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Fig. 1: RING-NeRF is a simple and versatile architecture which tackles many NeRF
common issues such as robustness to distance of observation, few view supervision and
lack of scene-specific initialization for SDF-based reconstruction. It provides on-par
performances in terms of quality with SotA dedicated solutions [4, 11, 25] and and in
terms of efficiency with fast methods [20,26].

Abstract. Recent advances in Neural Fields mostly rely on develop-
ing task-specific supervision which often complicates the models. Rather
than developing hard-to-combine and specific modules, another approach
generally overlooked is to directly inject generic priors on the scene repre-
sentation (also called inductive biases) into the NeRF architecture. Based
on this idea, we propose the RING-NeRF architecture which includes two
inductive biases : a continuous multi-scale representation of the scene
and an invariance of the decoder’s latent space over spatial and scale do-
mains. We also design a single reconstruction process that takes advan-
tage of those inductive biases and experimentally demonstrates on-par
performances in terms of quality with dedicated architecture on multiple
tasks (anti-aliasing, few view reconstruction, SDF reconstruction without
scene-specific initialization) while being more efficient. Moreover, RING-
NeRF has the distinctive ability to dynamically increase the resolution
of the model, opening the way to adaptive reconstruction. Project page
can be found at : https://cea-list.github.io/RING-NeRF

https://cea-list.github.io/RING-NeRF
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1 Introduction

Neural Radiance Fields (NeRF) have emerged as a novel method for representing
3D scenes using neural networks. In its original design [13], a simple multi-layer
perceptron (MLP) is trained to reproduce a continuous 5D function that outputs
the density and radiance emitted in each direction (θ, ϕ) at each point (x, y, z)
in space. This approach inspired many works due to the impressive quality of
its novel view synthesis as well as its simplicity. However, the so-called "vanilla"
NeRF architectures converge very slowly as they use large deep neural networks.
Instant-NGP [14] introduced a new architecture based on a hierarchical hash-
grid pyramid of learnable feature codes describing the 3D scene and combined
with a much shallower MLP, called decoder, that transforms the concatenation
of the codes, interpolated from the grids, into density and radiance. Resulting in
local updates, this method reduced the training duration from hours to minutes.

The great majority of current solutions are now based on these two standard
architectures, and many of them are focused on overtaking their associated lim-
itations in terms of:
Nature of scene - by transitioning from object-centric scenes to open un-
bounded scenes, using mostly space contraction [3];
Robustness - by managing free motion trajectories with variations of the obser-
vation distance while avoiding aliasing artefacts, mostly through the integration
of Level of Detail (LOD) in the model [2,4]; or by reducing drastically the num-
ber of supervised views through different kinds of regularization [8, 15,25];
Extensibility - by shifting from a holistic and fixed reconstruction process to
an incremental (extensibility in the number of views) and adaptive (extensibility
in resolution) process, mainly through the use of a frozen decoder [12,29].

However, most solutions solely focus on one of these limitations and introduce
specific and complex mechanisms that both increase the computational cost and
lessen the possibilities of combination. The ability to solve jointly these main
issues is however essential in real-world applications which often require a robust
and extensible reconstruction in an unknown and unbounded environment.

In this article, rather than introducing yet another heavy and task-specific
solution, we propose RING-NeRF, a versatile and simple NeRF architecture by
rethinking usual grid-based models to introduce two inductive biases. We first
represent a 3D scene as a continuous multi-scale representation and also make the
decoder’s latent space invariant in position and scale. Together, these two priors
enable the production of intrinsic continuous LOD of the scene without explicit
supervision. We demonstrate experimentally that, when combined with adapted
cone casting and coarse-to-fine optimization, the resulting architecture is able
to compete on several tasks with on-par quality performances with dedicated
state-of-the-art solutions while improving speed, robustness and extensibility.
The overall process is also simple, easy to implement and generic enough to be
coupled with specific solutions. Our contributions can be summarized as follows:
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1. an architecture that, by construction, represents the scene with a continuous
and unbounded level of detail without the need for LOD-specific supervision
and which permits resolution-adaptive reconstruction;

2. a distance-aware forward mapping compatible with scene contraction, that
takes benefits of the continuous multi-scale representation with an adapted
cone casting process to avoid aliasing artefacts when varying the observation
distance.

3. a continuous coarse-to-fine reconstruction process that improves the conver-
gence and stability (especially in challenging setups such as supervision with
few viewpoints or no scene-specific initialization for SDF reconstruction).

2 Related Work

From its original iteration [13], a majority of current research focuses on overtak-
ing limitations of NeRF-based reconstruction in terms of adaptability to various
natures of scene, robustness (to varying observation distances or limited amount
of viewpoints) and reconstruction extensibility.
Adaptability to various natures of the scene. The ability of Neural Fields
to reconstruct various natures of scene depends on three factors. The first one
is related to its architecture itself. Tri-plane architectures [5, 7, 30] are mostly
designed for object-centric reconstruction (as they provide a higher density of
information in the center of the scene) while vanilla and 3D grid-based NeRF are
able to cover a wider variety of scenes, though they initially were still constrained
to a limited volume. A second factor is related to the representation of the 3D
space of the scene, especially to represent distant elements in open scenes. Some
approaches use two different NeRF models to reconstruct separately the fore-
ground and the background [28], whereas others apply space contraction to the
3D scene coordinates [3, 4, 28] to map the infinite scene volume into a bounded
one. The last factor is related to the initialization of the Neural Fields. While the
random initialization of density-based NeRF can adjust to almost any nature of
scenes, the convergence of SDF-based (Signed Distance Function) Neural Fields
is extremely sensitive to their parameters’ initialization, as stated in [1]. Current
solutions rely on a scene-specific initialization (using an SDF field representing a
sphere for outdoor scenes or an inverted sphere for indoor scenes), making them
unable to adapt automatically to any scene.
Robustness to observation distance variations. The initial NeRF model,
as well as most of the subsequent works, relies implicitly on the hypothesis of a
constant distance of observation to the scene. Indeed, the NeRF model provides
a per-3D-point scene density representation and a rendering process which does
not take into account the increasing volume covered by a pixel with respect to
the distance to the cameras. As underlined in Mip-NeRF [2], this discrepancy
induces artefacts such as over-contrasted images or aliasing phenomenon when
the distance of observation differs from the ones used at reconstruction time.
To avoid these artefacts, the rendering process needs to assess the density and
color for a volume instead of a point. In the current state-of-the-art, two main
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approaches are used (or their combination, as in Zip-NeRF [4]). The first solu-
tion consists of representing the scene with different levels of detail (LOD), in
order to vary the precision of the reconstruction based on the observation dis-
tance. This is usually done by using a LOD-aware latent space [2,4,6,19,21,24],
meaning that the LOD information is already encoded in the inputs of the MLP.
This can be achieved by using a per-LOD decoder as in PyNeRF [21] or by
incorporating LOD information in the latent feature as done in Zip-NeRF [4]
and VR-NeRF [24]. One main flaw of these solutions is that they require the
supervision of every used LOD which makes it impossible to vary the observa-
tion distances between the train views and novel synthesised views. A second
approach consists of defining the latent representation of a volume as the mean
of the latent features of the points included in the volume. It requires integrating
the features over the volume, which can be achieved through convolutions for
tri-plan representation [7,30], or through super-sampling of the latent space for
3D grids as also done in Zip-NeRF [4]. However, these approaches lengthen the
training and rendering processes as they increase the number of computations.
Robustness to limited amount of viewpoints. By construction, NeRF is
subject to the shape-radiance ambiguity [28]. If not enough supervision view-
points are available, the optimization might overfit them while not providing
consistent 3D reconstruction nor generalization to non-supervised viewpoints. A
first family of solutions to overcome this limitation consists of regularizing the re-
construction process through additional losses, whether via geometric [15,23,27]
or semantic [8] regularization. The second family of solutions relies on a progres-
sive reconstruction of the details of the scene, as introduced in FreeNeRF [25]
and Nerfies [17]. Restraining the ability of the model to reconstruct a complex
scene at early stages enforces the consistency of the reconstruction over the dif-
ferent supervision viewpoints. This presents the advantage of bringing stability
while keeping a fairly simple training process. However, these latter solutions
mostly rely on Vanilla models for stability purposes and require long training
duration.
Reconstruction extensibility. Two kinds of extensibility should be distin-
guished: extensibility with respect to the number of views or the resolution. The
first one is related to reconstructing new scene areas while keeping the previously
reconstructed ones unchanged. The usual solution consists of using grid-based
approaches with a pre-trained position-invariant decoder that is frozen during
the reconstruction [29]. On the other side, the extensibility of the resolution con-
sists in dynamically increasing the level of detail of a previously reconstructed
scene. This problem is intractable for classic architectures such as vanilla NeRF
and I-NGP since the number of layers (resp. grids) of those approaches cannot
increase during the reconstruction. Some rare solutions, such as Neural Sparse
Voxel Fields [12], combine a pre-trained decoder with a data structure allowing
to dynamically allocate voxels to increase the reconstruction resolution. This is
however a crucial stake, as being able to adapt the precision of the representa-
tion based on the complexity of the scene permits to optimize the computational
efficiency (both in speed and memory requirements) with minimal loss in quality.
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Fig. 2: Overview of RING-NeRF: to render a pixel, the casted cone is sampled with
cubes. Depending on the cube volume, the corresponding LOD of the scene is selected
and the latent feature is computed using a weighted sum of the grid hierarchy. The
density (or SDF) and color of the cube are first decoded from the latent feature with
a tiny MLP and then integrated with other samples through volume rendering.

3 RING-NeRF

Rather than focusing on solving one specific problem of NeRF using complex
mechanisms, we propose a simple architecture called RING-NeRF constructed
with novel inductive biases to tackle NeRF’s common issues.

3.1 Overview

RING-NeRF relies on the classic NeRF [13] inverse rendering pipeline which is
used to reconstruct a 3D scene from a set of localized frames. For a given image
pixel (with its camera’s pose), a 3D ray is cast and the 3D scene representation
is sampled at N various locations along the ray. The resulting density σi (or
SDF converted to density [22]) and color ci of the samples are then combined
with usual volume rendering techniques: Ĉ(r) =

∑N−1
i=0 Ti(1−exp(−σiδi))ci with

Ti = exp(
∑i−1

j=0 σjδj) and δi is the distance between samples. The parameters
of the scene representation are then optimized by minimizing the MSE loss
||Ĉ(r)−C(r)||2 between the rendered ray color and the ground truth pixel value,
the rendering being differentiable3.

The originality of RING-NeRF relies on its neural architecture, illustrated
in figure 2, which is designed to represent the scene with a continuous and
unbounded level of detail without the need for LOD-specific supervision (see
section 3.2). We then use this LOD inductive bias to adjust the LOD of the
samples with respect to the distance to the camera in contracted space for more
accurate renderings (see section 3.3). Finally, combined with a continuous coarse-
to-fine optimization, RING-NeRF results in a more robust reconstruction process
with an intrinsic LOD extensibility property (see section 3.4).

3 With SDF, an additional Eikonal loss is also being optimized for SDF regularization.
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3.2 NeRF Representation with Inductive Biases

Classic grid-based representations, such as the one introduced by I-NGP [14],
rely on two key elements: a unique MLP decoder which transforms a latent
space into an output space (color, density or SDF), and a 3D (hierarchical)
grid of latent features that implicitly defines a unique mapping function from
the scene space onto the decoder latent space. We can distinguish two different
approaches used to extend the mono-scale representation to a multi-scale repre-
sentation: conditioning with scale information the decoding process [4,21] and/or
defining separate per-LOD mapping functions [21]. In both cases, the training
becomes more complex, leading to potential convergence issues as it relies solely
on additional specific supervision. Instead, we propose to condition the mapping
function itself with scale information and introduce inductive biases to guide the
convergence.
Scene representation as multi-scale mapping function. As illustrated in
Figure 2, the mapping function at level N is controlled by a grid GN that is
implicitly defined through a recursive refinement process over scale:{

G0 ← δ0

GN ← S(GN−1) + δN
(1)

where δi is the deviation defined by the i-th latent feature grid and S is the
subdivision scheme consisting in increasing the resolution of GN−1 up to the
N -th grid resolution (with tri-linear interpolation). In practice, the latent vector
associated with a point in the scene for a level of detail N is simply obtained by
interpolating linearly the point in the cell for each level inferior or equal to N ,
and summing the results. Since linear interpolation is differentiable, our mapping
function is also optimizable. The summing of the interpolation is comparable to
a residual connection and gives the name of the architecture RING-NeRF for
Residual Implicit Neural Grids.

Such representation provides several advantages. First, since the mapping
function is constructed in a top-down manner, refining recursively one level of
detail from the previous one, its number of LOD is unbounded and adding a
finer level of detail keeps the coarser ones valid. Secondly, because each δi only
represents a deviation of the coarser mapping value Gi−1, a continuous LOD
representation can be easily obtained by incorporating a weighting factor α ∈
[0, 1] in the recursive process:

GL ← S(GN−1) + αδN (2)

with L ∈ [N − 1, N ] and α = L− (N − 1).
Spatial and scale invariance of decoder. Since our architecture does not rely
on a decoder conditioned on position (unlike [19]) nor scale (unlike [2–4, 21]),
the decoder latent space is invariant to translations and scale changes in the
scene coordinate. This property makes RING-NeRF more suited for incremental
reconstruction in both spatial and scale space, since it ensures that local up-
dates in the spatial and scale domain of the scene can be achieved through the
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Fig. 3: We demonstrate the LOD inductive bias by training our model with a hierarchy
of N = 7 levels where only the last level of the mapping function GN is supervised. We
then compute renders at different levels L ≤ N . Other examples (including of entire
scenes) can be found in the supplementary materials.

hierarchical grid. The decoder architecture is illustrated in figure 2 and further
details can be found in the supplementary materials.
LOD inductive bias. During the reconstruction process, the gradients of the
ray samples are backpropagated through the residual connections and aggre-
gated for each grid level. Due to the pyramidal resolution of the hierarchical
grid, a grid code at coarse levels influences a large scene volume and is thus su-
pervised by more ray samples. Therefore, the gradient of a grid code increases as
the level’s resolution decreases, and as long as the associated samples’ gradients
are uniform. However, once the backpropagation through the residual connec-
tions reach a level whose associated samples have divergent enough gradients
(meaning the error is finer than this level’s resolution), the result of the aggrega-
tion will be mitigated. Hence, the level with the maximum correction is always
the coarser level where the samples’ gradients are still uniform. This property
naturally induces corrections at the proper grid level and LOD. In figure 3, we
illustrate this inductive bias by displaying different continuous LOD of a scene
while the reconstruction is only supervised for its finest LOD. Not only this is
a useful property when an unsupervised multi-scale representation is needed (as
demonstrated in section 4.2), this also guarantees a more robust convergence (as
illustrated in section 4.3 and section 4.4).

3.3 Distance-Aware Forward Mapping

Cone Casting in contracted space. In order to accommodate the scene ren-
dering process to the variation of observation distances, we introduce a distance-
aware forward mapping mechanism. Similarly to the cone casting of [7], it relies
on assigning to each sample a latent feature whose LOD is inversely proportional
to the sample-camera distance. However, unlike [7, 21], our model relies on the
use of space contraction to allow the reconstruction of unbounded scenes.

To define the LOD of a sample at distance d of the camera, we first compute
the associated volume of the cone cast pixel cube in the world space coordinates
(see fig. 2). Assuming the pixel is a square of size c at distance 1 of the camera
(c depends on the image resolution and camera’s FOV), the volume is thus
V = (dc)3. To take into account the space contraction, we then proceed to
contract the volume. Denoting J the Jacobian of the contraction function at
the sample’s location p, Vcontract = V det(J(p)). In practice, we compute the
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analytical derivation of the contraction function depending on p. More details
can be found in the supplementary materials.

Assuming the N -th feature grid’s resolution in our hierarchy can be written
as fNb with b the resolution of the grid δ0 and f the growth factor, finding the
appropriate LOD L ∈ R+ means finding a virtual grid4 of resolution fLb whose
cell’s volume is equal to the previously computed volume (in contracted space).
Because we are working in the contracted space of size 1, the volume of a cell
of the virtual grid of LOD L is ( 1

fLb
)3. The LOD L associated to one sample in

the contracted space is thus given by:

(dc)3 det(J(p)) =

(
1

fLb

)3

⇐⇒ L = −
log

(
dcb 3

√
det(J(p))

)
log(f)

(3)

Note that this process is close to ZipNeRF [4] and VR-NeRF [24]. However,
the first one rather derives a contracted scale factor from its Gaussian samples
while the latter directly computes the LOD in the contracted space, which can
be considered an approximation of our computation.
Forward mapping. As illustrated in Figure 2, we use the determined LOD to
compute a distance-dependent weighted sum of the features, which is fed to our
decoder and transformed into density (or SDF) and radiance.

3.4 Continuous Coarse-To-Fine and Resolution Extensibility

Recent works proposed to use coarse-to-fine optimization to improve the stability
of NeRF models, especially when facing more challenging setups, including with
few images [25] and surface-based models [11]. It consists of optimizing progres-
sively the different LOD of the representation, from coarse levels to the most
precise ones. The goal of this progressive optimization is to avoid the shape-
radiance ambiguity [28] by introducing a strong regularization through LOD
restriction, then relaxing progressively this regularization once the coarse geom-
etry of the scene is reconstructed to recover the details of the scene.

The coarse-to-fine reconstruction process of RING-NeRF consists of estimat-
ing progressively the LOD of the mapping function from the coarsest to the finest
ones. In practice, it implies, during the cone casting, to clamp the samples’ LOD
up to a maximal LOD l, the grids of level l and above being set to zero and
not optimized. Moreover, since our architecture provides continuous LOD, the
coarse-to-fine optimization can be achieved continuously in the LOD space by
using a linear scheduler l = (l0 +

n
nctf

) ∈ R+ with n the current epoch, nctf a
hyperparameter describing the speed of the process and l0 defining the number
of used grids at initialization; up to a specified maximum resolution.

Furthermore, the RING-NeRF architecture is more adapted than I-NGP-
based architectures [11] for coarse-to-fine training. Indeed, for solutions based
on the concatenation of features, keeping grid values to zero implies that some
4 A virtual grid of LOD L ∈ R+ corresponds to a grid of resolution fLb that is not

explicitly stored in memory but whose elements can be computed from other grids.
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dimensions of the decoder’s latent space are not supervised. When a grid starts
to be optimized, those unsupervised dimensions are suddenly used. The weights
of the decoder thus need to be refined, with a global effect on the whole scene.
On the opposite, our solution keeps supervising all the dimensions of the decoder
latent space, and when a new grid gets optimized, it only implies more degrees of
freedom to define the mapping function between the scene space and the decoder
latent space. This also means that our scene reconstruction can be refined by
adding dynamically new grid levels without modifying the decoder’s weights or
previously trained grids, as we demonstrate experimentally in section 4.5. This
resolution extensibility property opens the path to adaptive resolution models,
where the precision used to describe an area depends on the details needed, to
optimize efficiency both in memory consumption and training duration.

4 Experiments

In these experiments, we intend to highlight the versatility of RING-NeRF by
evaluating it on several tasks. After introducing implementation details in sec-
tion 4.1, we evaluate our model on novel view synthesis with changes in obser-
vation distances (sec. 4.2). Then, we explore how robust is RING-NeRF first
with few view reconstruction (sec. 4.3) and then without scene-specific initial-
ization for SDF reconstruction (sec. 4.4). Finally, we demonstrate the capacity
of our architecture to perform LOD extensibility, as a first step towards adaptive
reconstruction (sec. 4.5).

4.1 Implementation

Our model is based on the PyTorch framework Nerfstudio [20]. We build upon its
core method named Nerfacto, which combines ideas from several papers for fast
and qualitative renders of unbounded complex scenes. This makes it an accessi-
ble baseline with a state-of-the-art quality/time ratio. Because NeRF pipelines
contain a high number of small but decisive choices of implementation (eg. some
frameworks choose to train their models image by image while Nerfstudio jointly
and randomly samples across all images), we decided to use as much as possible
Nerfstudio-based baselines for fairer comparisons. All of these models are trained
on one Nvidia-A100 GPU. The reported times correspond to the approximated
training duration of the models. Configuration details, further experiments and
ablatives on our contributions can be found in the supplementary materials.

4.2 Novel View Synthesis and Anti-Aliasing

This experiment aims to evaluate the reconstruction quality through the ability
to synthesize viewpoints that are not supervised during the reconstruction. These
new viewpoints differ from the angle of observation, but also from the distance
of observation. The latter is particularly important since a reconstruction or a
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Table 1: Novel View Synthesis performances for the Mono-Scale setup (trained on
the full resolution images only) on the 360 Dataset. The indicated resolutions refer to
the resolution of the renders.

Full Res. 1/2 Res. 1/4 Res. 1/8 Res.
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Time ↓

Nerfacto [20] 27.09 0.779 0.181 26.81 0.782 0.162 25.22 0.711 0.234 23.32 0.636 0.297 0.45h
PyNeRF [21] 27.87 0.802 0.160 21.93 0.713 0.211 21.15 0.662 0.264 20.39 0.619 0.312 0.96h
Zip-NeRF [4] 28.06 0.808 0.154 16.58 0.596 0.319 11.88 0.424 0.465 9.66 0.323 0.523 1.10h
RING-NeRF 28.09 0.799 0.157 27.18 0.804 0.138 25.82 0.786 0.142 24.38 0.737 0.167 0.45h

rendering process that does not take correctly into account the distance of obser-
vation leads to artefacts, from over-contrasted rendering to aliasing phenomenon.
The challenge is to avoid these artefacts while keeping the reconstruction and
rendering process as fast as possible.
Dataset. The evaluation relies on the dataset introduced by Mip-NeRF-360 [3].
This dataset is composed of 9 scenes, each containing both a central area and
complex background in both inside and outside setups. Since the trajectory
keeps a constant distance to the central part, each viewpoint is represented with
a pyramid of 4 different image resolutions to simulate a variation of the distance
of observation combined with a change of the camera FOV, following the Mip-
NeRF [2] original anti-aliasing evaluation pipeline.
Algorithms. We compare our solution against several grid-based NeRF base-
lines, both with (PyNeRF [21] and Zip-NeRF [4]) and without anti-aliasing pro-
cessing (Nerfacto), using their Nerfstudio implementations.
Protocol. For each scene, we train the models with two different setups: the
mono-scale setup that uses only the image with the highest resolution for each
viewpoint, and the multi-scale setup which uses the whole pyramid of images for
each viewpoint. Note that, for these two setups, we evaluate the performances
on the whole resolution pyramid, with usual metrics (PSNR, SSIM, LPIPS).
Results. First of all, regarding novel view synthesis quality using the mono-
scale setup for both training and testing, as referred to in the "Full Res." column
of table 1, we notice that our architecture provides on par performances with
Zip-NeRF, slightly better results than PyNeRF, and a more important gap with
Nerfacto. While simple, RING-NeRF succeeds in performing state-of-the-art per-
formances on a real single-scale dataset. Regarding quality for the multi-scale
setup, as presented in table 2, we observe that all the algorithms that consider
the distance of observation perform very similarly in terms of quality. On the

Fig. 4: Examples of image renderings at 1/8th resolution from models solely trained
with the full resolution images. RING-NeRF is the only method capable of producing
coherent aliasing-free renderings thanks to its LOD inductive bias.
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Table 2: Novel View Synthesis performances for the Multi-Scale setup (trained
jointly on every resolution) on the 360 Dataset. The indicated resolutions refer to the
resolution of the renders.

Full Res. 1/2 Res. 1/4 Res. 1/8 Res.
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Time ↓

Nerfacto [20] 25.98 0.668 0.367 27.31 0.792 0.176 27.16 0.805 0.139 25.30 0.743 0.199 0.45h
PyNeRF [21] 27.65 0.781 0.194 29.47 0.857 0.092 30.51 0.887 0.063 30.86 0.893 0.055 0.96h
Zip-NeRF [4] 27.54 0.781 0.191 29.34 0.858 0.099 30.36 0.889 0.064 30.90 0.900 0.047 1.10h
RING-NeRF 27.66 0.782 0.194 29.55 0.856 0.094 30.51 0.888 0.062 30.86 0.901 0.048 0.45h

other side, Nerfacto performs quite poorly. Its performances are especially low
at the coarsest resolution, with overflowing artefacts, as illustrated in figure 1.

Finally, we evaluate the capacity of the models to generalize over new res-
olutions by training them on full-resolution images and then evaluate them on
smaller resolutions. Qualitative results are shown in figure 4 while quantitative
results can be found in the 1/2-th, 1/4-th and 1/8-th res. columns of table 1.
Because most anti-aliasing methods need LOD-specific supervision to correctly
function (including Zip-NeRF and PyNeRF), they cannot render coherent anti-
aliased images in this setup. However, PyNeRF behaves better than ZipNeRF
with coherent although very aliased renderings, as it decides to limit the LOD
used for rendering inside the range of LOD seen during training. RING-NeRF,
with his LOD inductive bias, is the only architecture capable of producing anti-
aliased renderings from novel observation distances and thus outperforms every
other method. While this experiment can seem somewhat esoteric as training on
a multi-resolution images pyramid is rather easy, this increases GPU memory and
total training time. Moreover, depending on the resolution and the trajectory,
it is not trivial to choose the accurate number of scales in the image pyramid to
supervise correctly every grid in the hierarchy and especially the coarsest grids.

Regarding the reconstruction processing time reported in the "Time" column
of both table 1 and table 2, since RING-NeRF does not rely on the multipli-
cation of either sample or decoder, it processes as quickly as the fastest Ner-
facto both on mono-scale and multi-scale setups. On the other hand, the other
anti-aliasing methods, PyNeRF with its per-LOD MLP and Zip-NeRF with its
super-sampling, are approximately 2.5 times slower.

In conclusion, our solution provides the best quality-speed trade-off since it
is both on par with the best quality method and the fastest method, in mono-
scale as well as in multi-scale setups. Furthermore, RING-NeRF is the only
solution capable of creating coherent and anti-aliased renderings when facing
novel observation distances unseen during training.

4.3 Few Viewpoints Supervision

This experiment aims to evaluate the influence of the RING-NERF architecture
and pipeline on the reconstruction robustness to limited supervision viewpoints.
Dataset. We evaluate our contribution on the object-centric real dataset DTU
[9], often used in few-viewpoints evaluations.
Algorithms. We compare our architecture against several baselines: Mip-NeRF
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[2], and FreeNerf [25] (a state-of-the-art method for this task), for vanilla archi-
tectures and Nerfacto for grid-based architectures. To better demonstrate the
intrinsic stability brought by RING-NeRF, we also developed the Nerfacto+ ar-
chitecture, which corresponds to a Nerfacto architecture coupled with a coarse-
to-fine training based on a progressive activation of the grids (the rest of the
decoder’s input being filled with zeros). For Nerfacto+ and RING-NeRF, we
also add FreeNeRF’s loss that penalizes the density of the first M = 10 samples
of each ray to reduce as much as possible artefacts in front of the cameras. As an
ablative experiment, we also evaluate RING-NeRF using discrete coarse-to-fine
(fixed LOD increment of 1 rather than the proposed continuous increase).
Protocol. We follow FreeNeRF’s evaluation pipeline, including the number of
supervision viewpoints (3 to 9), the choice of these views among the dataset and
the evaluations using masks of the object. Since we are using the same protocol,
the results of FreeNeRF and Mip-NeRF were taken out of FreeNeRF’s article.
Results. Evaluation results are reported in table 3. We first notice an impor-
tant difference between vanilla and grid-based baselines. While Mip-NeRF faces
troubles in reconstructing the scene with 3 views, the method seems to find
coherency when adding more images. However, Nerfacto struggles much more
to form a consistent 3D scene even when using 9 images (see figure 1). Even
though the grid-based baseline is way faster to train, its design implies more
instability when facing a small number of images. This does not mean however
that few viewpoints are incompatible with grid-based methods. Using progressive
training coupled with a very simple and generalizable regularization, both Ner-
facto+ and our architecture succeed in creating coherent geometry. Nonetheless,
RING-NeRF considerably outperforms Nerfacto+, with a PSNR difference vary-
ing from 3 to 4, demonstrating the stability increase brought by our architecture,
and also outperforms Mip-NeRF for the configuration with 3 and 6 supervision
images. The discrete coarse-to-fine version of RING-NeRF performs in-between
Nerfacto+ and the complete RING-NeRF. This showcases both the intrinsic in-
terest of the proposed architecture against the Nerfacto+ and the relevance of
the continuous coarse-to-fine mechanism. FreeNerf remains the best performer
of all in terms of quality, but with a reconstruction time that is extremely slower
than RING-NeRF, the former achieving its reconstruction in 2.56 hours while
the latter only requires less than 10 minutes. RING-NeRF thus offers a better
quality-speed trade-off for the few-view reconstruction issue (see figure 1).

Table 3: Performances of reconstruction from few viewpoints on the DTU dataset.
The reported metrics are computed based on the mask of the object.

PSNR ↑ SSIM ↑ LPIPS ↓
#Images 3 6 9 3 6 9 3 6 9 Time ↓

Mip-NeRF [2] 8.68 16.54 23.58 0.571 0.741 0.879 0.353 0.198 0.092 2.56h
FreeNeRF [25] 19.92 23.25 25.38 0.787 0.844 0.888 0.135 0.095 0.067 2.56h
Nerfacto [20] 9.35 9.75 9.78 0.567 0.604 0.647 0.385 0.331 0.326 0.15h
Nerfacto+ 13.61 16.61 19.33 0.639 0.699 0.759 0.276 0.218 0.151 0.15h

RING-NeRF 16.18 20.47 23.19 0.713 0.808 0.847 0.200 0.127 0.085 0.15h
w/ discrete CtF 15.79 20.16 22.93 0.706 0.785 0.847 0.201 0.127 0.085 0.15h
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Table 4: SDF reconstruction performances when foregoing the scene-specific SDF
Initialization on the Replica Dataset. The Chamfer distance is in centimeters.

PSNR ↑ SSIM ↑ LPIPS ↓ Chamfer-L1 ↓ Training Time ↓
NeuS-facto [26] 24.62 0.778 0.347 17.61 1.4h

NeuralAngelo [11] 30.79 0.916 0.0761 13.69 3.40 h
RING-NeRF 37.18 0.969 0.0194 5.71 1.28 h

4.4 SDF Reconstruction without Initialization

SDF reconstruction is known to be a more unstable process than density-based
NeRF [1], requiring a scene-specific initialization to converge. This initialization
becomes an issue in complex environments and incremental setups, where several
types of scenes can co-exist and are not necessarily known beforehand. There-
fore, in this experiment, we evaluate the ability of RING-NeRF and other SotA
architectures to achieve SDF reconstruction without scene-specific initialization.
Dataset. The evaluation is achieved on a subset of 7 scenes of the Replica [18]
synthetic indoor dataset. A Tanks & Temples [10] example is provided in sup-
plementary materials with corresponding analysis.
Algorithms. We compare our architecture to two SDF methods, all of them
implemented in the same SDFStudio [26] branch of the Nerfstudio framework
for fairer comparisons: NeuS-facto, an adaptation of NeuS for grid-based meth-
ods with Nerfacto modules, and an implementation of NeuralAngelo. For these
experiments, our model is built upon the NeuS-facto baseline, using in particular
the same NeuS-based SDF-to-density transformation [22].
Protocol. To evaluate the impact of the architecture and pipeline over the con-
vergence and stability, we suppress the inverted sphere SDF initialization scheme
and use a random initialization for the model.
Results. Evaluation results are shown in table 4. First of all, NeuS-facto faces
low rendering and reconstruction metrics, due to catastrophic failure in most
of the tested scenes (see figure 1) since the model tends to re-draw the 2D im-
ages in front of the camera. Regarding NeuralAngelo, its relatively high PSNR
demonstrates its ability to synthesize satisfying RGB. However, as illustrated in
figure 1 and highlighted by the reconstruction metrics, the underlying geometry
of the scene is poorly reconstructed, without any fine details. Finally, our method
RING-NeRF is by far the best performer, with much higher PSNR and a better
geometry including fine details (see figure 1), although a bit noisy. The simple
architecture of RING-NeRF also permits faster epochs, thus faster training.

4.5 LOD Extensibility

This experiment aims to demonstrate RING-NeRF’s unique ability to increase
dynamically the level of detail of the scene representation.
Dataset. The scan 114 of the DTU dataset is used for this experiment.
Algorithms. Because I-NGP architectures [4, 11, 14] cannot perform LOD ex-
tensibility (due to the fixed decoder’s input size), only RING-NeRF is evaluated.
Protocol. We train our model using two different configurations : one low res-
olution with a 3 levels grid hierarchy and one high resolution with 5 levels (the
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Fig. 5: Learning curves and final renderings of RING-NeRF models with different grid
configurations trained either jointly or incrementally.

grid resolutions are 16, 32, 64, 128 and 256). For these two configurations named
"3 levels" and "5 levels", every grid and the decoder are trained simultaneously.
We proceed to showcase the extensibility of RING-NeRF by adding grids to the
"3 levels" configuration that is previously trained. We first train one grid of
resolutions 128 ("3+1 levels" in Figure 5) with the three initial grids and the
decoder frozen and then train another grid of resolutions 256 ("3+1+1 levels"
in Figures 5) with the four grids and the decoder frozen.
Results. Figure 5 shows that the configuration "3+1+1 levels" results in the
same rendering quality than the "5 levels" one. This demonstrates the ability
of our model to dynamically change the resolution of the grid hierarchy. This is
an important step towards the development of an adaptive architecture which
locally chooses the resolution of the representation based on the scene’s content.
This allows to drastically reduces the number of parameters, helping in improv-
ing the memory footprint, the training duration and the model’s robustness.

5 Conclusion and Perspectives

In this work, we introduced RING-NeRF, a simple and versatile NeRF pipeline
that provides two inductive biases by design: a continuous multi-scale represen-
tation of the scene, and an invariance of the decoder latent space over spatial and
scale domains. Coupled with a distance-aware forward mapping and a continuous
coarse-to-fine reconstruction process, our pipeline demonstrated experimentally
its versatility with on-par performances with dedicated state-of-the-art solutions
for anti-aliasing or reconstruction from few viewpoints. It even outperforms them
in terms of robustness to scene-specific initialization for SDF reconstruction. Fur-
thermore, it is highly efficient and is not limited to object-centric scenes.

Future work will study the impact of RING-NeRF on other challenging use
cases, such as facing inaccurate camera poses [16] and SLAM [29]. We will also
use the extensibility property of our architecture to develop memory-efficient
sparse Neural Fields, which is considered to be a limit of most grid-based models.
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