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Abstract. We present Structured Neural Radiance Field (Structured-
NeRF) for indoor scene representaion based on a novel hierarchical scene
graph structure to organize the neural radiance field. Existing object-
centric methods focus only on the inherent characteristics of objects,
while overlooking the semantic and physical relationships between them.
Our scene graph is adept at managing the complex real-world correla-
tion between objects within a scene, enabling functionality beyond novel
view synthesis, such as scene re-arrangement. Based on the hierarchical
structure, we introduce the optimization strategy based on semantic and
physical relationships, thus simplifying the operations involved in scene
editing and ensuring both efficiency and accuracy. Moreover, we conduct
shadow rendering on objects to further intensify the realism of the ren-
dered images. Experimental results demonstrate our structured represen-
tation not only achieves state-of-the-art (SOTA) performance in object-
level and scene-level rendering, but also advances downstream applica-
tions in union with LLM/VLM, such as automatic and instruction/image
conditioned scene re-arrangement, thereby extending the NeRF to inter-
active editing conveniently and controllably.

Keywords: Hierarchical Scene Graph · Semantic and Physical Rela-
tionships · 3D Scene Editing

1 Introduction

Recent advancements in 3D scene reconstruction [30] and understanding [27]
have been significantly propelled by the development of Neural Radiance Fields
(NeRF) [2, 3, 24]. These models have demonstrated remarkable capabilities in
rendering photorealistic scenes by encoding the volumetric density and color of
a scene into a neural network. Traditional NeRFs primarily focus on capturing
the visual appearance of scenes, which may not be sufficiently practical for do-
mains such as robotics and augmented reality. We believe that an object-centric
representation offers a more flexible approach to scene representation.

Existing methods of implicit learning of object semantic information usually
output the semantic/instance channels with a shared MLP [4,43,46,48]. Despite
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Fig. 1: Partial results of office scene from our datasets. By utilizing a freely catured
video as input, we can decompose the scene into nodes and edges, and then render the
rearranged scenes with shadow using volumetric rendering.

their effectiveness, they lack clear expression of spatial information about ob-
jects, and the globally shared weights also limit their scalability. Alternatively,
some approaches parameterize objects as 3D boxes and treat each object as an
independent neural model to learn separately [18,29,47], which facilitates down-
stream applications, such as scene editing. However, these methods only consider
the properties of the objects themselves, without considering the semantic and
physical relationships between objects within them. This limitation hinders their
applicability in more complex scenarios where understanding and manipulating
the relationships between objects are crucial, such as in interactive scene editing.
To address these challenges, we introduce the Structured Neural Radiance Field
(Structured-NeRF), a novel approach that leverages a hierarchical scene graph
structure to represent indoor scenes comprehensively.

Structured-NeRF goes beyond the scope of existing object-centric methods
by not only capturing the inherent characteristics of individual objects, but
also by meticulously organizing the semantic and physical relationships between
them. Existing NeRF editing methods [15, 37] typically require meticulous ad-
justments by the user and may result in physically unrealistic phenomena, such
as object clipping. However, the hierarchical scene graph structure facilitates a
more organized and structured representation of the radiance field, enabling the
model to manage the complex real-world correlations present in indoor scenes.
By introducing optimization strategy based on these semantic and physical rela-
tionships, Structured-NeRF streamlines the process of scene arrangement, mak-
ing it both efficient and accurate. In order to further enhance the realism of
the rendered images, we have designed a method for rendering object shadows,
inspired by shadow mapping techniques in computer graphics.

Our methodology not only achieves state-of-the-art (SOTA) performance in
object-centric 3D scene reconstruction, but also enables interesting applications,
including automatic and instruction/image-conditioned scene re-arrangements,
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levering the powerful understanding capabilities of LLM/VLM [40, 50]. These
advancements attest to the effectiveness, versatility, and scalability of this struc-
ture in scene understanding and reconstructing, as well as comprehending and
editing complex real-world relationships.

In summary, the core contributions of our research are as follows.
• We introduce a novel method to organize NeRFs through a hierarchical

scene graph, capturing both the inherent characteristics of objects and their
semantic and physical relationships, enhancing scene understanding beyond tra-
ditional object-centric methods and achieved SOTA results in object-level and
scene-level novel view synthesis.

• We introduce an innovative optimization strategy that leverages semantic
and physical connections between objects to improve the efficiency and accuracy
of scene editing.

• We introduce a method for rendering object shadows to increase the realism
of the rendered images of new scenes, inspired by shadow mapping in graphics.

• We integrate the scene graphs with LLM/VLM, realising automatic and
instruction/image-conditioned scene rearrangements. This has broadened the
scope of NeRF’s application in 3D scene editing.

2 Related Work

Object-centric Neural Radiance Field. Object-centric NeRF is crucial for
applications such as autonomous driving and robotics, with a promising appli-
cation being the construction of simulation platforms for embodied agents [49].

Implicit decomposition typically output the semantic/instance/feature chan-
nels with a shared MLP [4,43,46,48]. Semantic-NeRF [53] employs an additional
semantic classification head to predict the semantic categories of sampled points,
whereas [17] predicts the clip features of the sampled points, thus possessing the
capability for open-set region querying. These methods effectively accomplish
scene segmentation, but lack explicit spatial information due to their implicit
representation, such as specific object location and size. Furthermore, the use of
a globally shared network makes it challenging to isolate a particular object of
interest, limiting their downstream applications, such as flexible scene editing.

In contrast to the implicit decomposition of the global neural radiance field,
there are also explicit decomposition manners that decompose scenes into multi-
ple car models [20,29]. Apart from the autonomous driving scenarios, the concur-
rent works of [11, 19] introduce object-decomposed NeRF-SLAM systems. Dif-
ferent object models are trained simultaneously to accelerate convergence and
reduce the total parameters. These methods are effective at decoupling objects
from scenes, but they only consider the intrinsic characteristics of the objects,
overlooking the crucial semantic and physical relationships between them, which
are vital for scene understanding and editing. We take a step forward and in-
troduce a hierarchical scene graph structure and, based on this scene graph,
meticulously design an automated object pose optimization pipeline, liberating
users from the complexities of manual fine-tuning and editing processes.
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NeRF Editing. Neural fields inherently encode shape and texture informa-
tion of the scene, which implies considerable challenges in editing tasks that
involve manipulating these fields. Instruct-Nerf2Nerf [12] introduces a method
to iteratively edit the input images and optimize the underlying scene through
re-trainng. However, its editing process is uncontrollable and does not allow for
specifying and editing a local area [36]. Other methods [22, 25, 26] utilize the
capabilities of the generation model [34] to perform content inpainting within
the mask region, generating a new scene. Additionally, there are some methods
use bounding box as a guide to insert 3D objects generated from text into the
background radiance field [36, 37]. While they don’t decompose the scene, thus
unable to move objects that exist within the scene. These methods endow NeRF-
editing with high controllability, yet they require users to meticulously adjust
the object’s pose or editing area to place object in a physically realistic position,
significantly increasing the speed and complexity of the editing process. Com-
pared to the aforementioned methods, our approach, by incorporating a scene
graph as the organizational structure of the scene and undergoing semantic and
physical optimization processes, can flexibly adjust the object’s pose based on
varying degrees of user input to automatically generate new scenes. This achieves
a truly user-friendly scene editing functionality.

3 Method

As shown in Fig. 2, given a set of images with known poses, we initially utilize
the Scene-decomposed NeRF method to decompose the scene and treat each
object as a scene node. Subsequently, we use multimodal input to infer spatial
relationships between object nodes. On the basis of the support relationships
among the objects, we transform the nodes and edges into a hierarchical scene
graph. This scene graph initially guides the Semantic relation optimization
of the objects’ poses from a top-down view. Afterwards, it utilizes the ‘forces’
between NeRFs to optimize the objects’ placement to achieve a stable state that
conforms to the Physical laws of the real world. Finally, we perform object-
compositional rendering based on the scene graph to synthesize the new scene.

3.1 Structured Neural Radiance Field

Hierarchical Scene Graph. We used Open-Vocabulary 3D Hierarchical Scene
Graph [6,10,33], in concert with neural radiance fields, as the scene representa-
tion, denoted as G = {V, E}. Here, V = {vi | i = 1, . . . , N} represents a set of ob-
ject nodes which contains the properties and network weights of the objects. E =
{eij | i, j = 1, . . . , N, i ̸= j} represents the semantic edges connecting each pair of
objects. eij encompasses all spatial relationships

{
ri,j,k =

{
vi, vj , lk

}
| k = 0, . . .

}
between the nodes vi and vj . Note that we use the support relationship to de-
termine the hierarchy of nodes, which determines the optimization order of their
poses. For example, only after placing the cup holder, can the coffee cup be
placed on top of it.
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Fig. 2: Pipeline overview. Starting from a set of multi-view images, we first decompose
the scene into independent nodes, followed by scene graph synthesis via LLM inference.
Subsequently, we proceed through a semantic and physics optimization process, and
render appropriate shadows for objects. Ultimately, the novel view of the new scene
are synthesized.

Compositional Volume Rendering. The bottom left corner of Fig. 2 demon-
strates our compositional rendering process. Given a camera pose Ti, the ray
r = o+ td emitted from the optical center o through a pixel can be determined.
For the background node and all object nodes through which the ray emitted, we
sample N points separately. That is to say, we can separate the whole ray into
m + 1 parts of r = {rbg, robj_1, · · · , robj_m}, where m is the number of inter-
sected objects. As the intersection of the ray and the bounding box determines
the starting and ending points {r(tin), r(tout)} of the ray through each object,
points inside each object’s bounding box are then transformed from the world
space to their local canonical space accordingly.

The color and density values of the sampled points can be queried through
forward passes given the associated forward models. By sorting the samples
according to their depth values as Pi ∈ sorted({P bg

i , P
obj_1
i , · · · , P obj_m

i }),
the rendering can be achieved through a composition of the standard volume
rendering formula [23] as:

Ĉ(r) =
∑
Pi

Tiαici, Ti = exp(−
i−1∑
k=1

σkδk), (1)

where αi = 1− exp(−σiδi), δi = ti+1 − ti.
Besides rendering the color of entire ray, we can also perform volume render-

ing separately for each node to generate the pixel color, depth and opacity as:

Ĉk(rk) =

N∑
i=1

T k
i

(
1− exp

(
−σk

i δ
k
i

))
cki , (2)
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D̂k(rk) =

N∑
i=1

T k
i

(
1− exp

(
−σk

i δ
k
i

))
tki , (3)

Ôk(rk) =

N∑
i=1

T k
i

(
1− exp

(
−σk

i δ
k
i

))
. (4)

where the background node is indexed as 0; T k
i = exp

(
−
∑i−1

j=1 σ
k
i δ

k
j

)
is the

accumulated transmittance along the ray for the k-th object.
Optimization of Node Models. The photometric error minimization regard-
ing the compositional rendering equals to the training of a single vanilla NeRF
as:

Lcomp_rgb =
∥∥∥Ĉ(r)− C(r)

∥∥∥2
2
. (5)

To enforce the gradient contribution to the right object node, we employ an
object accumulation loss and an object color loss to supervise the associated
object models. Given a binary mask Mk(rk) that indicates if the ray first hits
the surface of the associated object, the accumulation of each object should be
consistent with the pixel-node association.

Lobj_acc =

K∑
k=1

∥∥∥Ôk(rk)−Mk(rk)
∥∥∥2
2
,Lobj_rgb =

K∑
k=1

Mk(rk)
∥∥∥Ĉk(rk)− C(r)

∥∥∥2
2
.

(6)
We also use a pretrained inpainting model of LaMa [38] and LeftRefill [5] to

predict the appearance of the occluded areas and supervise the color rendered
by the background model. Considering LaMa is inherently a 2D model that lacks
multi-view consistency, we adopt Omnidata [9] to predict the depth map of the
inpainted image and serves as an auxiliary supervisory signal [51]:

Lbg_rgb =
∥∥∥Ĉ0(r)− Cinpaint(r)

∥∥∥2
2
,Lbg_depth =

∥∥∥wD̂0(r) + q −Dinpaint(r)
∥∥∥2
2
,

(7)
where w and q are learnable scale and shift factors that are optimized through
training for scale and shift invariance.

The final loss for training our structured neural radiance field consists of five
terms:

L =Lcomp_rgb + λ1Lbg_rgb + λ2Lbg_depth + λ3Lobj_acc + λ4Lobj_rgb, (8)

where λ1, λ2, λ3, λ4 are normalizing constants to balance the training.

3.2 Hierarchical Scene Graph Driven Editing

Building upon the structured representation outlined in Sec. 3.1, we exploit the
powerful reasoning capabilities of LLMs to facilitate various editing applications,
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the essence of which lies in leveraging foundation models to infer the relationships
between objects. Here, we propose three levels of user input interfaces.
Automatic Scene Re-arrangement. We aim for scene re-arrangement to be
automated, so we use the commonsense inherent in the GPT-4 [28] to infer the
appropriate spatial relationships between the object nodes. For details, please
refer to the supplementary material.
Instruction/Image-conditioned Re-arrangement. Sometimes, we aim to
edit scenes based on user instructions. For instance, if a left-handed user specifies
a relationship (mouse, left to, laptop). For some application scenarios that
required additional information, we suggest using a goal image to guide scene
graph generation. We focus on extracting high-level semantic relationships, par-
ticularly the relative positions of objects, rather than replicating their exact
locations from the image. We use GPT-4V [50] to recognize objects in the target
image and describe their spatial interrelationships.

Once the relationships between the nodes are established, the system con-
structs a hierarchical scene graph based on the support relationships between
the object nodes.

3.3 Object Pose Optimization

According to the guidance of the hierarchical scene graph, we optimize the ob-
ject’s pose layer by layer and the corresponding pseudo-code is given in sup-
plementary material. Our optimization goal is to minimize loss, ensuring the
positions of object nodes satisfy the constraints of all edges as much as possible,
while also achieving physically plausible placement:

L =

n∑
i=1

n∑
j=1,j ̸=i

(Lsemantics(i, j) + Lphysics(i, j)) (9)

where Lsemantic(i, j) represents the constraint loss of the semantic edge between
the i-th and j-th nodes, and Lphysics(i, j) represents the constraint loss of the
physical relationship between nodes.
Semantics Optimization. We map the difference between the object layout
in the current scene and the object relationships defined in the scene graph
to a set of loss functions that we interpret as the system’s potential energy.
Drawing from the principles of Langevin dynamics [13], we expect that as the
optimization process unfolds, the spatial positions of the target objects will move
in the direction where the system’s potential energy decreases most rapidly (the
negative gradient of potential energy with respect to position).

When traversing the scene graph from top to bottom in layers, we represent
each node vi by its 3D spatial coordinates pi and the instance mask mi rendered
in the top-down view, as shown in Fig. 3. Taking node vi as an example, we first
identify each edge eij connected to it and the corresponding node vj . Then, we
map the triplet (vi, vj , ri,j,k) to the loss function associated with the spatial-
symbolic relationship. For details on the specific mapping function f , we refer



8 Z. Zhong et al.

 

Fig. 3: An illustration of semantics optimization and physical optimization. (a) is the
initial stage of the objects semantics on the table, while (b) is the optimized semantics.
(c) and (d) visualize the forces that object may be effected, one is the gravity force
while the other is the repulsive force, and (e) illustrates the stable stage that contacted
objects would reach in the end.

the reader to the supplementary material.

L
(
vi, vj , r

i,j,k
)
= f

(
pi,mi, pj ,mj , r

i,jk
)

(10)

Lsemantics(i, j) =

K∑
k

L
(
vi, vj , r

i,j,k
)

(11)

Physics Optimization. Relying solely on layout optimization to determine
the position of objects is often not precise enough, since it can not simulate the
physical interactions between objects. Since force is a condition that changes the
state of motion of an object, a stable state is achieved when the resultant force
is zero. Therefore, we introduce the Probabilistic Contact Model [21] to describe
the contact relationship between objects:

Lphysics(i, j) = F gravity + F repulsion (12)

where F gravity represents the physical quantity depicting the mass of an object
influenced by gravity, while F repulsion is the repulsion force between two objects
with overlapping volumes. Specifically, we have:

F gravity = m · g; F repulsion = k ·max(0,moverlap) · n. (13)

Here, m is the mass of the object, g is the gravitational constant, k is the elastic
constant, while moverlap is the mass of overlapped volume, and n is the vector
pointing from the overlapped volume toward the center of the object. To simplify
the problem, we assume that objects are homogeneous materials, thus the mass
is proportional to the volume, which allowing us to use the Monte Carlo method
to estimate the mass of the object:

mobj =

∫
x∈R3

σ (x) ≈
∑
x∈X

σ (x). (14)

Here, σ(x) represents the density field of the object. Since σi (x) represents
the probability of object i occupying point x, the σi (x)σj (x) is actually the
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possibility that object i and j appears at the point x at the same time, which
is not possible. Thus the repulsive force arises in the overlap of objects, pushing
the two objects in opposite directions. We can calculate the mass of overlapped
volumes as follows:

moverlap ≈ 1

N ij

∑
x∈Xi∩Xj

σi (x)σj (x) (15)

where Xi and Xj are the sample points in object i and j respectively, and N ij is
the number of sample points that both in i and j. These forces will force objects
to move in a small area until the overlapping area is minimized and balanced
with the object’s own gravity F gravity, as illustrated in Fig. 3.

3.4 Screen Space Shadow Map

In NeRF editing, a key element that greatly affects realism is the shadow of the
object. We draw inspiration from the shadow mapping technique [45] in computer
graphics to add high-fidelity shadow rendering to NeRF rendering. Whether a
pixel in screen space will be affected by shadow is whether the light emitted from
the light source is obstructed by other objects. Therefore, for each pixel point
in screen space, we can determine the visibility of the world coordinate point
corresponding to that pixel to the light source, implementing shadow mapping.

Let Cv be the RGB image rendered using composite rendering, and Dv be the
corresponding depth image, while vo and vd are the starting point and direction
of the ray, which can be calculated from the camera’s position and viewing
direction. After easily transformed these depth points into the light source’s
view, we can render rays from the light source Lo pointing to the depth points,
and render depth that the light could travel before blocking by objects. By
comparing the depth points in the light source’s view, which is how far the light
rays need to travel to illuminate that area, we can determine whether a pixel
would be affected by the light.

4 Experiments

In this section, we introduce the dataset and provide evaluation results along
with comparisons to baselines. Subsequently, we conduct an ablation study and
analysis on the different components of the proposed method. Additional exper-
imental result and analysis are available in the supplementary material.

4.1 Datasets and Implementation Details

We train our panoptic scene representation on multiple datasets. For quantitative
evaluation, we follow the experimental setting of UDC-NeRF [43] and evaluate
the proposed method on ToyDesk [48] and ScanNet [8] datasets. We also
captured several lifelike indoor scenes using a handheld phone with resolution
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Fig. 4: Results of the decomposition on the ToyDesk [48]. Compared to Object-
NeRF [48] and UDC-NeRF [43], our method has achieved superior results in rendering
individual objects, backgrounds, and entire scenes.

Table 1: Quantitative comparison with other methods. The best results are shown in
bold.

Scenes Methods PSNR ↑ SSIM ↑ LPIPS ↓

ToyDesk2
Object-NeRF [48] 24.815 0.7888 0.446
UDC-NeRF [43] 25.756 0.8126 0.448
Ours 26.552 0.8507 0.186

ScanNet
Object-NeRF [48] 25.264 0.8047 0.4094
UDC-NeRF [43] 26.135 0.8249 0.395
Ours 30.360 0.8394 0.236

1280 × 720 pixels for more qualitative analyses. Camera poses are calculated
using COLMAP [35], while instance masks are estimated by XMem [7].

We take the default model (Nerfacto) of NeRFStudio [39] as our forward
model architecture among the scene graphs. All experiments were conducted on
a server with an AMD EPYC 7742 64-Core Processor and an NVIDIA GeForce
RTX A4000 graphics card. Each model is trained for 30, 000 iterations using the
Adam optimizer at a learning rate of 1e-2. An exponential decay scheduler is
applied, adjusting the learning rate to a final value of 1e-4.

4.2 Baselines

Scene-level and Object-level Representation. We conduct experiments
to evaluate the synthesized novel views of both foreground nodes and the back-
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Fig. 5: Qualitative results of the ablation study: (a) w/o. 2D inpainted pseudo depth
supervision; (b) w/o 2D inpainted pseudo RGBD supervision; (c) w/o object RGB
supervision and 2D inpainted pseudo RGBD supervision; (d) w/o object accumulation
supervision. (e) Ours.

Table 2: Ablation studies on the ScanNet dataset. Best shown in bold and the second-
best shown underlined.

Methods PSNR ↑ SSIM ↑ LPIPS ↓

w/o Inpaint-Depth 30.68 0.8852 0.2127
w/o Inpaint-RGBD 31.69 0.8897 0.2019
w/o Obj. RGB and Inpaint-RGBD 31.31 0.8746 0.2182
w/o Obj. Acc. 30.99 0.8886 0.2110
Ours 31.95 0.8895 0.2057

ground node. The results are compared with the SOTA methods of Object-
NeRF [48] and UDC-NeRF [43].
Scene Editing. For the downstream applications we propose, such as scene re-
arrangement based on NeRF, there is currently no mature research. Therefore,
after referencing DALL-E-Bot [16], we designed a baseline: DALL-E-NeRF,
which interprets target objects and relationships as textual inputs and uses
DALL·E 2 [32] to synthesize top-down view images and extract the layout of
target objects. Subsequently, similar to our method, the images are synthesized
by compositional rendering. In addition to the method based on NeRF, we also
compare with an image manipulation method Stable Diffusion [34] to inpaint
the given image from certain viewpoints. For controlled scene editing, we further
input text instruction to Stable Diffusion to test its generative controllability.

4.3 Metrics

Rendering Quality. Following to [43], we measure the quality of the scene-level
novel view synthesis on the evaluation metrics of PSNR, SSIM, and LPIPS
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Fig. 6: Qualitative results of automatic re-arrangement. Compared to Stable Diffusion
[34] and human arrangement, our method is capable of producing more reasonable
renderings that hold true to real-world physical properties.

Table 3: Quantitative results using KID, FID and User Ratings.

Dining Table Kitchen Office
KID ↓ FID ↓ USER ↑ KID ↓ FID ↓ USER ↑ KID ↓ FID ↓ USER ↑

Stable Diffusion [34] 0.29 267.92 1.69 0.33 298.40 1.81 0.05 155.95 1.90
DALL-E-NeRF 0.30 270.64 3.64 0.19 221.62 3.47 0.04 141.81 3.17
Ours 0.26 251.92 3.96 0.14 197.22 3.85 0.04 138.55 3.88

and render objects and backgrounds separately to demonstrate the effectiveness
of the decomposition of our structured representation.
Scene Editing. We established two sets of evaluation metrics to comprehen-
sively compare our method with the baselines. Firstly, inspired by recent work
on indoor scene synthesis [31,41,42,44], we rendered the rearranged scenes using
all methods from different viewpoints and calculated FID [14] and KID [52]
compared to ground-truth scenes. Secondly, we conducted user experiments,
with the rating criteria ranging from 1 (Incomplete) to 5 (Excellent).

4.4 Scene-level and Object-level Representation Ability

As illustrated in Fig. 4, the proposed method yields the best rendering results.
For the background node, the black shadows are effectively removed while fine-
grained details are recovered. In terms of object decomposition, our method
provides more precise edges with clear details compared to other methods. The
quantitative results in Tab. 1 further prove the effectiveness of our method.

4.5 Ablation Study

We also conducted comprehensive ablation studies on scene 0113_00 in the
ScanNet dataset to validate the effectiveness of our loss terms. As demonstrated
in Fig. 5 and Tab. 2, background inpainting can mitigate the decomposition
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Fig. 7: Qualitative results of Instruction-conditioned rearrangement and Image-
conditioned re-arrangement. Compared to Stable Diffusion [34], DALL-E-NeRF and
human arrangement, our method is capable of generating new scenes that are better
match user input.

ambiguity in the occluded area and generate reasonable observations within
these areas. The accumulation loss results in cleaner areas in near-surface areas,
which prevents rays that traverse the foreground bounding box without hitting
an object are prevented from being used for rendering, thus avoiding gradient
back-propagation to the wrong model.

4.6 Scene Editing Applications

Automatic Scene Re-arrangement. Utilizing the object labels from the
scene graph as input, we leverage the powerful zero-shot inferencing capabilities
of GPT-4 [1] to deduce spatial relationships that align with human preferences.
We depicted comparisons of rearranged scenes in Fig. 6. Our method, supe-
rior to Stable Diffusion, generates realistic and consistent images from various
perspectives.
Instruction/Image-conditioned Re-arrangement. As shown in Fig. 7 and
Tab. 3, our approach outperforms the baseline methods across all metrics and
demonstrates high controllability. Understanding spatial and numerical relation-
ships is typically challenging for methods based on generative models, yet our
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Fig. 8: Physical optimization for multi-object collision and support.

Fig. 9: Qualitative comparison of whether shadow rendering is performed or not.

approach can satisfy user directives or target images more satisfactorily in most
cases.
Physically Realistic Placement. We visualize the results of the physically
realistic placement. In Fig. 8(a), the apple is added to the center and eventually
stabilizes there. In Fig. 8(b), we add a lemon on the right side of the bowl, which
collides with the apple, and both finally reach steady state, and the same occurs
in Fig. 8(c). Upon adding the large orange last, due to the lack of remaining
space at the bottom of the bowl, it slightly pushes the other objects outward
and eventually stacks on top of the other fruits. The visual effects in the figures
indicate that our method is consistent with the laws of physics.
Realistic Shadow Rendering. The comparison in Fig. 9 demonstrates that
our method can significantly enhance the realism of the rendered image following
editing.

5 Conclusion

In this paper, we introduce Structured-NeRF, a significant advancement in in-
door scene representation. By introducing a novel hierarchical scene graph, we
overcome the limitations of existing object-centric methods to scene editing by
integrating the semantic and physical relationships between objects. This struc-
ture improves the efficiency, accuracy and realism of scene re-arrangement. Our
experiments verify the superiority of Structured-NeRF in 3D scene reconstruc-
tion, understanding, and editing, demonstrating its potential to extend NeRFs
to a broader range of application scenarios.
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