
EGIC 19

A Supplementary Material

A.1 OASIS-C Architecture

We summarize our discriminator architecture in Tab. 3. Our architecture is split
into two parts. The first part is identical to OASIS (Schönfeld et al ., 2021), except
that we replace spectral norm with weight norm. The output out is a 256×256×
N + 1 prediction map. In the second part, we adopt a pixel-wise projection-
based conditioning scheme. We use a similar latent pre-processing block as in
HiFiC, but use 64 instead of 12 filters. The pre-processed latent feature map
y_prep has an identical shape as out and is subsequently incorporated into the
discriminator, using projection (element-wise multiplication and sum across the
channel dimension). The projected feature map proj is finally replicated and
added back to out.

Table 3: OASIS-C Architecture

Operation Input Size Output Size

ResBlock-Down image (x) 256× 256× 3 d1 128× 128× 128
ResBlock-Down d1 128× 128× 128 d2 64× 64× 128
ResBlock-Down d2 64× 64× 128 d3 32× 32× 256
ResBlock-Down d3 32× 32× 256 d4 16× 16× 256
ResBlock-Down d4 16× 16× 256 d5 8× 8× 512
ResBlock-Down d5 8× 8× 512 d6 4× 4× 512
ResBlock-Up d6 4× 4× 512 u1 8× 8× 512
ResBlock-Up cat(u1, d5) 8× 8× 1024 u2 16× 16× 256
ResBlock-Up cat(u2, d4) 16× 16× 512 u3 32× 32× 256
ResBlock-Up cat(u3, d3) 32× 32× 512 u4 64× 64× 128
ResBlock-Up cat(u4, d2) 64× 64× 256 u5 128× 128× 128
ResBlock-Up cat(u5, d1) 128× 128× 256 u6 256× 256× 64
Conv2D u6 256× 256× 64 out 256× 256×N + 1

Conv2D, Resize latent (y) 16× 16× Cy y_prep 256× 256× 64
Projection (u6, y_prep) 256× 256× 64 proj 256× 256× 1
Add (out, proj) 256× 256×N + 1 Dout 256× 256×N + 1

A.2 Pre-trained Semantic Segmentation Performance

We pre-train the first discriminator block (Fig. 2, highlighted orange) using
DeepLab27. The resulting semantic segmentation performance measured by the
mean intersection over union (mIoU) is summarized in Tab. 4.
7 We base our experiments on the panoptic configurations presented in https://
github.com/google-research/deeplab2/blob/main/g3doc/projects/panoptic_
deeplab.md (ResNet-50).

https://github.com/google-research/deeplab2/blob/main/g3doc/projects/panoptic_deeplab.md
https://github.com/google-research/deeplab2/blob/main/g3doc/projects/panoptic_deeplab.md
https://github.com/google-research/deeplab2/blob/main/g3doc/projects/panoptic_deeplab.md

20 N. Körber et al.

Table 4: Pre-trained Semantic Segmentation Performance

Dataset Crop Size Batch Size Steps mIoU ↑

Cityscapes (Cordts et al ., 2016) 256× 256 16 320k 0.67
Coco2017 (Lin et al ., 2014) 256× 256 16 1M 0.41

A.3 Additional Experimental Details

Preliminary study. We use the official implementation for PatchGAN and
translate the SESAME, U-Net, projected and OASIS discriminators carefully
to TensorFlow, based on the official PyTorch implementations. For projected
GANs, we use the efficientnet-lite4-variant (Tan et al ., 2019) as a pre-trained
feature network, which we have found to produce the best results.

To maintain the advantages of having pre-trained feature extractors, we have
used a slightly different concatenation-based conditioning scheme for conf-d and
conf-f; for conf-d, we pre-process and concatenate the latent features with the
efficientnet-lite4-based feature maps at each scale separately. For conf-f, we in-
tegrate y using a similar HiFiC-based concatenation scheme (see Fig. 12).

For conf-c (projection), we use two separate latent pre-processing blocks with
channel dimensions 64 and 4, corresponding to the local and global outputs,
respectively. We use no resize operation for the latter to match the feature di-
mension prior to classification (16 ∗ 16 ∗ 4 = 1024).

Main study. We train six models for 2+1M optimization steps, using λ ∈
{2, 1.5, 1, 0.5, 0.25, 0.1}, a crop size of 256 and a batch size of 16 and 8 for stage
one and two, respectively. We use the Adam optimizer with default settings
(β1 = 0.9, β2 = 0.999). For stage one, we use a learning rate of 1e−4 for the
first 1.8M steps and subsequently decay the learning rate to 1e−5, similar to
previous work. For stage two, we use the same settings as in Ours w/ d (HiFiC),
i.e., training strategy-I with a fixed learning rate of 1e−5, except for β (Eq. (4)),
which we increase from 0.15 to 0.30.

ORP. We finetune GORP for additional 2M steps. In practice we have found
it slightly more efficient to directly predict the MSE-optimized decoder output
MSEpred and to calculate R = MSEpred −G2(x).

Note that ORP is a general formulation for multi-realim image compression,
which allows for different model parameterizations. By increasing the model
capacity of GORP up to G2, we can approach the performance of traditional
image/ weight interpolation techniques (see Appendix A.13).

A.4 Comparing Normalization Strategies

We summarize some of the normalization methods we tried for OASIS in Tab. 5
and Fig. 16. For spectral normalization, we have found that tuning the Lips-
chitz constant is indeed helpful. However, we did not find a configuration that

EGIC 21

Table 5: The effect of different normalization strategies on the semantic segmentation
and its resulting compression performance.

Method mIoU ↑ PSNR ↑ FID ↓ Batch Size

Spectral norm (Miyato et al ., 2018) 0.49 30.01 9.75 16
Weight norm (Salimans et al ., 2016) 0.67 30.20 7.96 16

Layer norm (Ba et al ., 2016) 0.68 29.49 9.00 8

exceeded the performance of weight normalization and hence omit it here. For
layer normalization we had to reduce the batch size to 8, due to out-of-memory
issues.

A.5 LabelMix Regularization

As mentioned in the main paper (Eq. (6)), we regularize the discriminator with
the LabelMix consistency loss (Schönfeld et al ., 2021), tailored to the compres-
sion setting. We provide additional intuition in Figs. 17 and 18.

A.6 Performance on DIV2K

In Fig. 7 we provide an extended comparison to the state-of-the-art on DIV2K.
We observe similar trends as discussed for CLIC 2020, except that our method
outperforms MS-ILLM in terms of FID in the low bit range.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
bpp

0

10

20

30

40

50 FID/256 [DIV2K]

0.1 0.2 0.3 0.4 0.5 0.6 0.7
bpp

28

30

32

34

36

38 PSNR [DIV2K]

Ours (= 0.0)
Ours (= 1.0)
SwinT-ChARM (reimpl)
MS-ILLM
HiFiC (official)
VTM-20.0
BPG-0.9.8
JPEG

Fig. 7: Comparison to the state-of-the-art on DIV2K

22 N. Körber et al.

0.2 0.4 0.6 0.8 1.0
bpp

26

28

30

32

34

36

38 PSNR [Kodak]

Ours (= 0.0)
Ours (= 1.0)
DIRAC-100
DIRAC-1
HiFiC (official)
MS-ILLM
MRIC (= 2.56)
MRIC (= 0.0)
SwinT-ChARM (official)
SwinT-ChARM (reimpl)
ELIC
VTM-20.0
BPG-0.9.8
JPEG

Fig. 8: Kodak rate-distortion plot

A.7 Performance on Kodak

In Fig. 8 we provide the rate-distortion performance for the Kodak dataset. We
add the official values of SwinT-ChARM (Zhu et al ., 2022) and ELIC (He et al .,
2022) for reference. Exact configurations for JPEG, BPG-0.9.8, and VTM-20.0
can be found in Appendices A.16 to A.18.

Note that SwinT-ChARM is almost on par with the current state-of-the-art
method ELIC in terms of PSNR and thus represents a good base model for
our work. The marginal gap is due to ELIC’s more powerful entropy model.
We emphasize that both EGIC, MRIC, and DIRAC rely on some variant of the
ChARM-entropy model (Minnen et al ., 2020).

Similar to MRIC, we observe that introducing higher perception results in a
1− 1.5dB PSNR decrease.

A.8 SwinT-ChARM Reimplementation

In Fig. 8, we compare the compression performance of our SwinT-ChARM reim-
plementation (reimpl) to the official values, measured on the Kodak dataset. We
optimized the reimplemented version for 2M optimization steps on the CLIC
2020 training set, using λ ∈ {0.01, 0.003, 0.001, 0.0003} and a batch size of 8. We
used a learning rate of 1e−4 for the first 1.8M steps and subsequently decayed
the learning rate to 1e−5. We find that our reimplementation closely matches
the official values (up to 0.1dB tolerance), despite being trained from scratch
and using less than two-thirds of the optimization steps.

EGIC 23

0.2 0.4 0.6
bpp

4
6
8

10
12

FID/256 [DIV2K]

0.2 0.4 0.6
bpp

26

28

30

32

34
PSNR [DIV2K]

Ours w/ d (HiFiC)
HiFiC (official)
HiFiC (reproduced)

0.1 0.2 0.3 0.4 0.5
bpp

0

2

4

6

8FID/256 [CLIC 2020]

0.1 0.2 0.3 0.4 0.5
bpp

28

30

32

34

36
PSNR [CLIC 2020]

Ours w/ d (HiFiC)
HiFiC (official)
HiFiC (reproduced)

Fig. 9: Relative comparison to HiFiC

A.9 Experiments on HiFiC

In Fig. 9, we compare Ours w/ d (HiFiC) to HiFiC (reproduced). Note that
HiFiC (official) was trained on an internal dataset is therefore only visualized
for transparency reasons. We observe that Ours w/ d (HiFiC) is most effec-
tive in the low to medium bit range, which is the key focus of our work. For
HiFiC-lo, we achieve an improvement of up to 2 FID points with slightly better
PSNR (+0.2dB), suggesting that our method is particularly well suited for the
extremely low bit range < 0.1bpp.

For HiFiC-hi, we experience a slight decrease in performance. We suspect that
this is due to misaligned hyper-parameters; indeed recent work suggests that a
separate set of hyper-parameters is required for various bit-rates (Muckley et
al ., 2023).

A.10 Comparing Training Dynamics

In Fig. 10, we compare the training dynamics of OASIS w/ d and Ours w/ d.
We find that OASIS with weight norm greatly increases model capacity, while
pre-training accelerates training, resulting in superior compression performance.
Note that our method provides robust and stable training across different com-
pression rates, while OASIS w/ d exhibits training instabilities that are partic-
ularly evident on complex datasets (Coco2017).

In Fig. 11, we provide further performance insights into the training dynamics
of Ours w/ d (HiFiC) and HiFiC (reproduced) for stage two. We report the means
and standard deviations of BPP, PSNR, and FID as a function of the number of
optimization steps across two test runs. Note that HiFiC’s training procedure is
divided into 3 phases: warm-up (0− 50k), training with a learning rate of 1e−4

24 N. Körber et al.

0 200 k 400 k 600 k 800 k 1 M
Optimization steps

1.5
2.0
2.5
3.0
3.5
4.0 G adversarial loss (Coco2017)

Ours w/ d (HiFiC-lo)
Ours w/ d (HiFiC-hi)
OASIS w/ d (HiFiC-lo)

0 200 k 400 k 600 k 800 k 1 M
Optimization steps

2.0
2.5
3.0
3.5
4.0
4.5 D adversarial loss (Coco2017)

Ours w/ d (HiFiC-lo)
Ours w/ d (HiFiC-hi)
OASIS w/ d (HiFiC-lo)

0 25 k 50 k 75 k 100 k 125 k 150 k
Optimization steps

0.5
1.0
1.5
2.0
2.5
3.0 G adversarial loss (Cityscapes)

Ours w/ d (HiFiC-lo)
OASIS w/ d (HiFiC-lo)

0 25 k 50 k 75 k 100 k 125 k 150 k
Optimization steps

1.0
1.5
2.0
2.5
3.0
3.5 D adversarial loss (Cityscapes)

Ours w/ d (HiFiC-lo)
OASIS w/ d (HiFiC-lo)

Fig. 10: Comparing the training dynamics of OASIS w/ d and Ours w/ d. "G adver-
sarial" corresponds to the (N+1)-cross entropy loss and hence gives an idea of how
realistic and semantically correct the resulting reconstructions are (lower is better). "D
adversarial" includes regularization terms (lower is better).

(50− 500k) and 1e−5 (500k-1M), respectively, whereas, Ours w/ d (HiFiC) uses
the same learning rate and λ-schedule across all training steps.

We find that our method considerably accelerates training progress, similar
to projected GANs (Sauer et al ., 2021). As can be seen, our method exceeds the
performance of HiFiC after only 300k optimization steps. The large deviations
at the beginning of the training phase can be attributed to a sort of calibration
phase in which the variables for the projection-based conditioning mechanism
are learned from scratch.

A.11 Impact of the Focal Frequency Loss

In Tab. 6, we summarize the effect of the focal frequency loss (FFL, Jiang et al .,
2021) on the concat base configurations. For that, we finetune all base models
for additional 50k steps. We find that the FFL has the greatest impact on conf-a
and conf-d, whereas it has little impact on the discriminators based on pixel-
level supervision (conf-c and conf-e). We also find that the FFL cannot further
improve ours w/o d, which reinforces the design decisions made in our work.

A.12 Computational/ Model Complexity

In Tab. 7, we compare the storage-efficiency of each model in terms of model
parameters (in millions). For the generator, we further differentiate between
the base model size and additional parameters required for traversing the D-P
curve (denoted by +). The calculation for P includes the hyper-analysis and

EGIC 25

0 250 k 500 k 750 k 1 M
Optimizations steps

0.12

0.14

0.16

0.18

0.20 BPP [DIV2K]

0 250 k 500 k 750 k 1 M
Optimizations steps

10

12

14

16

18
FID/256 [DIV2K]

0 250 k 500 k 750 k 1 M
Optimizations steps

27.5

28.0

28.5

29.0

29.5 PSNR [DIV2K]
Ours w/ d (HiFiC)
HiFiC (reproduced)

0 250 k 500 k 750 k 1 M
Optimizations steps

0.10

0.12

0.14
BPP [CLIC 2020]

0 250 k 500 k 750 k 1 M
Optimizations steps

4

5

6

7

8 FID/256 [CLIC 2020]

0 250 k 500 k 750 k 1 M
Optimizations steps

29.5

30.0

30.5

31.0

31.5 PSNR [CLIC 2020]
Ours w/ d (HiFiC)
HiFiC (reproduced)

Fig. 11: BPP, FID, and PSNR vs optimization steps for the second stage of Ours w/
d (HiFiC) and HiFiC (reproduced). We show the mean and standard deviation across
2 runs per setting. Values at step 0 correspond to the output values from stage one.
We additionally show the values at step 50k (warm-up phase in HiFiC).

hyper-synthesis transforms, as well as additional slice transforms in the case of
ChARM.

It is worth noting that EGIC during inference is identical to SwinT-ChARM
(neglecting ORP); latency numbers can be found in Zhu et al ., 2022 (Tab. 3 and
Sec. D.3). GPU-memory overhead only incurs during training.

A.13 Image/ Weight Interpolation

Image and weight interpolation (Wang et al . 2019, Iwai et al . 2021, Yan et al .
2022) can be achieved using

x′ = (1− α)G1(y) + αG2(y), (9)

x′ = Gθ(y); θ = (1− α)θG1
+ αθG2

, (10)

where θ and α correspond to the model parameters and interpolation weight,
respectively. For our ablation study, we fine-tune the generator weights from
stage one G1 (= GORP) for additional 500k optimization steps. We use α ∈
{0.0, 0.17, 0.33, 0.5, 0.67, 0.83, 1.0}, resulting in seven points per bit-rate.

Our results8 are summarized in Fig. 13 and Fig. 14. As can be seen, both
methods work reasonably well; for weight interpolation, we observe skewed inter-
polation characteristics in some cases (e.g ., CLIC 2020 at low bit-rate). Notewor-

8 The results are based on an early stage of EGIC, which produces a slightly different
D-P trade-off. The overall logic remains however the same.

26 N. Körber et al.

Table 6: Which method benefits the most from the FFL? The relative change (rel-
PSNR, rel-FID) is here denoted over their respective concat-base configurations.

Method Distortion Perception

PSNR ↑ rel-PSNR FID ↓ rel-FID

conf-a w/ FFL 32.53 +33.8% 40.64 -63.8%
conf-b w/ FFL 29.17 -0.9% 79.55 +5.2%
conf-c w/ FFL 29.23 -0.8% 89.73 +3.1%
conf-d w/ FFL 29.89 +1.7% 21.85 -29.1%
conf-e w/ FFL 30.25 +0.7% 15.93 -3.5%

ours w/o d 29.56 -1.4% 8.73 +12.8%

Table 7: Model size comparison in millions of parameters (M)

Method E G P Total (M)

HiFiC (Mentzer et al ., 2020) 7.4 156.8 17.3 181.5
MS-ILLM (Muckley et al ., 2023) 7.4 156.8 17.3 181.5
DIRAC (Ghouse et al ., 2023) 7.0 7.0 + 108.4 14.3 136.8
HFD/DDPM (Hoogeboom et al ., 2023) 10.7 10.7 + 1033.9 36.4 1091.7
MRIC (Agustsson et al ., 2023) 10.7 10.7 + 2.65 36.4 60.45
EGIC (Ours) 9.1 9.1 + 0.4 14.4 33

thy, Ours | interpol (α = 0.0) almost matches the performance of SwinT-ChARM
(reimpl), which can be considered an upper bound.

A.14 Visual Comparison: Concat vs Projection

In Fig. 15, we provide additional visual impressions of the effect of various condi-
tioning strategies. We find that projection greatly helps to reduce image artifacts.

A.15 Pixel Weighting Schemes

Pixel weighting schemes have played a minor role in our work. As mentioned
earlier, we use the simple instance size-based weighting scheme introduced in
Yang et al . (2019), whereas, in Schönfeld et al . (2021), each semantic class is
weighted by its inverse per-pixel frequency, computed over a batch of images.
In Tab. 8, we show that this method is indeed effective and performs comparably
to the more sophisticated approach of Schönfeld et al . (2021). In Fig. 19, we
provide additional visual comparisons.

EGIC 27

Table 8: Comparing different pixel weighting schemes

Method PSNR ↑ FID ↓

OASIS (instance size-oriented) 29.90 15.30
OASIS (class-oriented) 29.90 15.56

A.16 Comparison to VVC-intra

The evaluation of the VVC standard (current state-of-the-art for non-learned im-
age compression codecs) is based on VTM-20.0, a reference software provided by
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/releases/
VTM-20.0. Similar to previous work, we first convert the PNG images to YCbCr-
format using ffmpeg https://www.ffmpeg.org/:

ffmpeg
-i $PNGPATH -pix_fmt yuv444p $YUVPATH

To compress/ decompress the images, we use:

Encode
EncoderAppStatic
-c encoder_intra_vtm.cfg -i $YUVPATH -q $Q,
-o /dev/null -b $OUTPUT
--SourceWidth=$WIDTH
--SourceHeight=$HEIGHT
--FrameRate=1 --FramesToBeEncoded=1
--InputBitDepth=8
--InputChromaFormat=444
--ConformanceWindowMode=1

Decode
DecoderAppStatic
-b $OUTPUT -o $RECON -d 8

To convert the outputs back to PNG-format, we use:

ffmpeg
-f rawvideo -s $WIDTHx$HEIGHT
-pix_fmt yuv444p -i $RECON $RECON_PNG

PSNR is measured on the 8bit-decoded images and not on the floating point
reconstructions, which is consistent with all our comparisons.

https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/releases/VTM-20.0
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/releases/VTM-20.0
https://www.ffmpeg.org/

28 N. Körber et al.

En
co

de
r (

O
S=

32
)

Se
m

an
tic

 M
ul

ti-
Sc

al
e

C
on

te
xt

Se
m

an
tic

 P
re

di
ct

io
n

(N
+1

)

re
s2

re
s3

Conditional Semantic Decoder

1x1 Conv

1/32 1/16

1x1 Conv

256 128 256 64

5x5 Conv
Upsample

1/8

5x5 Conv
Upsample

1/4

256 32

HiFiC Latent
Representation y

256
256

1x1 Conv 1x1 Conv

Upsample 5x5 Conv

1/4

To decoder

Fig. 12: Conditional panoptic DeepLab-based semantic decoder (conf-f)

A.17 Comparison to BPG

The evaluation of BPG-0.9.8 is based on the HEVC open video compression
standard, provided by https://bellard.org/bpg/:

Encode
bpgenc -o $OUTPUT -q $Q
-f 444 -e x265 -b 8 $INPUT

Decode
bpgdec -o $RECON $OUTPUT

A.18 Comparison to JPEG

We use the Python Imaging Library (PIL) to obtain the JPEG encoded/ decoded
images; (chroma) subsampling is set to 0, which corresponds to 4 : 4 : 4, the
highest quality setting.

tmp = io.BytesIO()
img.save(tmp, format=’jpeg’,

subsampling=0,
quality=Q)

tmp.seek(0)
filesize = tmp.getbuffer().nbytes
bpp = filesize * float(8)/

img.size[0] * img.size[1]
rec = Image.open(tmp)

https://bellard.org/bpg/

EGIC 29

0.1 0.2 0.3 0.4 0.5 0.6 0.7
bpp

0

10

20

30

40

50 FID/256 [DIV2K]

0.1 0.2 0.3 0.4 0.5 0.6 0.7
bpp

28

30

32

34

36

38 PSNR [DIV2K]

Ours | interpol (= 0.0)
Ours | interpol (= 1.0)
SwinT-ChARM (reimpl)
MS-ILLM
HiFiC (official)
VTM-20.0
BPG-0.9.8
JPEG

0.1 0.2 0.3 0.4 0.5
bpp

0

10

20

30

40

50 FID/256 [CLIC 2020]

0.1 0.2 0.3 0.4 0.5
bpp

30

32

34

36

38

40 PSNR [CLIC 2020]

Ours | interpol (= 0.0)
Ours | interpol (= 1.0)
DIRAC-100
DIRAC-1
HiFiC (official)
MS-ILLM
MRIC (= 2.56)
MRIC (= 0.0)
SwinT-ChARM (reimpl)
VTM-20.0
BPG-0.9.8
JPEG

Fig. 13: Traversing the rate-distortion-perception plane using image interpolation

A.19 Visual Comparison

We provide extensive visual comparison to JPEG, BPG-0.9.8 and VTM.20.0
in Figs. 20 and 21, to HiFiC and MS-ILLM in Figs. 22 to 25, to MRIC (β = 2.56)
and DIRAC-100 in Figs. 26 and 27, to PO-ELIC in Fig. 28 and to HFD/DDPM
in Figs. 29 and 30.

30 N. Körber et al.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
bpp

0

10

20

30

40

50 FID/256 [DIV2K]

0.1 0.2 0.3 0.4 0.5 0.6 0.7
bpp

28

30

32

34

36

38 PSNR [DIV2K]

Ours | interpol (= 0.0)
Ours | interpol (= 1.0)
SwinT-ChARM (reimpl)
MS-ILLM
HiFiC (official)
VTM-20.0
BPG-0.9.8
JPEG

0.1 0.2 0.3 0.4 0.5
bpp

0

10

20

30

40

50 FID/256 [CLIC 2020]

0.1 0.2 0.3 0.4 0.5
bpp

30

32

34

36

38

40 PSNR [CLIC 2020]

Ours | interpol (= 0.0)
Ours | interpol (= 1.0)
DIRAC-100
DIRAC-1
HiFiC (official)
MS-ILLM
MRIC (= 2.56)
MRIC (= 0.0)
SwinT-ChARM (reimpl)
HiFiC (official)
VTM-20.0
BPG-0.9.8
JPEG

Fig. 14: Traversing the rate-distortion-perception plane using weight interpolation

EGIC 31

input conf-c/ conf-c/
concat projection

Fig. 15: Comparing U-Net (conf-c w/ concat) vs U-Net (conf-c w/ projection). Note
that projection considerably reduces image artifacts.

32 N. Körber et al.

Input Semantic Prediction Error Map
OASIS w/ weight norm

OASIS w/ spectral norm

Fig. 16: Comparing the semantic segmentation performance of OASIS w/ weight nor-
malization and OASIS w/ spectral normalization. Black pixels in the error map corre-
spond to perfect prediction, white pixels highlight deviations from the ground truth.

EGIC 33

input x rec x′ LM(x,x′,M) Mask M pixel weights w

label map D(x,y) D(x′,y) D(LM(x,x′,M),y) LMdisc

input x rec x′ LM(x,x′,M) Mask M pixel weights w

label map D(x,y) D(x′,y) D(LM(x,x′,M),y) LMdisc

Fig. 17: Visualizing the discriminator loss components at step 33.5k (top row) and
35.2k (bottom row) on the Cityscapes dataset. We use an abbreviated notation
in some cases due to space constraints; D(LM(x,x′,M),y) and LMdisc correspond to
Dlogits(LM(x, x′,M), y) and LM(Dlogits(x, y), Dlogits(x

′, y),M) in Eq. (6). We addition-
ally visualize the pixel weight masks w introduced in Sec. 4 that highlight small object
instances, as well as the corresponding label maps and the discriminator predictions
for (x, y) and (x′, y), respectively. The colorized discriminator predictions are obtained
by argmax(D). The black color corresponds to the fake class.

34 N. Körber et al.

input x rec x′ LM(x,x′,M) Mask M pixel weights w

label map D(x,y) D(x′,y) D(LM(x,x′,M),y) LMdisc

input x rec x′ LM(x,x′,M) Mask M pixel weights w

label map D(x,y) D(x′,y) D(LM(x,x′,M),y) LMdisc

Fig. 18: Visualizing the discriminator loss components at step 1M (top row) and at
an early training stage (160k, bottom row) on the Coco2017 dataset. See Fig. 17 for a
detailed description.

EGIC 35

input x label map pixel weights w pixel weights w
(Yang et al .) (Schönfeld et al .)

Fig. 19: Comparing pixel weighting schemes based on instance size (third column,
Yang et al ., 2019) and class imbalance (fourth column, Schönfeld et al ., 2021). We map
the pixel weights w to a pre-defined color map for better visualization; the brighter
the color, the larger the weight. Note that in Schönfeld et al . (2021) identical class
segments share the same pixel weights (same color).

36 N. Körber et al.

JPEG BPG-0.9.8 VTM-20.0 EGIC EGIC
Ours (α = 0.0) Ours (α = 1.0)

0.296bpp 0.333bpp 0.292bpp 0.282bpp 0.282bpp
(1.05×) (1.18×) (1.04×)

Fig. 20: Visual comparison of EGIC (α = {0.0, 1.0}) with JPEG, BPG-0.9.8 and
VTM-20.0 on the Kodak dataset (kodim13).

EGIC 37

JPEG BPG-0.9.8 VTM-20.0 EGIC EGIC
Ours (α = 0.0) Ours (α = 1.0)

0.254bpp 0.126bpp 0.143bpp 0.127bpp 0.127bpp
(2.0×) (0.99×) (1.13×)

Fig. 21: Visual comparison of EGIC (α = {0.0, 1.0}) with JPEG, BPG-0.9.8 and
VTM-20.0 on the Kodak dataset (kodim22).

38 N. Körber et al.

input x EGIC
Ours (α = 1.0)

kodim20 0.077bpp

HiFiC MS-ILLM
(Mentzer et al .) (Muckley et al .)
0.121bpp (1.57×) 0.094bpp (1.22×)

Fig. 22: Visual comparison of EGIC (α = 1.0) with HiFiC and MS-ILLM on the
Kodak dataset (kodim20). Note that our method better preserves textual information
and texture (grass), despite using less bpp.

EGIC 39

input x EGIC
Ours (α = 1.0)

kodim14 0.184bpp

HiFiC MS-ILLM
(Mentzer et al .) (Muckley et al .)
0.235bpp (1.28×) 0.185bpp

Fig. 23: Visual comparison of EGIC (α = 1.0) with HiFiC and MS-ILLM on the Kodak
dataset (kodim14). Note that our method better preserves small faces.

40 N. Körber et al.

input x EGIC
Ours (α = 1.0)

kodim11 0.134bpp

HiFiC MS-ILLM
(Mentzer et al .) (Muckley et al .)
0.186bpp (1.39×) 0.151bpp (1.13×)

Fig. 24: Visual comparison of EGIC (α = 1.0) with HiFiC and MS-ILLM on the Kodak
dataset (kodim11). Note that our method better preserves small details (e.g ., the rope
in the left image), despite using less bpp.

EGIC 41

input x EGIC
Ours (α = 1.0)

kodim21 0.157bpp

HiFiC MS-ILLM
(Mentzer et al .) (Muckley et al .)
0.173bpp (1.1×) 0.157bpp

Fig. 25: Visual comparison of EGIC (α = 1.0) with HiFiC and MS-ILLM on the
Kodak dataset (kodim21). Note that our method better preserves small details (e.g .,
the people in the left image).

42 N. Körber et al.

input x MRIC (β = 2.56) DIRAC-100 EGIC
(Agustsson et al .) (Ghouse et al .) Ours (α = 1.0)

1ac06 0.166bpp (1.04×) 0.157bpp (0.99×) 0.159bpp

Fig. 26: Visual comparison of EGIC (α = 1.0) with MRIC and DIRAC-100 on the
CLIC dataset (1ac06). Note that EGIC has less artifacts (compared to MRIC) and
better retrains color (compared to DIRAC).

EGIC 43

input x MRIC (β = 2.56) DIRAC-100 EGIC
(Agustsson et al .) (Ghouse et al .) Ours (α = 1.0)

46c18 0.219bpp (1.08×) 0.217bpp (1.07×) 0.202bpp

Fig. 27: Visual comparison of EGIC (α = 1.0) with MRIC and DIRAC-100 on the
CLIC dataset (46c18). Note that we use less bpp.

44 N. Körber et al.

input x PO-ELIC EGIC
(He et al .) Ours (α = 1.0)

732bf 0.068bpp (0.95×) 0.0716bpp

Fig. 28: Visual comparison of EGIC (α = 1.0) with PO-ELIC, the winning solution of
the CLIC 2022 competition, using our lowest bit-rate setting.

EGIC 45

input x EGIC
Ours (α = 1.0)

kodim24 0.197bpp

HFD/DDPM (ELIC) HFD/DDPM (250 steps)
(Hoogeboom et al .) (Hoogeboom et al .)

0.196bpp 0.196bpp

Fig. 29: Visual comparison of EGIC (α = 1.0) with HFD/DDPM on the Kodak dataset
(kodim24). Note that the quality of HFD/DDPM (250 steps) largely depends on the
base reconstruction HFD/DDPM (ELIC).

46 N. Körber et al.

input x EGIC
Ours (α = 1.0)

2ff70 0.092bpp

HFD/DDPM (ELIC) HFD/DDPM (250 steps)
(Hoogeboom et al .) (Hoogeboom et al .)
0.106bpp (1.15×) 0.106bpp (1.15×)

Fig. 30: Visual comparison of EGIC (α = 1.0) with HFD/DDPM on the CLIC 2022
dataset (2ff70). We leave the assessment to the reader.

	EGIC: Enhanced Low-Bit-Rate Generative Image Compression Guided by Semantic Segmentation

