quantitative evaluation of different initialization strategies on the
rendered images, as shown in Table 1, which shows that our method leads to
better rendering results.

Method PSNR ↑ SSIM ↑ LPIPS ↓
FLAME Initialization 25.7 0.82 0.109

Our Initialization 28.0 0.84 0.085
Table 1: Quantitative evaluation results of our initialization strategy and naive
FLAME initialization strategy.

Ablation on Representation and Super Resolution. We conduct the
ablation study for the guiding mesh model, the Gaussian model and the super-
resolution network (abbreviated as SR) as shown in the Fig. 5. The corresponding
PSNR metrics are: Mesh (15.7), Mesh+SR (17.3), Gaussian (27.0), Gaussian+SR
(29.3). Compared to mesh, utilizing 3D Gaussian as the representation brings
significant improvements (+12), while the super resolution module adds some
details, generating more realistic results.

4.3 Applications

Image-based Fitting. In this section, we demonstrate the capability of our 3D
Gaussian Parametric Model for single-image fitting using the fitting strategy de-
tailed in Section 3.4. We compare our model with similar works: HeadNeRF [19],
MoFaNeRF [64], and PanoHead [1]. In addition to evaluating the above meth-
ods on our evaluation dataset, we also conduct comparisons using cases from
MEAD [46] dataset (the first two rows). The qualitative results are presented in
Figure 6. Our model exhibits reconstruction accuracy while maintaining excellent
3D consistency and identity preservation. HeadNeRF’s fitting results often suf-
fer from missing hair, and they remove the body and neck. MoFaNeRF, trained
solely on the FaceScape dataset where all subjects wear hats, struggles to fit hair.
As a GAN-based model, PanoHead can achieve highly accurate reproductions
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Fig. 6: We compare our method with other SOTA methods on the task of single image
fitting. The far left is the input image, and to the right are Our method, HeadNeRF [19],
MoFaNeRF [64] and PanoHead [1]. Our model significantly outperforms other methods
in reconstruction quality and 3D consistency.

from the input view. However, due to overfitting, the results from side views
reveal poor 3D consistency and identity preservation.

In addition to qualitative evaluations, we also conducted quantitative eval-
uations on 60 images using three metrics: Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index (SSIM), and Face Distance (FD). Here, we provide
a brief explanation of the Face Distance (FD). To compute the FD metric, we
utilized a face recognition tool 3 to encode two images containing faces into 128-
dimensional vectors. Subsequently, we calculated the distance between these two
vectors to reflect the similarity of the two faces. In our experiments, FD serves
as an indicator of identity consistency. The results are shown in Table 2. Our
model demonstrates optimal performance in both fitting accuracy and identity
consistency.

Expression Editing. Our 3D Gaussian Parametric Head Model possesses
the capability for expression editing. Upon completing the fitting process on a
portrait image, we can animate the model by applying different expression codes.

3 https://github.com/ageitgey/face_recognition
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Method PSNR ↑ SSIM ↑ FD ↓
HeadNeRF 28.9 0.84 0.37
MoFaNeRF 28.6 0.82 0.37
PanoHead 29.1 0.86 0.41

Ours 30.3 0.86 0.35
Table 2: Quantitative evaluation results on the task of single image fitting. We com-
pare our method with other 3 SOTA methods: HeadNeRF [19], MoFaNeRF [64],
PanoHead [1].

Fig. 7: We perform expression editing on the head model reconstructed from the input
image. Our model is able to handle very exaggerated expressions with superior identity
consistency.

The detailed pipeline is outlined in Section 3.4. An example is illustrated in
Figure 7. Our model can generate images depicting the corresponding expressions
of the input subject based on a reference expression (as seen in the lower left
corner of each image in the figure). It performs admirably even with exaggerated
expressions, producing natural and realistic results.

5 Discussion

Ethical Considerations. Our technique can generate artificial portrait videos,
posing a significant risk of spreading misinformation, shaping public opinions,
and undermining trust in media outlets. These consequences could have pro-
found negative effects on society. Therefore, it is crucial to explore methods that
effectively differentiate between genuine and manipulated content.
Limitation. Our 3D Gaussian Parametric Head Model takes a step forward
in the characterization of parametric head models. However, due to the limited
amount of training data, the generalization ability of the model is still insuf-
ficient. In some cases where the illumination is significantly different from the
training set, the reconstruction results are not good.
Conclusion. In this paper, we propose the 3D Gaussian Parametric Head
Model, a novel framework for parametric head model. This model leverages the
power of 3D Gaussians, enabling realistic rendering quality and real-time speed.
Our well-designed training strategy ensured stable convergence while enabling
the model to learn appearance details and expressions. Besides, our model allows
for creating detailed, high-quality face avatars from a single input image, and
also enables editing for expressions and identity. We believe our model represents
a significant advancement in the field of parametric head model.
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