
Plug-and-Play Learned Proximal Trajectory 19

Plug-and-Play Learned Proximal Trajectory for 3D
Sparse-View X-Ray Computed Tomography

Supplementary Material

In this supplementary material, we provide additional details on different aspects of the
main text:

• In Sec. A, we present our private Cork-CBCT dataset as well as the public Walnut-
CBCT dataset [21].

• In Appendix B, we provide the full mathematical development of the convergence
analysis in Sec. 3.5.

• In Appendix C, we give more details on how we save the pre-defined optimization
trajectory that we sample from during training.

• In Appendix D, we provide additional details on how we implement the evalua-
tion, the training and inference procedures of our method, as well as compared
approaches in Tabs. 1 and 2.

• In Appendix E, we detail how we perform the ablation study in Sec. 4.4.
• In Appendix F, we provide additional visual illustrations of the results presented in

Sec. 4.

A Datasets

A.1 Cork-CBCT

The Cork-CBCT dataset we use in this work is a collection of 38 natural cork stop-
pers acquired with a Cone-Beam geometry acquisition setup. This dataset is composed
of acquisitions with 720 radiographs, acquired with a 1024 × 1024 flat panel detector
(Perkin Elmer XRD0821, CsI scintillator) along a circular trajectory with a 0.5 de-
gree angular step. The acquisitions were performed with an X-ray tube (Viscom 225
kV micro-focus tube with a tungsten target) using the following parameters: intensity
450µA, voltage 40kV and no additional filter. The corresponding CT reconstructions
of size 1024 × 1024 × 1024 voxels are obtained using a primal-dual splitting algo-
rithm [11]. The distance between the source and the rotation axis (source-to-axis
distance), the distance between the source and the detector (source-to-detector
distance) and the detector pixel size (pixel-size) are respectively 190 mm, 637
mm, and 0.2 mm. As emphasized in the illustrations in Fig. 6, the objects almost span
the entire height of the detector but are not very large. For fair comparisons, the pre-
viously mentioned metrics are computed on a central crop of size 512 × 512. Similar
to Coban et al. [16], to avoid cone-beam artifacts and the evaluation of the metrics on
empty slices, we remove the first and last 150 slices of each reconstruction from the
evaluation procedure.

A.2 Walnut-CBCT

For completeness, we also present the Walnut-CBCT dataset, although all details are
present in the following work [21]. This dataset is composed of 42 walnut acquisitions,



20 R. Vo et al.

Fig. 6: Illustrations of the Cork-CBCT dataset. Top row: two examples of radiographs and one
example of a sagittal reconstruction slice. Bottom row: examples of axial reconstruction slices,
uncropped and cropped images.

with 1200 radiographs each, acquired with a 972 × 768 flat panel detector. Three dif-
ferent acquisitions are realized per sample to obtain sets of radiographs with different
circular orbits. The corresponding ground truth reconstructions of size 501×501×501
are obtained by solving a non-negativity constrained least-squares problem using 50
iterations of accelerated gradient descent. The projections of all circular orbits are used
for the reconstruction to mitigate the cone angle artifacts due to the geometry of acqui-
sition. During the evaluation, we use a central crop of size 300 × 300 on each slice,
and we remove the first and last 100 slices of each reconstruction from the evaluation
procedure.



Plug-and-Play Learned Proximal Trajectory 21

Fig. 7: Illustrations of the Walnut-CBCT dataset. Top row: two examples of radiographs and one
example of a sagittal reconstruction slice. Bottom row: examples of axial reconstruction slices,
uncropped and cropped images.



22 R. Vo et al.

B Details on the convergence analysis Sec. 3.5

In our work, we define the problem to solve as

x̂ ∈ argmin
x∈Rn

ℓ(x) + λR∗(x), λ > 0. (18)

We show how to train a neural network D to approximate the proximity operator
proxτλR∗ , with τ > 0, the iteration step size. We then plug our Learned Proximal
Trajectory operator into a PnP scheme

xk+1 = Dα(xk − τ∇ℓ), α =
τλ

1 + τλ
, (19)

where Dα is the relaxed operator Dα(x) = αD(x) + (1 − α)x and also the approx-
imation of proxτλR∗ . Given that D is Lipschitz with Lipschitz constant β > 0, we
show that D is a d-demicontractive operator with d = 1 − 2

β+1 (Proposition 2). The
convergence analysis of Cohen et al. [18, Theorem 4.5], on PnP with demicontractive
operators applies, and we derive a condition on the regularization step γ = τλ to obtain
convergence, i.e. γβ < 1 (Theorem 1).

B.1 Lipschitz operator as demicontractive operator

In this section, we show that a β-Lipschitz mapping F is also d-demicontractive, and
we show we estimate the constant d given β. As done in [18, Sec. 3.1 and Sec 3.2], we
first review some concepts of fixed-point theory and useful definitions.

We start by considering a non-linear mapping F : Rn → R, and we say that x ∈ Rn

is a fixed point of F iff F (x) = x. We define the set of fixed points of F as

Fix(F ) := {x ∈ Rn|T (x) = x} (20)

Definition 1 (Demicontractivity). The mapping F is d-demicontractive with a con-
stant d < 1 if for any x ∈ Rn and z ∈ Fix(F ) it holds that

∥F (x)− z∥2 ≤ ∥x− z∥2 + d∥F (x)− x∥2, (21)

or equivalently
1− d

2
∥x− F (x)∥2 ≤ ⟨x− F (x), x− z⟩. (22)

Definition 2. The mapping F is Lipschitz continuous with a constant L > 0 if for any
x, z ∈ Rn it holds that

∥F (x)− F (x)∥ ≤ L∥x− z∥. (23)

When L = 1, F is said to be nonexpansive.

Definition 3 (Co-coercivity). The mapping r : Rn → R is co-coercvie with a constant
1
L > 0 if for any x, z ∈ Rn it holds that

1

L
∥r(x)− r(z)∥2 ≤ ⟨r(x)− r(z), x− z⟩ (24)



Plug-and-Play Learned Proximal Trajectory 23

Proposition 1 (Co-coercivity of Lipschitz residual). Assume a mapping T (x) :=
r(x)− αx is Lipschitz continuous with Lipschitz constant β ≤ α, then r is co-coercive
with constant 1

2α .

Proof. See [64, Proposition 2]

Proposition 2 (d-demicontractivity given a β-Lipschitz mapping). Assume a map-
ping F is Lipschitz continuous with Lipschitz constant β, and that Fix(F ) ̸= ∅, then F
is also d-demicontractive with constant d = 1− 2

β+1 .

Proof. Given a mapping F , Lipschitz continuous with Lipchitz constant β, we define
the residual r(x) := x− F (x).The mapping r is also (1 + β)-Lipschitz.

We define the mapping T (x) := r(x)− αx. We see that for any x, y ∈ Rn

∥T (x)− T (z)∥ ≤ (1 + β − α)∥x− z∥
so T is (1+β−α)-Lipschitz. For α = 1+β

2 , T is α-Lipschitz and we know from Propo-
sition 1 that r is co-coercive with modulus 1

2α = 1
1+β .

The rest of the development follows from Cohen et al. [18]. We assume that a fixed
point of F exists and we see that the set Fix(F ) is also the set of null points of r,
Null(r) := {x ∈ Rn|r(x) = 0 ⇐⇒ F (x) = x}.
For any point x ∈ Rn, for z ∈ Null(r) and r co-coercive with constant ( 1

1+β ), we see
that

1

1 + β
∥r(x)∥2 ≤ ⟨r(x), x− z⟩ (25)

Substituting r with x− F (x) we obtain

1

1 + β
∥x− F (x)∥2 ≤ ⟨x− F (x), x− z⟩, (26)

which is the definition of demicontractivity. Indeed, Eq. (26) coincides with Definition 1,
thus F is demicontractive with constant d = 1− 2

β+1 .

B.2 Convergence of LPT

We see that Eq. (19) coincides with [18, Eq. 4.6], thus we can easily derive a condition
on the regularization step size γ. For completeness, we restate [18, Theorem 4.5].

Theorem 1. Let D be a continuous d-demicontractive mapping and ℓ a proper convex
lower semi-continuous differentiable function whose gradient ∇ℓ is L-Lipschitz. As-
sume the following holds:
(W1) 0 ≤ d < 1, α ∈ (0, 1−d

2 ].
(W2) τ ∈ (0, 2

L ).
(W3) Fix(D) ∩ Fix(Gℓ) = ∅ and Fix(T ) ̸= ∅ where T (x) := Dα(x− τ∇ℓ(x)).
Then, the sequence {xk}k∈N generated Algorithm 1 converges to a fixed point of T .

Assuming that our learned operator D, in Sec. 4, is β-Lipschitz, we have shown in
Proposition 2 that it is also d-demicontractive with d = 1 − 2

β+1 . Then it follows that
condition (W1) of Theorem 1, with α = γ

1+γ , is satisfied if 0 < γβ ≤ 1.



24 R. Vo et al.

C Saving a pre-defined optimization trajectory

In this section, we give more details on how we save the pre-defined optimization tra-
jectory (Fig. 2) that we sample from during training Sec. 3.4. Saving and storing a
pre-defined optimization trajectory is very similar to the inference phase of our LPT
scheme. The main difference is that we use knowledge of the true proximal operator
proxτλR∗ in Eq. (11), rather than the learned approximation.

During the saving procedure, we sample x0 and x∗ from a dataset D and set an
additional hyper-parameter s > 0 to control the number of 2D slices we extract per
optimization step (xk is 3D volume). The detailed procedure is given in Algorithm 2.

Algorithm 2 Saving a pre-defined optimization trajectory.

1: for (x0, x
∗) ∈ D do

2: input: x0 ∈ Rn, b ∈ Rm, k = 0, K > 0, step size τ > 0, reg weight λ > 0, {qk}k ∈N.
3: while k < K do

• xk+ 1
2
= xk − τ∇ℓ(xk) ▷ gradient step on fidelity-term

• extract(xk+ 1
2
) ▷ save s random 2D slices on the disk

• zk+1 = proxτλR∗(xk+ 1
2
) ▷ true proximal step Eq. (11)

• xk+1 = zk+1 + qk(zk+1 − zk) ▷ inertial step
• k = k + 1

4: end while
5: end for

Disk space. The disk space required to save a pre-defined optimization trajectory is
O(Kshw), with h and w the height and width of the 2D slices. On the Cork-CBCT
dataset, if we consider 34 3D samples of size 10243 stored in float32, with K = 200
iterations of optimization, s = 20, h = w = 1024: the disk space required to save the
intermediate reconstruction slices is ≈ 531 GigaBytes, this represents 136k data points.
On the Walnut-CBCT dataset, using the same hyper-parameters s and K, the disk space
required is 127 GigaBytes for 136k data points.



Plug-and-Play Learned Proximal Trajectory 25

D Implementation details

We use pyTorch [45] to train the deep learning networks. To compute the forward and
adjoint operator A and A⊤ for a Cone-Beam CT setup we use the TIGRE toolbox [9],
which allows to split the operator computations into arbitrary smaller problems [10],
and trades-off speed for size complexity.

D.1 Evaluation metrics

For each experiment, we evaluate the classic Peak Signal to Noise Ratio (PSNR) and
the Structural Similarity Index (SSIM) [60] metrics. We measure the PSNR between an
estimation x̂ and the corresponding ground truth x∗ as follows:

PSNR(x̂, x∗) = 10 log10

(
range2x

MSE(x̂, x∗)

)
, (27)

where rangex is the difference between the maximum and minimum pixel value within
a slice and MSE denotes the usual mean squared error between two images.

The SSIM is a metric based on human visual perception; it provides a quality index
between 0 and 1 and is the aggregation of a sliding window computation at M different
locations:

SSIM(x̂, x∗) =

1

M

M∑
j=1

(2µ̂jµ
∗
j + C1)(2Σj + C2)

(µ̂2
j + µ∗

j
2 + C1)(σ̂2

j + σ∗
j
2 + C2)

(28)

where, µ̂j and σ̂j are the mean and standard deviation of the image f̂ at the j-th lo-
cation, µ∗

j and σ∗
j are the mean and standard deviation of the image f† at the j-th

location. C1 and C2 are two constants used to stabilize the computation. We use the
values C1 = (0.01 rangex)

2 and C2 = (0.03 rangex)
2. We re-use rangex to scale the

SSIM computation. Following Wang et al. protocol in [60], we apply a Gaussian blur
with a standard deviation of 1.5 to the images before computing.

The metrics are computed per slice as we found that the range of intensity values
could vary a lot between different slices of the same object.

D.2 Learned Proximal Trajectory (LPT)

Before training. First, we need to save the pre-defined optimization trajectory from
which we sample during training (Algorithm 2). The optimization trajectories are saved
with λtrain while the inference is run with λinference. The Lipschitz constant L of the
fidelity-gradient ∇ℓ is computed using power iterations, as done in [52]. We report the
Lipschitz constant L and the regularization parameters λ in Tab. 5.
Training. The training procedure is the one detailed in the main text Sec. 4. For more
precision, we also use Exponential Moving Average, with decay 0.999, 0.5 of dropout,
and clip the gradient norm to 1e− 2 to improve stability. Unless otherwise mentioned,
we use these same improvement tricks to train the other methods.



26 R. Vo et al.

Table 4: Regularization parameters and Lipschitz constant L of the fidelity-gradient ∇ℓ.

Learned Proximal Trajectory Walnut-CBCT - 3D Cork-CBCT - 3D

Num. views 30 50 100 30 50 100

Lipschitz constant of ∇ℓ 569.2996 933.3025 1905.3225 116.64 192.6769 2781.5076
λtrain 3.5 5 9 0.75 1 2
λinference 7 10 18 0.75 2 2.5

Inference. The step size parameter is set to the same value τ = 1
L during extraction

(Algorithm 2) and inference (Algorithm 1). During inference, the regularization param-
eter λ can be adapted and set to a different value than the extraction procedure to obtain
better results (Fig. 8).

Ultimately, the network D is only an approximation of proxγR∗ ; hence, the opti-
mization trajectory generated during inference is different from the one saved during
training. Indeed, convergence is slower, thus during inference, we also set K = 500
iterations and set a stopping criterion ck = ∥xk+1 − xk∥2/∥x0∥2 < 10−4.

0 100 200 300 400 500
iteration

14
16
18
20
22
24
26
28

P
S

N
R

(d
B

)

100 101 102

iteration

10−4

10−3

10−2

10−1

c k

Ours− λtrain = 5

Ours− λtrain = 10

Ours− λtrain = 20

Fig. 8: In this figure, we show how changing the regularization weight λ during inference influ-
ences the convergence of the LPT scheme. The network D is trained on an pre-defined trajec-
tory with λtrain, and the inference is run with λinference = 10. The best results are obtained with
λtrain = 5, i.e. λtrain < λinference.

In practice, we obtain the best performance with D trained on finer optimization trajec-
tories, i.e. a trajectory with small proximal step size γ = τλ. With a small step size γ,
the procedure in Algorithm 2 converges slower to the solution x∗. However, training D
on a finer optimization trajectory ensures that the network D sees more examples of the
proximal operator during training, increasing its robustness.

D.3 PnP-PGD

Training. We tried to train D using the procedure detailed in [46]. The denoising op-
erator is defined as a learned maximally monotone operator, i.e. Dσ(x) = x+Qσ(x)

2 .
We use the deep residual UNet architecture [49] in Fig. 11 (without the timestep em-
bedding) for Qσ , and concatenate the noise level σ to the input of the network. To



Plug-and-Play Learned Proximal Trajectory 27

constrain the Lipschitz constant of Qσ , we regularize the spectral norm of its Jacobian,
thus minimizing the following loss function

L(θ) = Ex∗∼DEξσ∼N (0,σ2I)

[
∥Dσ(x

∗ + ξσ; θ)− x∗∥22

+ µmax(∥JQ(x̃)∥, 1− ε)
]
. (29)

First, Dσ is pre-trained for a regular Gaussian denoising task during 200k iterations,
with Adam optimizer and cosine annealing with a learning rate of 1e− 4. During train-
ing σ is sampled from a uniform distribution U(0, imax

10
255 ), where imax is the maxi-

mum voxel value of the dataset. We report imax = 0.1179 for the Cork-CBCT dataset
and imax = 0.502464 for the Walnut-CBCT dataset. After pre-training, the Jacobian
spectral norm of Qσ is regularized during 100 epochs with Adam optimizer [35] and a
learning rate of 10−4, divided by 10 at epoch 80. We choose µ = 10−4 and ε = 0.1 for
both datasets. The Jacobian’s spectral norm ∥ · ∥ is estimated using 10 power iterations.
We use a batch size of 32, and images are cropped to 2562. We do not use Exponen-
tial Moving Average or dropout as it seems to interfere with the Jacobian spectral norm
computation and induce significant differences between training and inference. We use
the same parameters for both datasets.

Inference. Interestingly, similar to our observations on LPT in Sec. 4.4, we see that
the Jacobian spectral norm regularization decreases the denoising performance of Dσ

(Fig. 9). More importantly, when plugged into PnP-PGD (Eq. (5)), the constrained net-
work makes the optimization unstable, and the algorithm diverges Fig. 10.

(a) Input (b) Ground-truth (c) Gaussian denoising
network.

(d) [Constrained]
Gaussian denoising

network.

Fig. 9: Comparison of denoising performance on the Walnut-CBCT dataset. The input (a) is the
Gaussian contaminated ground-truth (b). In (c), the denoising operator is unconstrained. In (d),
the denoising operator is parametrized as a learned maximally monotone operator [46] and a
regularized Jacobian spectral norm, with max(∥JQ∥) = 0.9595.

To circumvent this problem, we use the parametrization of [18], and relaxed the Gaus-
sian denoising operator Dα(x) = αD(x)+(1−α)x. We revert the network to a simple
DRUnet, i.e. D = D(·; θ) and train it for a Gaussian denoising task using the hyper-
parameters in Appendix D.2. Similar to our approach Eq. (19), we use α = τλ

1+τλ .



28 R. Vo et al.

100 101 102

iteration

7.5
10.0
12.5
15.0
17.5
20.0
22.5
25.0

P
S

N
R

(d
B

)

100 101 102

iteration

10−4

10−3

10−2

10−1

c k

PnP-PGD

PnP-αPGD;α = ηλ
1+ηλ

Fig. 10: Convergence of the classic PnP-PGD [46] and relaxed PnP-αPGD [18] for the sparse-
view reconstruction task on the Walnut-CBCT dataset. In PnP-PGD, we regularize the Jacobian
spectral norm of Q as in [46]. In PnP-αPGD, we use an unconstrained network D to build Dα.

Table 5: Regularization parameters for PnP-PGD.

PnP-PGD Walnut-CBCT - 3D Cork-CBCT - 3D

Num. views 30 50 100 30 50 100

λ 8 10 20 2 4 4

D.4 InDI

The Inversion by Direction Iteration (InDI) algorithm [20] is a recent formulation for
image restoration where a low-quality input y is gradually improved in small steps
via a neural operator F . It is iterative by nature but does not require knowledge of
the forward degradation process, as opposed to variational-based methods such as PnP.
Given a clean and a low-quality image pair (x, y), they define a continuous forward
degradation process by

xt = (1− t)x+ ty, with t ∈ [0, 1]. (30)

They learn to reverse this process using a neural operator F that maps the current iterate
xt to the next iterate xt−δ , such that

xt−δ =
δ

t
F (xt, t) + (1− δ

t
)xt, where 0 ≤ δ ≤ 1, (31)

Similar to the optimization of D in Eq. (14), the neural operator F is train to reconstruct
the ground truth x from any point xt, that is

min
θ

Ex,y∼p(x,y)Et∼p(t)∥F (xt, t; θ)− x∥p (32)

We see with Eq. (31) that the next iterate xt−δ is exactly the relaxed neural operator

Fαt with αt =
t

δ
. Thus, InDI is very similar to the learned proximal operator of the

squared Euclidean distance Eq. (11).
To compute the results in Tabs. 1 and 2, we trained InDI following the same proce-

dure as [20]. We use the architecture in Fig. 11 for the network F , and choose δ = 0.01,



Plug-and-Play Learned Proximal Trajectory 29

i.e. we divide the iterative procedure into T = 100 steps. We use the same parameters
for both datasets. The network is trained for 200k iterations with Adam optimizer and
cosine annealing with a learning rate of 1e − 4. We use a batch size of 32, and images
are cropped to 2562. Interestingly, the network F is minimized with p = 1 in Eq. (32),
so it minimizes an L1 reconstruction error.

D.5 Architecture

For fair comparisons, we use the same architecture D for every experiment (Fig. 11).
On both datasets, we use c = 32 channels, see Fig. 11, to maintain low computational
cost due to our 3D experiments.

h,
w

,1

st
em

 b
lo

ck



h,
w

,c

do
w

n



h/
2,

w
/

2,
c

do
w

n



h/
4,

w
/

4,
2c

h/
8,

w
/

8,
2c

h/16,w/16,

4cdo

w
n




do
w

n



t

ti
m

es
te

p

em

be
dd

in
g


up


h,w
,c

h/
2,w

/
2,c

h/
4,w

/
4,2c

h/
8,w

/
8,2c

up


up


up
 he
ad


 h,w
,1

co
nv

 3
x3




ba
tc

hn
or

m



sw
is

h


st
ri

de
d/

tr
an

sp
os

e

co

nv



in
pu

t

ba
tc

hn
or

m



co
nv

 3
x3




sw
is

h


t_
em

b

sw
is

h


co
nv

 1
x1




ou
tp

ut

co
nv

 1
x1




skip connections

Fig. 11: Residual UNet architecture used for the restoration network D, and the other baselines
in the experiments.



30 R. Vo et al.

E Details on the ablation study Sec. 4.4

In Tab. 3, we emphasize how the optimization procedure of D, influences the perfor-
mance once plugged in a PnP-PGD algorithm. We then show that the LPT procedure
Eq. (13) is necessary to train a robust restoration prior.

100 101 102

iteration

14
16
18
20
22
24
26

P
S

N
R

(d
B

)

100 101 102

iteration

10−4

10−3

10−2

10−1

c k

Baseline A.− λ = 5

Baseline A.− λ = 10

Fig. 12: In this figure, the network D from Baseline A. (Tab. 3 & Appendix E) is trained as a
standard post-processing network (Eq. (10)) and thereafter plugged in an LPT inference scheme
Algorithm 1. We show the influence of the regularization weight λ on the convergence, and the
necessity to decrease λ to avoid divergence.

Baseline A. In this configuration, D is trained as a standard post-processing network
(Eq. (10)), i.e. we only sample x0 and not the intermediate reconstruction steps (Fig. 2).
In this configuration, we decrease the regularization weight λ compared to the other
configurations (Fig. 12), in order to avoid divergence during the inference procedure.
Thus, we set λ = 5 (instead of λ = 10) for the Walnut-CBCT dataset and λ = 1 (in-
stead of λ = 2) for the Cork-CBCT dataset.

Baseline A 24.10 dB Config B 26.55 dB Config C 26.68 dB Config D 24.95 dB Ground-truth

Fig. 13: Illustrations of sparse view (50/1200) reconstructions on the Walnut-CBCT [21] dataset
using the configurations compared in Tab. 3. Config C is the configuration used in Tab. 1 in the
main text.

Configuration B. & C. In configuration B, D is trained as a robust approximation of
proxγR∗ along a pre-defined optimization trajectory. In configuration C, D, we aug-
ment the input of D with iteration step conditioning. The training and inference proce-
dures are the same as the results in Tabs. 1 and 2.



Plug-and-Play Learned Proximal Trajectory 31

Baseline A 36.21 dB Config B 36.29 dB Config C 36.26 dB Config D 36.08 dB Ground-truth

Fig. 14: Illustrations of sparse view (50/720) reconstructions on the Cork-CBCT dataset using
the configurations compared in Tab. 3. Config C is the configuration used in Tabs. 1 and 2 in the
main text.

Configuration D. The first part of the training procedure is the same as the results in
Tabs. 1 and 2. Once pre-trained, we finetune D by regularizing its Jacobian spectral
norm, as done in [46]. The Jacobian spectral norm is regularized during 100 epochs
with Adam optimizer [35] and a learning rate of 10−4, divided by 10 at epoch 80. We
choose µ = 10−4 and ε = 0.1 for both datasets. The Jacobian’s spectral norm ∥ · ∥ is
estimated using 10 power iterations



32 R. Vo et al.

F Additional illustrations of sparse view reconstructions

We also provide additional illustrations on the Walnut-CBCT and Cork-CBCT datasets.

FDK 15.08 dB TV 23.16 dB FDK-UNet 26.41 dB InDI 21.98 dB PnP-PGD 26.62 dB Ours 27.79 dB Ground-truth

Fig. 15: Additional illustrations of sparse view (50/1200) reconstructions on the Walnut-CBCT
[21] dataset using the methods compared in Tab. 1.

FDK 22.86 dB TV 32.50 dB FDK-UNet 32.83 dB InDI 30.52 dB PnP-PGD 32.68 dB Ours 33.11 dB Ground-truth

Fig. 16: Additional illustrations of sparse view (50/720) reconstructions on the Cork-CBCT
dataset using the methods compared in Tab. 2.


