
Supplementary Materials of RING-NeRF

Doriand Petit1,2, Steve Bourgeois1, Dumitru Pavel1, Vincent Gay-Bellile1,
Florian Chabot1, and Loïc Barthe2

1 Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
2 IRIT, Université Toulouse III, CNRS, France

Fig. 1: Different LODs Outputs of the model when only trained on the last level L = 7.
We observe that, even without supervising intermediate LODs during the training,
a notion of LOD is captured in the scene reconstruction. We also observe visually
continuous LOD since, as expected, the level L = 3.5 outputs a 3D representation in
between LOD L = 3 and L = 4 in term of details.

1 RING-NeRF

1.1 Architecture details

While our architecture presents the advantage of being quite simple and able
to be adapted to different tasks, there are a few subtle technical choices that
shouldn’t be overlooked, especially the decoder’s details.

As illustrated in the figure 2 of the article, the final feature after multi-
resolution combination is passed into a normalization layer to improve conver-
gence stability. Novel View Synthesis experiments showed slightly better results
when using standard, non-learnable normalization over the feature. Because a
summation replaces the concatenation usually seen in grid-based architectures,
the feature is shorter and could face problems for expressing high frequencies. It

2 D. Petit et al.

Fig. 2: Different LODs Outputs of the model when only trained on the last level L = 7.
This illustrates the LOD inductive biases even on more complex scenes than DTU single
objects.

Fig. 3: Comparison of LOD when supervising (a) every level of detail or (b) solely the
finest level of detail

is thus projected into a higher dimension space with a Random Fourier Feature
mapping3. This consists in a learnable frequency filter, for which we chose a sinus
filter : y = sin(Wx) with W a linear matrix (without bias). A linear layer trans-
forms the filter output into both density (or SDF) and one color feature. This
feature, concatenated with the direction of observation encoded into Spherical
Harmonics, is fed to a MLP of 3 layers that predicts the radiance.

Following the baselines’ protocol of the different evaluated tasks, we also did
not use any appearance embedding for all the experiments.

3 M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal,
R. Ramamoorthi, Ravi, J. Barron and R. Ng, Fourier features let networks learn high
frequency functions in low dimensional domains, in: Advances in Neural Information
Processing Systems, 2020.

RING-NeRF 3

1.2 Differences with other architectures

Several works intended to modify the initial architecture of grid-based NeRF.
However, our architecture differs from them in several respects which have a
major impact on the architecture abilities.

A first noticeable difference is related to the notion of LOD that is induced
by the architecture itself, independently to any supervision. This property is
justified through the interpretation of the grid as a mapping function from the
scene space to the decoder latent space and is also validated experimentally
(see section 3.2 and figure 1). Except TriMip-RF [7] and LoD-NeuS [30] which
possess such property but for tri-plan, other architectures need an explicit su-
pervision to capture the notion of LOD (see ResidualMFN 4 for instance). This
property is probably one of the main reason of the convergence robustness of
RING-NeRF, as observed through few-view reconstruction and SDF reconstruc-
tion experiments. It also simplifies the setup of a coarse-to-fine reconstruction
process and a distance-aware forward mapping without scarifying speed since no
convolution [30] nor super-sampling [4] is implied. It is also to be noted that this
architecture-induced property is especially designed by RING-NeRF and other
close methods such as VR-NeRF [24] will not present intrinsic LOD as coherent
as RING-NeRF, as it uses concatenation rather than sum of the multi-resolution
features. Figure 4 shows how RING-NeRF’s intrinsic LOD are more qualitative
when using sum rather than concatenation of the features. Furthermore, we also
demonstrate the decrease of performance the concatenation brings to the model
with an example on the generalization to novel unseen observation distances.

A second difference is the invariance of the decoder latent space towards
position (unlike NGLOD [19], Tri MipRF [7], etc, that concatenate Positional
Encoding with the feature extracted from the grid) but also level of detail.
LOD is exclusively encoded in the grid, unlike PyNeRF [21], NGLOD [19] or
MFLOD [6] that use a per LOD decoder, or Zip-NeRF [4] and Mip-NeRF [2]
which modify the feature depending on the LOD. This property facilitates the
generability of the model as illustrated in section 4.5, since the learnt latent
space is independent of the scale and position of the scene elements, and then
favor the generalization of a (possibly) pre-trained decoder to new scenes.

Finally, the last specificity is related to the combination of the independence
of the decoder latent space with respect to the size of the grid hierarchy, and
the top-down representation of the LOD. As we confirmed experimentally (see
section 4.5 of the article), this combination makes the maximal level of detail
unbounded since the size of the grid pyramid can grow up dynamically (similarly
to [12]) while keeping the access to the different LODs available (unlike [12]).
This property is unique and cannot be expressed by both methods that use
per-LOD decoders [19] and methods using concatenation of the multi-resolution
features such as I-NGP [14] or VR-NeRF [24], as they cannot increase the size
of the decoder’s input.
4 S. Shekarforoush, D. Lindell, D. Fleet and M. Brubaker, Residual Multiplicative

Filter Networks for Multiscale Reconstruction, in: Advances in Neural Information
Processing Systems, 2022.

4 D. Petit et al.

Fig. 4: Qualitative Ablative Experiment when using concatenation or sum of the fea-
tures in the RING-NeRF architecture. (a) shows unsupervised LOD (L = 4) where,
although the concatenation presents semi-coherent results, they are far less qualitative
than the sum’s results. (b) illustrates the impact on the full-scale training and 1/8th-
scale testing experiment, with closer-to-ground-truth results with the full RING-NeRF
architecture.

1.3 LOD Inductive Bias

As discussed in section 3, the inductive biases of the RING-NeRF architecture
permits to naturally produce Level Of Detail of the reconstruction, even when
we only use the full resolution images to supervise the full resolution LOD and
not a pyramid of images supervising intermediate LOD like usual LOD NeRF
architectures. This property is further illustrated on figure 1 that shows more
examples on several scenes of the DTU dataset. By supervising all the LOD, we
observe however a correlation between the LOD used to compute the image and
the level of details in the images (see figure 3).

Other examples of unsupervised LOD in more complex scenes from the mip-
360 dataset are shown in Figure 2.

1.4 Limitations of RING-NeRF

While simple, qualitative and efficient, we can still pinpoint a few limitations
of our work which could be interesting to address in future research. First of
all, in the method itself, our distance-aware forward mapping may not be as
physically realistic as possible. In order to better compare the volume of the
projected pixel at distance d with grids’ cells, we chose to cast from the pixel a
cubic cone and to extract a cube depending on the distance d. This means that,
rather than sampling a true pyramid, we consider a leveled-pyramid and do not
consider the growing size of the pixel inside the sampled cube. Hence, a more

RING-NeRF 5

realistic distance-aware LOD computation would compute this more complex
shape’s volume rather than consider this simpler cube.

Moreover, while we carefully chose our experiments to demonstrate as much
as possible the capacity and potential of our method, we may not have gone as
deep as possible to showcase the implications of our work. RING-NeRF is capa-
ble of performing dynamic resolution adaptive reconstruction. We demonstrated
in section 4.5 that adding grids a posteriori improved the final reconstruction
(while not damaging the previous ones). However, this property alone has very
specific use case. In order to be useful for the most of situations, the architecture
should be coupled with a carefully designed stopping criterion to determine the
optimal resolution of the model. This rule should explicitly decide when does the
quality/efficiency ratio reaches its maximum and then stop to increase the con-
figuration. Moreover, for maximum performance, the stopping criterion should
be local rather than global, in order to define a sparse grid hierarchy which
adapts itself locally to the content of the scene. However, these extensions are
considered out of the scope of this article and would need further research.

1.5 Cone Casting with Scene Contraction

Scene Contraction Function. We use the scene contraction function from
Nerfstudio’s implementation [20], as defined originally in Mip-NeRF [2] :

contract(p) =

{
p if ||p|| ≤ 1

(2− 1
||p||).

p
||p|| if ||p|| > 1

(1)

Following Nerfstudio implementation, we use L∞ norm rather than L2, as it
bounds the position to a cube rather than a sphere, which is convenient with
grid-based representations. Note that this contraction function bounds the scene
into a cube of size 2, which is then reduced to a cube of size 1 for coding
implementation reasons. This adds a factor 2 in the LOD computation formula,
which is overlooked in the rest of the article for clarity reasons.
Computation of LOD L in Contracted Space. We defined in section 3.3
of the main article a formula to compute an appropriate LOD L ∈ R+ based on
the grid configuration, the sample position and the image resolution, such that :

(d.c)3.det(J(p)) = (
1

fLb
)3 ⇐⇒ L = −

log (d.c.b. 3
√
det(J(p)))

log (f)
(2)

Based on the contraction function defined in 1, this becomes :

L =

{
− log (d.c.b)

log (f) if ||p|| ≤ 1

−
log (d.c.b)+2 log (2− 1

||p||)−4 log (||p||)
log (f) if ||p|| > 1

(3)

Impact of Contraction and Discussion. With this formula, we can first
notice that, in the non-contracted space (inside the cube of size 1), the LOD L

6 D. Petit et al.

does not depend on the contraction function, and its value decreases with the
distance as expected.

However, further in the scene, inside the contracted space, we notice that
the LOD L might increase with the distance (due to log(||p||4)), as illustrated
in figure 5. While this can seem pretty non-intuitive at first, this has a logical
explanation. Because of the contraction, the fixed volume of a grid cell will
represent an increasing volume of the scene as the distance to the scene’s center
increases, up to an infinite volume. This clashes with the idea that the further
our sample, the lower our chosen LOD needs to be. This duality is represented in
the equation by the log(||p||4)−log(d) part, and it shows that, at some point, the
contraction function will always take the advantage on the distance term as our
sample grow further from the center. Hence, whatever the position of the camera,
if a ray continues far enough, the chosen LOD will increase at some point because
of the contraction function. This also implies that the more resolute grids are
used both for near objects and further areas, which would not have been the
case if we did not consider the contraction function and which provides a more
optimal use of the grid hierarchy with less unused parameters.

Fig. 5: Illustration of the effect of the contraction function on the chosen LOD. The
depth is normalized and, in the LOD heatmap, the more intense the color, the higher
the chosen LOD is.

2 New view synthesis - Section 4.2

2.1 Configuration

Our Novel View Synthesis and Anti-Aliasing experiments on the 360 dataset
are done on one unique configuration for our baselines Nerfacto, ZipNeRF and
PyNeRF and for our model RING-NeRF, both for the mono-scale and multi-
scale setups. We mostly used the configuration provided in the article ZipNeRF
with few differences that we will underline in the following explanations. Each
of these three baselines were trained for 25k iterations with a batch size of 216
rays. We use the RAdam Optimizer with an initial learning rate of 1e − 2, and
a cosine-decayed scheduler over the whole training to 1e− 3.

Regarding the model itself, we also use a hash grid pyramid of 10 grids with a
growth factor of 2, with grid resolutions ranging from 16 to 8192. Contrary to the

RING-NeRF 7

original Zip-NeRF, we use 8 features per level rather than 4, but with a similar
hashmap size of 1283 = 221 (however please note that the ZipNeRF experiments
in this paper were done also with a feature size of 8). We chose this parameter
to maximize the quality of every baseline, as it is compatible with our GPU. We
also use proposal samplers introduced by mip-NeRF 360, and once again follow
Zip-NeRF configuration : 2 rounds of sampling via 2 different grid-based proposal
samplers (hashgrid pyramid + one linear layer), and one last forward process into
the true model to generate the pixel values. Our 2 samplers have respectively
512 and 2048 max resolution and both use features of size 1 as the sampling
process only needs density information. For simplicity of implementation and
comparison, we actually use the usual I-NGP-based concatenation model for
RING-NeRF’s proposal samplers.

Following Nerfacto’s architecture, we also used scene contraction (as de-
scribed in section 1.5 of the supplementary materials, as well as the distortion
loss in these experiments, as implemented in NerfStudio for Nerfacto, PyNeRF
and RING-NeRF, and their adapted improved versions for ZipNeRF as presented
in their article. We also did not use appearance embedding for any method as we
also noticed a decrease in metrics when using it, as observed in Mip-NeRF 360
and ZipNeRF. Finally, for Nerfacto, PyNeRF and RING-NeRF, we did not use
any additional mechanism such as the ones introduced in ZipNeRF (no novel in-
terlevel loss, nor scale featurization, nor weight decay loss, nor Affine Generative
Latent Optimization as appearance embedding, ...).

The same configurations are used for both mono-scale and multi-scale exper-
iments.

2.2 Result Analysis and Ablative Experiments

Mono-Scale Setups. In order to further analyze the separate impact of our
architecture and of the associated mechanisms (distance-aware forward map-
ping and continuous coarse-to-fine), we run ablative mono-scale experiments.
Our model is thus evaluated on 4 configurations with varying setups and the
corresponding results can be found in table 1. First of all, we notice a gap be-
tween the results of Nerfacto (27.09, 0.779 and 0.181 for respectively PSNR,
SSIM and LPIPS) and our method without the distance-aware mechanism. This
means that the architecture in itself (described in section 3.2) enables better
scene reconstruction than Nerfacto.

Moreover, the addition of the distance-aware mechanism still increases the
performances significantly. While this idea was initially developed as an anti-
aliasing process, this experiment demonstrates that it also benefits Novel View
Synthesis in situations with little variations of distances of observation.

Finally, while our continuous coarse-to-fine brings slightly better results than
when using the usual discrete coarse-to-fine, it still presents slightly lower results
than when not using coarse-to-fine. While the difference is not prohibitive (es-
pecially in SSIM and LPIPS) and mainly due to randomness in the training
process, this observation demonstrates that, even though using coarse-to-fine on
harder setups is necessary to avoid catastrophic failure or improve consistency,

8 D. Petit et al.

as explained respectively in section 4.3 and 3.2 of the sup. mat., it does not
improve results in already stable setups for Novel View Synthesis.

Table 2 displays the results of our model against several other baselines,
including Vanilla baselines (resp. NeRF, Mip-NeRF and Mip-NeRF 360). As
expected, the main baselines PyNeRF, ZipNeRF and RING-NeRF all outper-
forms every Vanilla architectures, both in terms of quality and speed. Mip-NeRF
360 is the only vanilla method which performs close to our baselines, and also
outperforms Nerfacto (although by being 50 times slower!).

Tables 4, 5, 6, 7, 8 and 9 shows per-scene results of our mono-scale exper-
iments, evaluated on the whole pyramid of resolution (note that these tables
present without coarse-to-fine results to give the most qualitative possible ren-
derings).

Discussion on the metrics in Mono-Scale Training and Multi-Scale
Testing. When evaluating the models on novel resolutions, RING-NeRF is the
only method which produces coherent rendering without aliasing artifacts, as
described in section 4.2. On the other hand, the other methods each behave quite
differently (see table 1). ZipNeRF produces unintelligible renderings, and thus
presents the lowest quantitative results, as illustrated in figure 4. However, while
Nerfacto and PyNeRF both create similarly aliased but coherent renderings,
their metrics (especially PSNR) are quite spread apart, with unexpectedly the
distance-unaware Nerfacto method being better than PyNeRF. The explanation
actually lies in the stability of both of these methods. As shown in figure 6,
PyNeRF often produces unstable images with novel unsupervised observation
distances and viewpoints. These coarser errors have a way larger impact on
metrics than the aliasing artifacts from Nerfacto, which are very localized. While
this is true for every evaluation metrics, PSNR is by far the most affected by
this phenomenom, as RING-NeRF is only (in average on 1/2th, 1/4th and 1/8th
res. on the entire 360 dataset) 3% better in PSNR than Nerfacto while they
are 10% and 33% apart in respectively SSIM and LPIPS. On the other hand,
PyNeRF and Nerfacto are 16%, 6% and 16% apart in resp. these 3 metrics (the
RING/Nerfacto gap in PSNR is smaller than the Nerfacto/PyNeRF gap but
higher in both SSIM and LPIPS).

Fig. 6: Examples of instability and aliasing artifacts on novel observation distances
(renders at 1/8th resolution) and impact on the metrics. Respective PSNR, SSIM and
LPIPS values of the corresponding image are inset.

RING-NeRF 9

Table 1: Ablative study of RING-NeRF in Novel View synthesis performances for the
Mono-Scale setup on the 360 dataset.

Distance-Aware Coarse-To-Fine PSNR ↑ SSIM ↑ LPIPS ↓
Nerfacto - - 27.09 0.779 0.181

RING-NeRF - - 27.65 0.786 0.183
RING-NeRF ✓ - 28.26 0.803 0.155
RING-NeRF ✓ Discrete 28.06 0.799 0.158
RING-NeRF ✓ Continuous 28.09 0.799 0.157

Table 2: Novel View synthesis performances for the full resolution images (training
and testing) on the 360 dataset.

PSNR ↑ SSIM ↑ LPIPS ↓ Training Time ↓
NeRF 23.85 0.605 0.451 12.65 h

Mip-NeRF 24.04 0.616 0.441 9.64 h
Mip-NeRF 360 27.57 0.793 0.234 21.69 h

Nerfacto 27.09 0.779 0.181 0.45 h
PyNeRF 27.87 0.802 0.160 0.96 h
Zip-NeRF 28.06 0.808 0.154 1.10 h
Our Model 28.09 0.799 0.157 0.45 h

Multi-Scale Setup. Figure 7 illustrates how anti-aliasing models behaves with
multiple distances of observations against the Nerfacto baseline. On one side,
the aliased rendering of Nerfacto presents different types of artifacts at different
resolutions. This is due to the NeRF’s model property to "average" the distances
of observations between the trained views. This thus results in under-contrasted
image at full resolution, over-contrasted image at resolution 1/4 and aliasing
artifacts at resolution 1/8. On the other hand, RING-NeRF takes into account
the distance in the computation of the feature and succeeds in adapting to the
different resolutions.

Per-scene results can be found respectively in tables 10, 11, 12, 13, 14 and
15.

3 Few Viewpoints Supervision - Section 4.3

3.1 Configuration and Evaluation Details

We used the same training and evaluation protocols as FreeNeRF and its pre-
decessors PixelNeRF and Reg-NeRF. We used 15 scans among the 124 existing
of the DTU [9] dataset, their IDs being : 8, 21, 30, 31, 34, 38, 40, 41, 45, 55,
63, 82, 103, 110, and 114. In each scene, the images with the following IDs are
the train views: 25, 22, 28, 40, 44, 48, 0, 8, 13 (the 3, 6 and 9 views setups
respectively using the first 3, 6 and 9 images). The images with IDs in [1, 2, 9,
10, 11, 12, 14, 15, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 41, 42, 43, 45, 46, 47]
are the evaluation images. We also downsample each training and testing view

10 D. Petit et al.

Fig. 7: Comparison of renderings of the same viewpoint with 4 different resolutions
for our architecture and Nerfacto. We observe that our solution is close to the ground
truth while Nerfacto faces under-contrasted image at full resolution, over-contrasted
image at resolution 1/4 and aliasing artifacts at resolution 1/8. PSNR values of the
corresponding image at the different resolutions are inset.

by a factor 4, resulting in 300 x 400 pixels for each image. The masks used to
evaluate the results are the ones used by FreeNeRF.

For cleaner renderings, we also decide on every of our Nerfstudio baselines
(referring to the grid-based methods) to not consider any sample which is not
observed by any training views when rendering novel views. This removes un-
necessary noise as our model cannot imagine unseen areas.

Regarding the model, we follow FreeNeRF’s choices as much as possible and,
because there are no grid-based methods to compare ourselves to, the rest of
the hyperparameters (mainly regarding the hashgrids) were derived from the
configuration used in our Novel View Synthesis experiments. Hence, we followed
the number of samples used in FreeNeRF (128 samples) and also disable the
mechanisms of nerfacto dedicated to unbounded scenes : scene contraction and
distortion loss. Our experiments on Nerfacto/Nerfacto+ and RING-NeRF are
all done using a pyramid of 9 grids of growth factor 2, a configuration similar to
our NVS experiments where we removed the last level of the highest resolution
as we consider the object-centric DTU dataset simple enough to avoid to over-
complexify the model. We once again use features of size 8. Based on the same
observation of the dataset being simpler than the 360 dataset, we used a smaller
MLP than in NVS experiments, with a hidden dimension of 64, both for density
and color. However, it is important to note that because our goal was rather to
demonstrate the impact of our architecture on this task against the Nerfacto+
baseline, we did not focus our research on optimizing the configuration of the
models, which could prove to further increase the metrics.

Finally, we follow FreeNeRF’s density loss implementation and also use the
introduced black and white prior, where we minimize the density of the M +10
(5 more samples than in FreeNeRF’s implementation) first samples rather than
the M first when the value of the pixel is either black or white, in order to benefit
from the particular form of the DTU dataset with uniform backgrounds.

RING-NeRF 11

Table 3: Ablative Experiments on reconstruction from few viewpoints (respectively 3,
6 and 9, separated by "/") on the DTU dataset. The reported metrics are computed
based on the mask of the object.

Density Loss Coarse-to-fine PSNR ↑ SSIM ↑ LPIPS ↓
RING-NeRF - - 10.56 / 12.32 / 13.00 0.618 / 0.694 / 0.732 0.341 / 0.256 / 0.252
RING-NeRF ✓ - 14.58 / 19.53 / 22.43 0.669 / 0.780 / 0.840 0.247 / 0.132 / 0.0901
RING-NeRF - Continuous 12.41 / 13.75 / 13.95 0.604 / 0.670 / 0.742 0.307 / 0.274 / 0.249
RING-NeRF ✓ Discrete 15.79 / 20.16 / 22.93 0.706 / 0.785 / 0.847 0.201 / 0.127 / 0.085
RING-NeRF ✓ Continuous 16.18 / 20.47 / 23.19 0.713 / 0.808 / 0.847 0.200 / 0.127 / 0.085

3.2 Ablative Experiments

In order to better estimate the increase of stability brought by our architecture,
we further developed the ablative experiments on the complex few images setup.
Table 3 shows the results of different RING-NeRF versions on respectively 3,
6 and 9 images with the 15 previously stated DTU scenes. We evaluate the
impact of the coarse-to-fine process (both our continuous version and the original
version) and of the density loss introduced by FreeNeRF.

First of all, the results without both of these mechanisms are, as expected,
quite low. However, we notice that its results are in average better than the
basic Nerfacto architecture, especially when training with 6 and 9 views. While
both are low results, we see qualitatively (see figure 8) that the sole RING-NeRF
architecture mostly succeeds in creating a coherent 3D geometry, although not
perfect and most of all very affected by floaters artifacts. This proves that our
RING-NeRF architecture is more stable than the concatenation architecture by
design, even though it is still lacking of a way to get rid of artefacts-inducing
ambiguities.

We also evaluate the model both without coarse-to-fine and without the
density loss separately. Using solely the density loss surprisingly results in correct
metrics. However, the visualization demonstrates that the 3D reconstruction in
itself is slightly less precise than when using only coarse-to-fine, although the
metrics are better as they are more impacted by the artefacts. Moreover, the
reconstruction without coarse-to-fine is less stable, with worse coherency in very
hard setups, such as when observing the scene with only 3 views and with novel
views very far from the training views, as illustrated in figure 9. Note that,
to further demonstrate that the density loss is not the sole explanation of the
results, figure 8 (b) shows the results of the nerfacto architecture coupled with
the density loss, and we notice that, while a beginning of 3D consistency appears,
it is still way more approximate than its RING-NeRF counterpart (e).

These experiments thus demonstrate that our model, coupled with continu-
ous coarse-to-fine is able to create a coherent and qualitative 3D reconstruction,
although surrounded by a huge amount of background misplaces, which have a
huge impact on the metrics. The simple density loss is an efficient solution to
counter this issue, but without continuous coarse-to-fine, it will in return slightly
degrade the reconstruction, as well as loose in stability. The combination of both
is thus the best trade off between 3D reconstruction and NVS quality.

12 D. Petit et al.

(a) (b) (c) (d) (e) (f)

Fig. 8: Results of the Few View Ablative Experiments. (a) nerfacto (b) nerfacto w/
density loss (c) RING-NeRF w/o both density loss and continuous coarse-to-fine (d)
RING-NeRF w/ continuous coarse-to-fine and w/o density loss (e) RING-NeRF w/
density loss and w/o continuous coarse-to-fine (f) RING-NeRF w/ both continuous
coarse-to-fine and density loss. The model is trained on 9 images.

(a) (b)

Fig. 9: Example of Inconsistency when removing the continuous coarse-to-fine from
RING-NeRF. (a) RING-NeRF w/ density loss (b) RING-NeRF w/ continuous coarse-
to-fine and density loss. The model is trained with 3 images that are far from the
evaluated view.

4 SDF Reconstruction - Section 4.4

4.1 Choice of the baselines and Implementation

We chose NeuS-facto and Neuralangelo as main comparing baselines. The first
one is considered a fast and efficient Python SDF-based implementation and the
latter is considered state-of-the-art for surface reconstruction methods.

While NeuS-facto is solely implemented in the Sdfstudio [26] framework
(which derives from Nerfstudio), Neuralangelo’s code has been officially released
and also possesses a Sdfstudio implementation. It is to be noted that, while the
specificities of the article are coded in a similar fashion, both implementations
make many different choices on NeRF specificities. For instance, a major differ-
ence between both frameworks is the way they sample rays at each iteration.
While SdfStudio randomly chooses pixels among all the images (as in Nerfstu-
dio), Neuralangelo follows I-NGP framework by sampling every pixels of n images
(n being the batch size). Both solutions are valid but they enable different be-
haviors. In order to harmonize as much as possible our different experiments, we
decided to use the Sdfstudio implementation, as the major part of the framework
is common with Nerfstudio, which was used in the other experiments.

4.2 Configuration Details

Our experiments are all done on the Sdfstudio framework, using the provided
replica subset dataset. We use all the scenes, except the scan5, for which we ex-

RING-NeRF 13

perienced failure of training for every method without initialization, and expect
the darker environment to heavily complexify the reconstruction in an already
hard initialization-lacking setup. The estimated depths are provided by Sdfstudio
and predicted via a pre-trained OmniData5 model, they serve as an indication
rather than true ground truths.

We mostly follow the basic Neuralangelo configuration implemented by Sdf-
studio. This results in 16 levels of resolutions 32 to 4096 with features of size 8
and a hashmap size of 219. The main differences regards the scheduling of the
training, initially implemented to last 500k epochs. However, we noticed a sim-
ilar convergence when scaling down the scheduling parameters for the training
to last 100k epochs. Hence, we decided to evaluate all three methods (RING-
NeRF, NeuS-facto and Neuralangelo) on 100K epochs (with accordingly scaled
down schedulers and coarse-to-fine duration). Because the replica dataset is a
synthetic indoor dataset, we remove background MLPs, appearance embedding
and scene contraction from all evaluated baselines.

In the following additional experiments, we provide more results without
initialization, as well as results with correct scene-specific initialization of the
scene using SDF inverted spheres. Note that because RING-NeRF does not input
the position on its MLP, it results in a different way to code the initialization.
NeuS-facto and Neuralangelo both hard code the SDF inverted sphere in the
weights of the MLP, benefiting from the position input while we initialize the
model randomly and then overfit the network for 1000 epochs to the required
initialization scheme (inverted sphere) before beginning the "true" training on
the scene.

4.3 Results

Additional results of SDF training without initialization on several Replica scenes
can be found in figure 15. While most training of NeuS-facto without initial-
ization results in catastrophic failure, some scenes still succeed in producing a
coherent reconstruction. The scan 6, shown in figure 15, is one of those scenes,
and while NeuS-facto avoids failure, the results are still way noisier than our
RING-NeRF both in RGB and depth, and results in way lower PSNR metrics.
Similarly, RING-NeRF without coarse-to-fine will often face failure, and there-
fore needs its continuous coarse-to-fine mechanism to forego the initialization.
Reconstruction Results. Figure 10 shows some meshes obtained from the
models with random initialization. As expected, the NeuS-facto mesh is com-
pletely useless, with the cloudy artefacts from the model resulting in opaque
matter. On the other hand, both NeuralAngelo and RING-NeRF produces co-
herent meshes. However, the NeuralAngelo mesh is very blurry and contains
very little details, while ours is way more precise, although rather noisy. These
qualitative results are coherent with the previously described results.

5 A. Eftekhar, A. Sax, J. Malik, and A. Zamir, Omnidata: A scalable pipeline for
making multi-task mid-level vision datasets from 3d scans. In Proc. of the IEEE
International Conf. on Computer Vision (ICCV), 2021

14 D. Petit et al.

Fig. 10: Resulting Meshes for models without initialization. Chamfer Distances in cm
are inset.

Results with initialization. While not the subject of the initial experi-
ment, it is interesting to compare those results with their correctly initialized
counterparts. Figure 11 gives an example on one scene of the dataset.

First of all, our approach presents similar results whether we initialize the
model or not. This further proves that RING-NeRF is robust to the initialization
process. We can notice a slight difference in the PSNR metric which can be
considered within the randomness interval of two reconstruction reruns of the
same model and scene.

NeuS-facto presents an expected behavior as it does not face catastrophic
failure anymore and succeeds in obtaining coherent RGB renders. However, the
depth remains a bit blurrier than RING-NeRF and the final PSNR results on
the associated RGB images are thus affected and remains slightly lower than
RING-NeRF.

Regarding Neuralangelo, initializing the model improves both the RGB met-
rics and the depth estimation. However, the depth is still surprisingly blurry,
which in turns prevents the RGB renders to overcome RING-NeRF results. This
may be caused by the curvature loss, which is supposed to smooth the recon-
struction. Because RING-NeRF introduces a bit of noise in the reconstruction,
combining thoses two contributions could be an interesting research focus for
robust and smooth SDF reconstruction.

Fig. 11: Example of results with initialization.

RING-NeRF 15

Results on real data. We demonstrated that the scene-specific initial-
ization was crucial for other methods on the Replica dataset, contrary to our
RING-NeRF. Replica being a perfect synthetic dataset, this further highlights
the importance of the initialization in SDF representation. However, we also per-
formed this no-initialization experiment on more complex real data such as the
Tanks and Temples dataset. Figure 12 shows results on one such scene ("Meeting
Room"). As expected, while NeuS-Facto faces catastrophic failure, both Neu-
ralAngelo and RING-NeRF succeeds in reconstructing the scene, although with
varying issues. NeuralAngelo is both blurrier and with more coarse errors (eg.
the ceiling’s beams) while RING-NeRF faces some noise. The latter however
presents better global results as confirmed by the PSNR values which are even
out on a test images subset of the scene.

Fig. 12: Depth prediction of SDF reconstructions without initialization on one Tanks
and Temple scene. Note that NeuS-Facto fails to reconstruct the scene. PSNR mean
values on the test set are inset.

5 Resolution Extensibility - Section 4.5

5.1 Demontration of the resolution extensibility on an unbounded
complex scene.

Since the resolution extensibility is an intrinsic property of RING-NeRF, the ex-
periment can be reproduced on any scene or configuration. Here, we demonstrate
the property on a more complex scene of the 360 dataset, namely Garden. We
follow the same experimental protocol described in section 4.5 with an increased
hierarchy (6 levels from 16 to 512 max resolution). We begin the reconstruction
with only the first three levels, train both the grid and the decoder to conver-
gence and then freeze both of them. We then proceed to train to convergence one
novel grid at a time, freezing the previous one at convergence. Figure 13 shows
the final reconstruction at different output of the grid hierarchy. We notice that
adding a grid always improves the reconstruction (with an increasing PSNR).
This showcases both the capacity of our model to reconstruct finer details after
the decoder’s training and its ability to keep the coarser LOD valid.

16 D. Petit et al.

Fig. 13: Resolution Extensibility on the Garden scene of the 360 dataset. Apart from
the first grid, each novel grid is trained alone, with both the previous grids and the
decoder frozen.

5.2 Discussion on the Utility of the resolution extensibility.

While resolution extensibility has not been heavily studied in previous works,
it actually is a crucial property in several different use cases and applications.
On one side, this can be useful for better compression of NeRF models. An im-
portant issue in grid-based NeRFs is the choice of hyper-parameters, and more
especially the maximum resolution of the grid pyramid. Being able to dynam-
ically change the resolution of your model gives the possibility to dynamically
choose the optimal local maximum resolution during training depending on the
scene’s complexity, therefore discarding any useless parameters for a more opti-
mal model. On the other side, the usefulness becomes obligation for embedded
systems with important resources limitations. We can for instance imagine two
types of limitations in SLAM situations, where the robot is moving without
interruption:

– Time limitation : Because it is constantly discovering new environment to
reconstruct, it does not have enough time to reconstruct with precision the
previously seen areas. However, RING-NeRF will let the robot optimizes
with higher resolution previous areas later on when it will have more re-
sources available.

– Memory Limitation : As the scene to reconstruct is of unknown size and
the system possesses limited memory, it can not afford to reconstruct the
entirety of the scene with maximum precision. A more viable strategy would
be to reconstruct coarsely the majority of the scene and only reconstruct
finer details on important areas (whether the most looked at places or those
with the most objects for instance).

RING-NeRF 17

Fig. 14: Few Views experiments examples on different scans of DTU dataset.

18 D. Petit et al.

Fig. 15: Examples of Depth Prediction of different SDF-based methods while foregoing
the initialization in different Replica scenes. PSNR values are the average values of the
evaluation images of the entire scene.

RING-NeRF 19

Table 4: Novel View Synthesis PSNR for the Mono-Scale setup per scene on the 360
Dataset (outside scenes).

PSNR ↑ Bicycle Flowers Garden Stump Treehill
Res x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8

Nerfacto 24.75 25.84 23.84 22.08 21.43 22.54 21.99 20.26 27.05 26.41 23.91 22.20 26.11 23.37 23.38 22.90 22.71 24.99 24.58 23.41
PyNeRF 25.46 22.95 22.37 21.25 21.93 17.73 16.65 16.55 28.55 22.96 21.75 20.71 26.40 21.65 21.40 20.87 23.28 18.50 17.89 17.60
Zip-NeRF 25.19 15.09 14.48 12.55 21.84 14.96 9.59 7.58 27.63 14.86 15.31 13.99 26.84 19.09 13.19 9.67 23.42 17.42 11.88 9.67
Our Model 25.26 26.11 25.63 24.29 21.91 23.35 22.89 21.30 28.03 27.14 25.32 23.50 26.69 26.20 25.82 24.59 23.12 24.93 25.19 23.92

Table 5: Novel View Synthesis PSNR for the Mono-Scale setup per scene on the 360
Dataset (inside scenes).

PSNR ↑ Room Counter Kitchen Bonsai
Res x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8

Nerfacto 31.59 29.77 29.44 26.58 26.33 27.18 25.79 23.81 30.54 29.70 25.95 23.46 33.37 31.45 28.23 25.24
PyNeRF 32.12 24.51 23.52 22.63 27.76 19.38 18.76 18.52 32.56 25.35 24.25 22.86 32.80 24.41 23.73 22.48
Zip-NeRF 32.42 17.07 10.56 8.36 28.49 17.12 10.79 8.19 31.76 19.58 14.45 12.70 34.96 14.01 6.64 4.20
Our Model 32.43 28.02 26.00 24.29 29.06 27.73 25.27 24.36 32.66 29.42 27.42 26.88 35.15 31.68 28.83 26.32

Table 6: Novel View Synthesis SSIM for the Mono-Scale setup per scene on the 360
Dataset (outside scenes).

SSIM ↑ Bicycle Flowers Garden Stump Treehill
Res x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8

Nerfacto 0.694 0.774 0.662 0.560 0.579 0.661 0.645 0.551 0.819 0.767 0.632 0.554 0.730 0.613 0.555 0.481 0.590 0.698 0.683 0.647
PyNeRF 0.726 0.734 0.682 0.613 0.592 0.535 0.538 0.543 0.847 0.748 0.638 0.582 0.752 0.637 0.598 0.533 0.632 0.602 0.599 0.586
Zip-NeRF 0.730 0.237 0.156 0.073 0.604 0.581 0.451 0.364 0.845 0.319 0.303 0.251 0.763 0.687 0.471 0.259 0.636 0.654 0.495 0.408
Our Model 0.726 0.768 0.786 0.738 0.601 0.672 0.683 0.628 0.852 0.817 0.751 0.681 0.759 0.731 0.717 0.646 0.610 0.692 0.761 0.755

Table 7: Novel View Synthesis SSIM for the Mono-Scale setup per scene on the 360
Dataset (inside scenes).

SSIM ↑ Room Counter Kitchen Bonsai
Res x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8

Nerfacto 0.911 0.874 0.876 0.827 0.844 0.861 0.808 0.752 0.907 0.869 0.706 0.606 0.940 0.922 0.841 0.749
PyNeRF 0.919 0.827 0.780 0.747 0.873 0.649 0.585 0.567 0.930 0.837 0.745 0.677 0.946 0.852 0.796 0.727
ZipNeRF 0.929 0.769 0.543 0.438 0.885 0.723 0.512 0.406 0.922 0.805 0.637 0.519 0.961 0.593 0.251 0.189

Our Model 0.921 0.899 0.870 0.836 0.876 0.859 0.821 0.765 0.926 0.871 0.808 0.756 0.954 0.928 0.879 0.830

Table 8: Novel View Synthesis LPIPS for the Mono-Scale setup per scene on the
360 Dataset (outside scenes).

LPIPS ↓ Bicycle Flowers Garden Stump Treehill
Res x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8

Nerfacto 0.212 0.167 0.281 0.331 0.259 0.191 0.259 0.332 0.121 0.183 0.291 0.338 0.192 0.270 0.370 0.471 0.372 0.265 0.283 0.306
PyNeRF 0.196 0.176 0.236 0.287 0.282 0.278 0.341 0.341 0.096 0.183 0.288 0.349 0.160 0.243 0.334 0.480 0.305 0.299 0.310 0.320
Zip-NeRF 0.186 0.651 0.641 0.698 0.246 0.244 0.432 0.508 0.105 0.744 0.645 0.666 0.151 0.207 0.349 0.482 0.297 0.280 0.368 0.422
Our Model 0.184 0.161 0.141 0.164 0.236 0.166 0.159 0.209 0.090 0.112 0.159 0.197 0.168 0.193 0.218 0.246 0.308 0.258 0.187 0.199

Table 9: Novel View Synthesis LPIPS for the Mono-Scale setup per scene on the
360 Dataset (inside scenes).

LPIPS ↓ Room Counter Kitchen Bonsai
Res x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8

Nerfacto 0.121 0.091 0.120 0.153 0.187 0.122 0.161 0.207 0.093 0.102 0.198 0.294 0.071 0.069 0.145 0.239
PyNeRF 0.111 0.194 0.208 0.207 0.149 0.293 0.309 0.322 0.076 0.123 0.182 0.262 0.069 0.114 0.166 0.245
Zip-NeRF 0.111 0.215 0.373 0.405 0.146 0.214 0.307 0.351 0.081 0.163 0.353 0.456 0.059 0.380 0.717 0.716
Our Model 0.120 0.087 0.082 0.086 0.150 0.109 0.105 0.119 0.080 0.094 0.120 0.155 0.056 0.062 0.109 0.130

20 D. Petit et al.

Table 10: Novel View Synthesis PSNR for the Multi-Scale setup per scene on the
360 Dataset (outside scenes).

PSNR ↑ Bicycle Flowers Garden Stump Treehill
Res x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8

Nerfacto 23.73 27.20 26.95 24.63 20.96 24.53 24.95 22.95 25.01 28.50 27.35 24.95 23.82 25.31 25.46 24.30 22.67 25.51 26.27 25.21
PyNeRF 25.77 28.44 30.12 30.11 22.13 25.80 27.28 27.80 28.35 31.23 32.02 31.54 27.21 28.34 29.87 30.05 23.23 26.17 27.98 29.43
Zip-NeRF 24.85 27.71 29.08 29.99 21.51 25.06 27.37 28.61 27.03 29.83 31.38 31.95 25.94 27.83 29.24 30.25 22.93 25.55 27.36 28.56
Our Model 25.17 27.94 29.21 29.91 21.72 25.27 27.20 28.20 27.40 30.00 31.22 31.70 25.97 27.81 29.05 29.81 23.28 26.18 27.82 28.49

Table 11: Novel View Synthesis PSNR for the Multi-Scale setup per scene on the
360 Dataset (inside scenes).

PSNR ↑ Room Counter Kitchen Bonsai
Res x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8

Nerfacto 28.09 29.14 28.71 27.92 22.82 23.51 23.77 23.51 27.85 30.42 29.96 26.72 29.89 31.68 31.00 27.49
PyNeRF 31.73 32.75 32.71 31.43 26.89 27.47 27.72 27.64 30.68 31.45 31.89 30.98 32.74 33.52 33.63 33.08
Zip-NeRF 31.65 32.52 32.78 32.74 28.19 29.15 29.45 29.49 31.72 32.21 32.51 32.53 34.07 34.20 34.03 33.94
Our Model 31.74 32.69 32.86 32.64 28.63 29.51 30.12 30.33 31.17 32.27 33.15 33.07 33.87 34.29 33.97 33.55

Table 12: Novel View Synthesis SSIM for the Multi-Scale setup per scene on the
360 Dataset (outside scenes).

SSIM ↑ Bicycle Flowers Garden Stump Treehill
Res x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8

Nerfacto 0.564 0.787 0.812 0.719 0.478 0.706 0.761 0.679 0.647 0.837 0.806 0.714 0.597 0.696 0.698 0.601 0.511 0.717 0.782 0.757
PyNeRF 0.710 0.840 0.891 0.896 0.587 0.764 0.836 0.842 0.827 0.887 0.921 0.910 0.745 0.815 0.853 0.843 0.622 0.769 0.845 0.882
Zip-NeRF 0.703 0.834 0.887 0.896 0.565 0.752 0.835 0.866 0.820 0.897 0.923 0.926 0.725 0.807 0.847 0.845 0.591 0.758 0.831 0.874
Our Model 0.716 0.840 0.881 0.890 0.575 0.753 0.829 0.861 0.822 0.890 0.916 0.927 0.726 0.791 0.823 0.827 0.594 0.762 0.845 0.883

Table 13: Novel View Synthesis SSIM for the Multi-Scale setup per scene on the
360 Dataset (inside scenes).

SSIM ↑ Room Counter Kitchen Bonsai
Res x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8

Nerfacto 0.826 0.861 0.874 0.872 0.715 0.739 0.769 0.769 0.794 0.873 0.845 0.755 0.876 0.908 0.897 0.825
PyNeRF 0.899 0.917 0.919 0.923 0.845 0.884 0.866 0.875 0.891 0.902 0.917 0.920 0.909 0.935 0.928 0.940
Zip-NeRF 0.910 0.932 0.937 0.936 0.857 0.869 0.875 0.881 0.909 0.924 0.932 0.941 0.946 0.945 0.938 0.939
Our Model 0.907 0.932 0.937 0.937 0.858 0.880 0.897 0.910 0.900 0.912 0.922 0.936 0.939 0.944 0.938 0.941

Table 14: Novel View Synthesis LPIPS for the Multi-Scale setup per scene on the
360 Dataset (outside scenes).

LPIPS ↓ Bicycle Flowers Garden Stump Treehill
Res x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8

Nerfacto 0.404 0.152 0.134 0.199 0.416 0.153 0.139 0.210 0.323 0.119 0.143 0.210 0.393 0.228 0.242 0.368 0.522 0.254 0.179 0.200
PyNeRF 0.211 0.090 0.055 0.059 0.283 0.097 0.060 0.057 0.109 0.058 0.040 0.042 0.191 0.114 0.102 0.094 0.365 0.183 0.106 0.072
Zip-NeRF 0.180 0.106 0.062 0.043 0.306 0.113 0.064 0.047 0.135 0.064 0.044 0.036 0.203 0.121 0.096 0.072 0.390 0.191 0.119 0.071
Our Model 0.217 0.103 0.067 0.052 0.286 0.106 0.071 0.055 0.125 0.059 0.040 0.034 0.228 0.128 0.110 0.096 0.363 0.181 0.098 0.069

Table 15: Novel View Synthesis LPIPS for the Multi-Scale setup per scene on the
360 Dataset (inside scenes).

LPIPS ↓ Room Counter Kitchen Bonsai
Res x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8 x1 x2 x4 x8

Nerfacto 0.320 0.163 0.071 0.093 0.438 0.288 0.166 0.176 0.258 0.113 0.092 0.176 0.233 0.112 0.085 0.160
PyNeRF 0.170 0.066 0.041 0.037 0.206 0.102 0.075 0.066 0.118 0.066 0.043 0.035 0.090 0.050 0.043 0.033
Zip-NeRF 0.141 0.064 0.036 0.024 0.188 0.118 0.064 0.061 0.098 0.064 0.043 0.029 0.079 0.050 0.045 0.037
Our Model 0.151 0.069 0.037 0.025 0.187 0.097 0.054 0.036 0.103 0.060 0.041 0.023 0.086 0.048 0.044 0.036

	Supplementary Materials of RING-NeRF

