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Abstract. Plug-and-Play algorithms (PnP) have recently emerged as a power-
ful framework for solving inverse problems in imaging. They leverage the power
of Gaussian denoising algorithms to solve complex optimization problems. This
work focuses on the challenging task of 3D sparse-view X-ray computed tomog-
raphy (CT). We propose to replace the Gaussian denoising network in Plug-and-
Play with a restoration network, i.e. a network trained to remove arbitrary arti-
facts. We show that using a restoration prior tailored to the specific inverse prob-
lem improves the performances of Plug-and-Play algorithms. Besides, we show
that plugging a basic restoration network into a PnP scheme is not sufficient to
obtain good results. Thus, we propose a procedure to train the restoration network
to be a robust approximation of a proximal operator along a pre-defined optimiza-
tion trajectory. We demonstrate the effectiveness and scalability of our approach
on two 3D Cone-Beam CT datasets and outperform state-of-the-art methods in
terms of PSNR. Code is available at https://github.com/romainvo/
pnp-learned-proximal-trajectory.

Keywords: Deep learning · Sparse-View Computed Tomography · Inverse Prob-
lem · Regularization · Plug-and-Play

1 Introduction

X-ray computed tomography (CT) is a non-destructive technique for examining and vi-
sualizing the internal structure of objects without causing damage. It is highly valued for
its ability to generate detailed 3D images, making it widely used in medical diagnostics,
industrial inspection, and materials science [26, 39, 49]. Current issues with CT imag-
ing include the inversion of low-dose (LDCT) or sparse-view data (SVCT). The former
arises from the necessity to minimize the radiation dose to which the patient is ex-
posed, while the latter stems from the need to decrease the number of projections taken,
thereby reducing the time required for data acquisition. Both of these issues result in a
limited number of measurements, leading to a loss of information and the appearance
of artifacts in the reconstructed image. The reconstruction task poses further problems
in 3D, as the evaluation of the forward operator becomes computationally expensive,
especially in the case of cone-beam geometry setups [46], such as in industrial CT [26].
Apart from the scale of the problem, which naturally increases in 3D, the Cone-Beam
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geometry introduces a significant challenge; that is, the inverse problem is not separable
in axial 2D smaller problems as is typically done for medical datasets [33, 34].

A straightforward approach to solve SVCT is to train a post-processing network
[10, 25], or restoration network, to learn a one-pass mapping between a low-quality re-
construction and a ground-truth reconstruction. This simple approach maximizes PSNR
and is computationally efficient, though it does not leverage knowledge of the forward
model during the reconstruction. As emphasized in [41], post-processing networks do
not minimize a data-fidelity term and may generate artifacts unrelated to the measure-
ment data.

Common strategies to address ill-posed imaging inverse problems combine vari-
ational regularization [8, 20] with learned priors [1, 40, 58]. The idea is to combine
the knowledge of the forward operator in the form of a data-fidelity term to minimize
coupled with regularization through a penalty term that encodes a priori information
on the unknown solution. Plug-and-Play approaches (PnP) [44, 55] in particular, allow
the combination of these two components in a modular fashion. They solve ill-posed
inverse problems using iterative proximal splitting algorithms [16], where a denoiser
replaces the proximal operator of the regularization term. This denoiser includes any
trainable neural network, which allows leveraging the power of deep learning to learn
a prior from data while still being able to use the model-based iterative reconstruction
framework [3, 47, 52, 57]. Recent works have also focused on using other operators
such as deblurring or super-resolution operators, as opposed to denoising, as implicit
priors in Plug-and-Play approaches and have reached comparable performances in sev-
eral imaging inverse problems [29, 36]. Despite successful performances in various ap-
plications, most existing PnP approaches rely on contractive fixed-point iterations to
get convergence guarantees [43,52]. It poses several problems regarding stability as, in
practice, contraction is never guaranteed for neural networks [42, 54]. Other works re-
quire strong assumptions, such as strong convexity of the fidelity term [47], which limit
the method’s applicability to a specific class of problems that do not include CT. Dif-
ferent works have also proposed to use architectural constraints such as gradient-step
denoisers [14, 30] to obtain convergence guarantees. Besides the previously mentioned
works, diffusion models [28, 51] have attracted attention in the context of PnP [60] and
inverse problems solving [11, 12, 35], as they provide a principled way to learn a prior
from data. Nonetheless, these methods are either sampling-intensive and require many
iterations to converge or rely on the proximal operator of the data-fidelity term, which
is computationally intensive for CT.

Another class of works, the so-called deep unrolled approaches, tries to circumvent
these issues by learning the entire iterative procedure [1, 2, 4, 22, 53]. Based on proxi-
mal splitting algorithms [16], unrolled methods propose to learn a prior, tailored to the
specific inverse problem at hand, by training the denoiser end-to-end with the recon-
struction procedure. The difference with PnP is that the denoiser is not pre-trained but
instead trained jointly with the iterative procedure to minimize a reconstruction loss.
These methods result in improved performances within a reduced number of steps.
However, a significant drawback comes with training time and memory complexity,
which scales linearly with the number of iterations and the complexity of the forward
operator. Despite recent works on invertible unrolling [6, 46], constant memory train-
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ing with Deep Equilibrium Models [5, 24, 27, 37, 61], unrolled techniques remain pro-
hibitively expensive for large-scale problems such as Cone-Beam 3D CT [18, 34] and
there exist only a few applications for downscaled data [6, 46].

This work proposes a novel approach to integrate restoration priors into the PnP
framework. Inspired by Zhang et al. [57], we observe that Gaussian denoising networks,
used in PnP, are less powerful than post-processing networks [10,25] in removing task-
specific artifacts (Fig. 1). We aim to learn a prior tailored to a specific inverse problem
without relying on unrolled training. We show that naively plugging a post-processing
network in a PnP framework is not satisfactory, and we propose an approach to train
this prior as a robust approximation of a proximal operator along a stored and pre-
defined optimization trajectory. Using a pre-defined optimization trajectory allows us
to include knowledge of the forward problem during optimization of the prior while
maintaining an offline procedure, i.e. no call to the forward model. Once learned, the
restoration prior is used as a drop-in replacement for the proximal operator in classic
PnP algorithms [52, 55].
The contributions of this paper can be summarized as follows:

– We propose a novel approach, Learned Proximal Trajectory (LPT), to parametrize
and learn the prior in a PnP framework, which is modular and tailored to the specific
inverse problem. First, training of the restoration operator is done offline and does
not rely on unrolling. Second, we use the reconstruction loss as a regularizer in a
composite problem to define a target optimization trajectory. Sampling from this
trajectory, the restoration network is trained to predict the ground-truth image from
any intermediate reconstruction of the optimization trajectory. This contrasts with
Gaussian denoising networks, which are only trained to denoise Gaussian corrupted
ground-truth images.

– We augment the inputs of the restoration networks with iteration step conditioning.
This conditioning allows the network to adapt the restoration strength to the cur-
rent state of the optimization trajectory. We show that this conditioning technique
consistently improves the results of our experiments.

– Based on the convergence analysis of Cohen et al. [15], we show that our method
converges without constraining the Lipschitz constant of the restoration network. In
this work, we propose a simple condition for the regularization step size to ensure
convergence to a fixed point.

– Experimentally, we show that this approach outperforms state-of-the-art PnP meth-
ods and supervised approaches in PSNR on the challenging task of 3D sparse-view
X-ray computed tomography. Unlike learning-only approaches such as deep post-
processing [25], our reconstructed images maintain high PSNR values while being
geometrically more accurate and do not contain artifacts.

2 Background and related work

2.1 CT reconstruction as an inverse problem

The CT reconstruction problem can be framed as a generic linear inverse problem:

b = Ax∗ + ϵ, (1)
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where A ∈ Rm×n is the forward operator and ϵ ∈ Rm is the measurement noise. The
goal is to recover the true image x∗ ∈ Rn from a set of measurements b ∈ Rm. This
problem poses a significant challenge due to its inherently ill-posed nature. In low-dose
CT (LDCT), the limited radiation dose results in an unstable solution with respect to
measurement noise. In sparse-view CT (SVCT), the system is underdetermined due to
the limited number of projections m ≪ n. In both cases, the solution is not unique, and
the reconstruction is sensitive to noise.

The usual approach to compute an estimation x̂ of the true image involves solving
a composite optimization problem of the form:

x̂ ∈ argmin
x∈Rn

ℓ(x) + λR(x), λ > 0, (2)

where ℓ(x) = 1
2∥Ax−b∥22 is the data-fidelity objective and R is a suitable regularization

term. Popular choices of regularization include the Total Variation (TV) minimization
[23,50], which promotes piecewise smoothness of the solution. Generally, optimization
algorithms to solve Eq. (2) are built on proximal splitting methods [16], which are
particularly suited for handling composite objectives and non-differentiable regularizers
such as the ones based on the L1−norm. The proximity operator of a function ϕ : Rn →
R is defined as

proxγϕ(x) = argmin
y∈Rn

γϕ(y) +
1

2
∥x− y∥22, γ > 0. (3)

As an example, the forward-backward splitting method (FBS), also known as the prox-
imal gradient descent algorithm (PGD) [16], alternates between a gradient descent step
Id − τ∇ℓ, τ > 0, and the evaluation of the proximity operator of R with regularization
parameter λ > 0, i.e. {

xk+ 1
2
= xk − τ∇ℓ(xk),

xk+1 = proxτλR(xk+ 1
2
).

(4)

2.2 Plug-and-Play priors

Instead of handcrafting a regularization term, data-driven approaches [40, 58] learn a
suitable regularization term from a set of training data. The objective is to obtain a
more expressive function that can better capture the structure of the true image. Recent
approaches rely on Plug-and-Play priors [55], which leverage the power of denoising
algorithms as prior models into iterative optimization algorithms.

The PnP framework stems from the observation that the proximal operator in Eq. (3)
takes the form of a regularized image denoiser for additive white Gaussian noise and,
as such, could be replaced by a denoising operator in proximal splitting algorithms.
Initially developed for computed tomography [55], this approach has been applied to
many other inverse problems, such as super-resolution [57], magnetic resonance imag-
ing [3], or inpainting [9]. Besides, the PnP framework has been extended to a wide
range of proximal splitting algorithms including proximal gradient descent with PnP-
PGD [15, 47, 52, 58]. In recent instances of PnP-PGD, the proximal step is replaced by
a pre-trained denoising network Dσ with trainable parameters θ, and parameter σ > 0
to control its denoising strength, and k > 0 the iteration step:
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{
xk+ 1

2
= xk − τ∇ℓ(xk),

xk+1 = Dσ(xk+ 1
2
; θ).

(5)

The denoiser Dσ is trained to minimize a denoising error given a dataset D of clean
images x∗ and their corrupted version x∗ + ξσ with additive white Gaussian noise
ξσ ∼ N (0, σ2I)

min
θ

Ex∗∼p(x∗) ∥Dσ(x
∗ + ξσ; θ)− x∗∥22, (6)

where p(x∗) is the distribution of clean images in D.

2.3 Deep unrolled optimization

Deep unrolled or deep unfolded optimization [1, 2, 19, 22] can be seen as a variant of
data-driven regularization. Instead of learning a generic denoising prior, the goal is to
learn an iterative optimization algorithm, which usually produces better results with
fewer iterations than the PnP framework. Like Plug-and-Play, the idea is to replace the
proximal step in Eq. (4) with a neural network G and to unroll the algorithm for a finite
number of steps K > 0. Given an initial point x0, which is a degraded version of x∗,
we write

H(x0; θ,K) =

[
K

⃝
k=0

G(· ; θ) ◦ (Id− τ∇ℓ)

]
(x0) (7)

the unrolled computation resulting from K steps of optimization described in Eq. (4),
where ⃝ is the compound composition operator. Once trained, the network G can be
interpreted as the proximity operator of an implicit regularization function. In deep
unfolding, the network G is trained end-to-end as part of the reconstruction process;
thus, we optimize

min
θ

Ex0,x∗∼p(x0,x∗) ∥H(x0; θ,K)− x∗∥22. (8)

While this approach improves the performance when compared to PnP priors, op-
timizing θ comes at a higher cost. Including the entire reconstruction process in the
differentiation introduces an additional training cost. This cost scales with the number
of iterations considered and, most importantly, with the size of the forward operator A,
which is sampled at every iteration and represents the main bottleneck when training
unrolled models [34].

3 Methodology

In this work, we propose a procedure to explicitly learn the proximity operator proxR∗

of the reconstruction loss R∗. We train a restoration operator D(· , k; θ) to approximate
the evaluation of proxR∗ in every intermediate point xk of the optimization path. This
approach has three main advantages: First, the evaluation of the proximity operator
in Eq. (4) only depends on the current iterate xk+ 1

2
, which allows to break down the

training of D into independent subproblems, as opposed to unrolling Eq. (7). Second,
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(a) Input (b) Ground-truth (c) Gaussian denoising
network.

(d) Post-processing
network.

Fig. 1: Comparison of denoising and restoration priors on the Walnut-CBCT dataset. The input
x0 (a) is computed using the Feldkamp-Davis-Kress (FDK) algorithm [21] from the sparse-view
projection data b (Eq. (2)). The ground-truth x∗ (b) is computed using the FDK algorithm from
the dense-view projection data. The denoised (c) and restored (d) images are obtained by apply-
ing one pass of a Gaussian denoising network (Eq. (6)) and one pass of a post-processing network
(Eq. (10)), respectively.

as opposed to PnP, the network D is pre-trained on an entire reconstruction proce-
dure, which allows us to obtain a robust prior in every point along the optimization
path. Third the network D is a restoration operator, i.e. D is trained to remove arti-
facts from the specific degradation process, as opposed to denoising operators in classic
PnP schemes [55]; in this work, we show that this choice leads to better reconstruction
performance.

3.1 Reconstruction loss as regularizer

The objective of our work is to learn a prior tailored to the specific inverse problem
without relying on unrolled optimization, i.e. without training D end-to-end.

In this work, we choose the reconstruction loss Eq. (9) as the regularization function
R∗ in a composite optimization problem Eq. (2); we then train a network D to approx-
imate its proximity operator at inference. We motivate this choice using the following
reasoning: ideally, the proximity operator proxR∗(·) in Eq. (4) should compute a pre-
ferred update direction such that the next iterate, xk+1, is closer to the ground-truth,
than the current iterate xk. In other words, the proximity operator proxγR∗(·) should be
the projection onto the set of images that are closer to the ground-truth x∗. Hence, the
regularizer can be defined as the squared Euclidean distance between an image x and
its associated ground-truth x∗:

R∗(x) =
1

2
∥x− x∗∥22. (9)

Inspired by Zhang et al. [57], we argue that while the prior used in PnP is trained
for Gaussian denoising, this does not imply that the difference of the inputs from the
ground-truth follows a Gaussian distribution. We build from this observation and show
that our formulation brings a significant advantage compared to classic PnP schemes
(Sec. 4). Using the reconstruction loss as the regularizer, we make sure that the prior is
trained to remove artifacts from the specific degradation process (Fig. 1), which is more
relevant to the reconstruction task and, in spirit, very similar to unrolled approaches.
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As seen in Fig. 1, one pass of a Gaussian denoising network (c) is not able to re-
move the artifacts from the sparse-view degradation process (a). At the same time, a
post-processing network [25] (d) can remove most of the artifacts. We define a post-
processing network as a network trained to predict the ground-truth x∗ from an input
image x0

min
θ

Ex0,x∗∼p(x0,x∗) ∥D(x0; θ)− x∗∥22. (10)

3.2 Learned proximal operator

The regularizer R∗ requires the ground-truth x∗, which is never available at inference.
The objective is thus to train D to approximate the proximity operator of R∗, namely
D should remove the artifacts of x0 in small steps rather than just one pass (Eq. (10)).
Using the closed-form solution of the proximity operator of R∗ [16], we define a re-
gression target for D to approximate, i.e.

proxγR∗(x) =
x+ γx∗

1 + γ
, (11)

with γ > 0 balancing how close the projection is from x∗. The training problem, thus,
takes the form of

min
θ

Ex∼p(x)∥D(x; θ)− proxλτR∗(x)∥22. (12)

Lastly, the main objective is to obtain a robust approximation of the proximity operator
for every intermediate point xk along the optimization trajectory. We define the opti-
mization trajectory as the set {xk}k∈N generated by the PGD algorithm Eq. (4) with
regularization function R∗. Such trajectory (Fig. 2) can be built for every pair of ini-
tial point, ground-truth image (x0, x

∗) in the training dataset D. Finally, we obtain the
following optimization problem

min
θ

Ex0,x∗∼p(x0,x∗)Ek∼p(k)∥D(xk+ 1
2
, k; θ)− proxλτR∗(xk+ 1

2
)∥22. (13)

where p(k) is a pre-defined distribution which samples k ∈ [0,K].
In Eq. (13), we condition the output of D on the iteration step k. Similar to Gaussian

denoising networks that take a noise level map as input [57], our intuition here is that
D can adapt its restoration strength to the current state of the optimization trajectory.
This conditioning approach is identical to the one used in ODE-based models such as
Diffusion Models [28] or the recent Inversion by Direct Iteration [17].

3.3 Parametrization of the proximal operator

Equation (11) reveals that D must predict
x
k+1

2
+γx∗

1+γ given xk+ 1
2

. Since xk+ 1
2

is avail-
able as input to the model, and γ is a pre-defined hyperparameter, we may choose
another parametrization for D, i.e. the function that maps the current iterate xk+ 1

2
to

the ground-truth x∗

min
θ

Ex0,x∗∼p(x0,x∗)Ek∼p(k)∥D(xk+ 1
2
, k; θ)− x∗∥22. (14)
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Fig. 2: Illustration of the pre-defined optimization trajectory. In Eq. (14), we train D to map each
xk+ 1

2
= xk − τ∇ℓ to x∗. The proximity operator proxγR∗ is defined as a small interpolation

step between the current iterate xk+ 1
2

and the ground-truth x∗ (Eq. (15)).

Using this parametrization, the problem of learning the proximity operator of the re-
construction loss R∗ reverts to learning to predict the ground-truth x∗ from any point
along the optimization trajectory. The proximity operator R∗ is simply obtained as the
linear combination of the current iterate xk+ 1

2
and x̂k+ 1

2
= D(xk+ 1

2
, k; θ):

xk+1 = proxγR∗(xk+ 1
2
) ≈

xk+ 1
2
+ γx̂k+ 1

2

1 + γ
. (15)

In practice, we use the accelerated version of proximal gradient descent [7] that intro-
duces an inertial step, Eq. (16), to the procedure

t0 = 1, tk+1 =
1 +

√
1 + 4t2k
2

, qk =
tk − 1

tk+1
. (16)

We coin our method Learned Proximal Trajectory (LPT), the complete inference
algorithm is detailed in Algorithm 1.

Algorithm 1 Plug-and-Play Learned Proximal Trajectory (LPT)
1: Input: x0 ∈ Rn, b ∈ Rm, k = 0, K > 0, ε > 0, step size τ > 0, regularization weight

λ > 0, {qk}k ∈N and network D.
2: while k < K and ck > ε do:

• xk+ 1
2
= xk − τ∇ℓ(xk) ▷ gradient step on fidelity-term

• zk+1 =
xk+ 1

2
+ γD(xk+ 1

2
, k)

1 + γ
, with γ = τλ ▷ learned proximal step

• xk+1 = zk+1 + qk(zk+1 − zk) ▷ inertial step
• ck = ∥xk+1 − xk∥2/∥x0∥2; k = k + 1

3: Output: xk+1.

3.4 Sampling intermediate points

To minimize the expectation in Eq. (14), one needs to efficiently and independently
sample the intermediate reconstructions xk+ 1

2
= xk − τ∇ℓ(xk) resulting from the



Plug-and-Play Learned Proximal Trajectory 9

proximal gradient descent procedure. The PGD algorithm is iterative; therefore, no effi-
cient way to sample those exists. Instead, we propose to use knowledge of the proximal
operator proxγR∗ during training to run a target optimization procedure Eq. (14) and
save the intermediate reconstructions xk on the disk. Furthermore, we choose to im-
plement D as a 2D axial-wise operator to mitigate the memory requirements regarding
storage and GPU complexity. This parametrization of D allows us to save only random
slices of the intermediate reconstructions xk instead of the whole volume. We argue that
parametrizing the problem in that fashion is also one of the benefits of our approach,
as it allows us to include knowledge of the forward operator A in the training process
while maintaining an offline procedure, i.e. no call to A during the optimization of the
parameters θ.

Parametrizing D as a 2D network introduces an axial bias during the reconstruction,
but overall, it does not impede the 3D nature of the problem, as the forward and adjoint
operators A,A⊤ remain 3D.

3.5 Convergence analysis

Our proposed method is adapted from the proximal gradient descent algorithm (Eq. (4)).
Thus, we can apply the convergence analysis of PnP-PGD to our method. Most work
on PnP convergence rely on nonexpansiveness of D [42, 52]; here we use the analysis
of Cohen et al. [15] to show that our method converges for a chosen step size γ.

Let us define Dα = αD + (1− α)Id , the relaxed operator stemming from D with
α = γ

1+γ . We see that one estimation of proxγR∗ is exactly the computation of Dα.
Thus, in compact form, the inference operator can be defined as

T (x) := Dα(x− τ∇ℓ(x)), with α = γ
1+γ . (17)

d-demicontractive operator. Cohen et al. [15] proved the convergence of PnP-PGD
and its relaxed version PnP-αPGD, for a broad range of functions by considering d-
demicontractive operators. Given that ℓ is convex and differentiable with a Lipchitz
continuous gradient L > 0 and that a fixed point of T exists, they show that for a
continuous d-demicontractive operator D, possibly expansive, if α ∈ (0, 1−d

2 ) and τ ∈
(0, 2

L ), the sequence of iterates {xk}k∈N generated by xk+1 = T (xk) converges to a
fixed point x∗ ∈ Rn of T .

Furthermore, assuming that D is a β-Lipschitz continuous function, we show that
D is also d-demicontractive with d = 1 − 2

β+1 . We derive a simple condition on the
regularization step size γ = τλ, that is, γβ < 1. Hence, the regularization step size
γ is limited by β, the Lipschitz constant of D (see Supplementary Materials for full
development and details on demicontractivity).

This result is crucial as it provides the means to plug a broad range of relaxed
restoration operators Dα in the PnP-PGD algorithm. In our case, we could estimate a
lower bound on the Lipschitz constant of D by computing ∥JD∥, the maximal spectral
norm of its Jacobian, over a dataset of images D [42].

In Sec. 4 and Fig. 5, we show that an appropriately relaxed operator Dα converges
to a fixed-point while obtaining state-of-the-art performances. Furthermore, in Sec. 4.4,
we empirically show that constraining the Lipschitz constant of D diminishes the per-
formance of our Learned Proximal Trajectory scheme.
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4 Experiments

In this section, we describe the training procedure of our Learned Proximal Trajectory
approach and compare it with the state-of-the-art methods on the task of 3D sparse-view
cone-beam computed tomography. We also provide a detailed ablation study to analyze
the effect of different components of our approach.

4.1 Datasets

We conduct experiments on the Walnut-CBCT dataset [18] and on a private Cork-
CBCT dataset as well. Both datasets contain experimental 3D Cone-Beam CT mea-
surements, as opposed to simulation-based datasets [13, 33, 38] which simulate X-ray
measurement from ground-truth images, and thus are limited in terms of accurately
modeling the physics. The Walnut-CBCT dataset contains acquisitions with 1200 pro-
jections of size 972 × 768 and ground-truth reconstructions of size 5013. The Cork-
CBCT dataset contains acquisitions with 720 projections of size 10242 and reconstruc-
tions of size 10243. The ground-truth x∗ is obtained for both datasets by running a
proximal gradient descent with all measurements. We regularly sample 30, 50 and 100
projections for each dataset and use the sparse FDK reconstructions as input images x0.

For each dataset and each method, we evaluate the quality of the reconstructions us-
ing the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index (SSIM)
[56]. The detailed procedure is given in the Supplementary Materials.

4.2 Learned proximal trajectory training details.

Similar to recent PnP and imaging inverse problem approaches, we choose to parametrize
D with a Deep Residual U-Net [22, 45, 57, 60]. During training, the input images are
randomly cropped to 2562 patches. The network is trained to minimize the L2 loss in
Eq. (14). On both datasets, we use the Adam optimizer [32], a learning rate of 10−4

and a batch size of 32. We train the network for 200k iterations with cosine annealing
and a warm-up of 500 iterations. We set τ = 1

L with L the Lipschitz constant of the
data-fidelity gradient ∇ℓ for both datasets. Algorithm 1 is run for K = 500 iterations
and ε = 10−4. We give more details in the Supplementary Materials.

4.3 3D sparse-view CT

Baselines. As traditional baselines, we evaluate the performance of the analytical re-
construction method, the Feldkamp Davis Kress (FDK) algorithm [21], and the Total-
Variation (TV) regularized iterative reconstruction [48].
State-of-the-art methods. These experiments compare our method with traditional it-
erative and learned approaches for sparse-view CT reconstruction. First, we evaluate
the performance of FDK-UNet, a supervised post-processing approach that computes
a one-step restoration given a sparse-view FDK reconstruction [25, 59]. We evaluate
the PnP-PGD algorithm, the standard proximal-gradient formulation of the PnP algo-
rithm [15, 52, 55] using a learned Gaussian denoiser. Finally, we compare our method
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FDK 12.41 dB TV 18.79 dB FDK-UNet 20.03 dB InDI 18.57 dB PnP-PGD 22.56 dB Ours 25.40 dB Ground-truth

FDK 14.31 dB TV 21.72 dB FDK-UNet 24.52 dB InDI 20.85 dB PnP-PGD 24.89 dB Ours 27.20 dB Ground-truth

Fig. 3: Illustrations of sparse view reconstructions on the Walnut-CBCT [18] dataset using the
methods compared in Tab. 1. First row (30/1200), second row (50/1200).

with the recent Inversion by Direct Iteration (InDI) [17], also proposing a supervised
iterative restoration procedure. We use the same DRUNet backbone architecture for fair
comparisons across all experiments; detailed parameters are given in the Supplementary
Materials.

While PnP algorithms come in many different forms [31, 40], we focus the com-
parison on the most standard formulation, PnP-PGD. For efficient and fair comparison,
we avoid approaches that add layers of memory or computational complexity that scale
poorly with high-resolution 3D computed tomography, which includes gradient-step
denoisers [14,30,31], iterative algorithms that require solving a data proximal subprob-
lem [35, 57, 60], or diffusion models [11, 12]. As an indication, on the Cork-CBCT
dataset, the inference time for 500 iterations of PnP-PGD or LPT is approximately 10
hours with 2 NVIDIA V100 GPUs.

Table 1: Reconstruction performances on the Walnut-CBCT dataset, with best and
second-best results highlighted. We compare state-of-the-art approaches against our method

and vary the number of views. ℓ/m = 1
2m

∥Ax− b∥22 is the normalized data-fidelity (Eq. (2)).

Walnut-CBCT - 3D SSIM ↑ PSNR ↑ ℓ/m ↓

Views (·/1200) 30 50 100 30 50 100 30 50 100

FDK [21] 0.153 0.206 0.280 12.83 15.40 18.75 1.06e−1 6.13e−2 2.84e−2
TV [48] 0.555 0.646 0.783 19.27 21.77 25.29 2.99e−4 1.93e−4 2.35e−4
FDK-UNet 0.767 0.865 0.838 22.24 26.56 25.28 7.82e−4 3.73e−4 1.34e−3
InDI [17] 0.696 0.829 0.816 20.04 21.68 21.85 3.92e−3 6.68e−3 4.39e−3

PnP-FBS [47] 0.693 0.764 0.829 22.94 25.88 28.17 7.56e−5 7.78e−5 9.12e−5
Ours: LPT 0.763 0.806 0.838 25.26 27.98 29.63 6.69e−5 7.77e−5 9.04e−5

Results. In Tab. 1, we provide a detailed comparison with the state-of-the-art and his-
torical approaches on the 3D Walnut-CBCT dataset. Our method outperforms all the
baselines and state-of-the-art methods regarding PSNR, while FDK-UNet ranks first in
SSIM. The qualitative results in Fig. 3 suggest that methods with no feedback from the
data-fidelity term, such as FDK-UNet or InDI, lack geometrical consistency and are
more prone to modify the reconstructed surface of the object. The TV baseline pro-
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FDK 21.91 dB TV 30.37 dB FDK-UNet 31.59 dB InDI 30.04 dB PnP-PGD 31.43 dB Ours 31.69 dB Ground-truth

FDK 23.27 dB TV 31.21 dB FDK-UNet 31.54 dB InDI 29.75 dB PnP-PGD 31.46 dB Ours 31.94 dB Ground-truth

Fig. 4: Illustrations of sparse view reconstructions on the Cork-CBCT dataset using the methods
compared in Tab. 2. First row (30/720), second row (50/720).

vides a more geometrically consistent reconstruction, although it removes important
details. On the other hand, LPT and PnP-PGD provide the best results in geometrical
consistency and detail preservation, with LPT providing sharper details and a better
PSNR. We validate this observation using results on data-fidelity ℓ. We see in Tab. 1
that variational methods are the most data-consistent, i.e. they optimize a data-fidelity
objective ℓ and are a fortiori the most faithful to the measurements. On the other hand,
learned-only methods such as FDK-UNet maximize PSNR but do not respect experi-
mental observations, which poses severe issues in critical applications such as medical
imaging or non-destructive testing.

Table 2: Reconstruction performances on the Cork-CBCT dataset, with best and second-best
results highlighted. We compare state-of-the-art approaches against our method and vary the
number of views. ℓ/m = 1

2m
∥Ax− b∥22 is the normalized data-fidelity (Eq. (2)).

Cork-CBCT - 3D SSIM ↑ PSNR ↑ ℓ/m ↓

Views (·/720) 30 50 100 30 50 100 30 50 100

FDK [21] 0.164 0.258 0.321 22.02 24.11 27.15 4.51e−2 6.13e−2 1.17e−2
TV [48] 0.775 0.783 0.801 30.76 31.32 32.15 2.98e−4 3.23e−4 3.40e−4
FDK-UNet 0.823 0.858 0.858 32.38 33.23 33.93 1.23e−3 1.20e−3 1.21e−3
InDI [17] 0.816 0.820 0.836 30.54 31.01 31.61 1.79e−3 2.18e−3 1.92e−3

PnP-FBS [47] 0.822 0.842 0.855 32.01 33.01 33.73 2.88e−4 3.19e−4 3.27e−4
Ours: LPT 0.810 0.844 0.850 32.11 33.60 34.11 2.70e−4 3.11e−4 3.24e−4

Table 2 also provides results on the Cork-CBCT dataset. Overall, we observe the
same trends as for the Walnut-CBCT dataset. Our Learned Proximal Trajectory ap-
proach outperforms the compared methods and ranks first in PSNR, while FDK-UNet
ranks first in SSIM. Visually, we see in Fig. 4 that the InDI approach seems to provide
sharper results than the other methods. However, similarly to the illustrations on the
Walnut-CBCT dataset, FDK-UNet and InDI also create structure that are not present
in the ground-truth. On the other hand, the PnP-PGD approach and our LPT method
create less sharp reconstructions, though they maintain more accurate structures.
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Table 3: Ablation study on the Walnut-CBCT dataset and the Cork-CBCT dataset. For each line
we run the inference procedure given in Algorithm 1 with different networks D. The evaluations
are done on the validation set. Each study builds up from the previous experience, with best
results highlighted. ∥JD∥ denotes the maximum value of the Jacobian spectral norm over the
optimization trajectory {xk}k∈N.

Walnut-CBCT - 3D Cork-CBCT - 3D

Optimization of D SSIM ↑ PSNR ↑ ∥JD∥ SSIM ↑ PSNR ↑ ∥JD∥

A Baseline (FDK-UNet) - Eq. (10) 0.722 25.67 19.28 0.828 33.69 3.75
B + Trained on optimization trajectory (LPT) 0.816 28.30 8.82 0.837 33.74 13.0
C + Iteration step conditioning 0.818 28.44 10.9 0.843 34.41 10.2

D + Lipschitz constraint. 0.767 26.18 1.24 0.823 33.06 0.969

4.4 Ablation studies

In this section, we analyze the convergence of our method and conduct ablation studies
on the validation sets to emphasize the effect of different components of our approach.
In the experiments Tab. 3, λ is set as in Sec. 4, we give more details in the Supplementary
Materials.
Training inputs from optimization trajectory. As emphasized in the closed-form
expression of proxλR∗ , one only needs an approximation x̂ of the ground-truth x∗ to
compute a learned proximity update. In that regard, any network D trained to predict
x∗ from a degraded version x0 is a good candidate network. However, we show that the
choice of the training procedure significantly impacts the performance of the learned
proximity operator. Specifically, we emphasize in Tab. 3 (B) the importance of sampling
training inputs from the optimization trajectory during training rather than just sampling
the initial degraded image x0 (A) to obtain a robust approximation of x∗.
Iteration step conditioning. In Eq. (13), we see that the iteration step k is also given
as input to the learned proximity operator. We show in Tab. 3 (C) that conditioning the
learned proximity operator on the iteration step k consistently improves the results on
both datasets. The results in Tabs. 1 and 2 are produced with the (C) configuration.
Lipschitz constraint. Using the convergence analysis of Cohen et al., we show in
Sec. 3.5 that a Lipschitz-constrained network D is not necessary to obtain convergence.
In Tab. 3 (D), we emphasize that constraining the network D significantly reduces the
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Fig. 5: Illustration of the convergence of our method on the Walnut-CBCT dataset [50/1200].
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14 R. Vo et al.

expressivity of the network D, and, thus, the reconstruction performances of our PnP
scheme. We use the same procedure as Pesquet et al. [42] and constrain the Lipschitz
constant of D by regularizing the spectral normal of its Jacobian.
Convergence analysis. We also provide convergence figures in Fig. 5. We observe
that for an appropriately relaxed operator D, all the iterations converge to a fixed point
with ck decreasing log-linearly. In practice, the Lipschitz constant of ∇ℓ being large, it
forces τ ∈ (0, 2

L ) to be very small and allows for relatively loose settings on λ as we
only need to respect τλβ < 1. Although we see in Fig. 5 that up to a value of λ = 10
, the increase in PSNR is not monotone, suggesting that we reach a limit in the quality
of the reconstruction attainable.

5 Limitations and future work

In this work, we sample from a pre-defined optimization trajectory to train the restora-
tion network. In Section 3.4, we first run a target optimization algorithm to generate the
set of intermediate images xk and store them on the disk. We argue that this procedure
limits scalability and trades off memory usage for sampling speed during training. In
future works, we plan to investigate the possibility of defining a simpler optimization
trajectory that would not require storing intermediate images on the disk. Consequently,
the choice of optimization trajectory is also crucial and can significantly impact the
performance of the learned restoration operator. Hence, a principled way to select a
regularization weight λ that balances data fidelity and regularization is also essential
before training. Finally, the framework of our method is general and only considers
a linear inverse problem; in that fashion, this work could also be applied to intensive
computational imaging modalities such as Magnetic Resonance Imaging (MRI).

6 Conclusion

This paper presents a novel approach to train the learned operator D in a Plug-and-Play
framework. First, we observe that Gaussian denoising networks are not the most ef-
fective operators for removing task-specific artifacts. Building on this observation, we
propose to replace the Gaussian denoising network with a restoration network, i.e. a
network trained to remove arbitrary artifacts. Second, to avoid the computational cost
of unrolling optimization, we propose a procedure to train the restoration network as
a robust approximation of a proximal operator along a pre-defined optimization trajec-
tory. We confirm that sampling from a target optimization trajectory to train the network
is crucial to learning a robust restoration network. Finally, we verify that using a PnP
scheme with our restoration prior converges to a fixed point without constraining its
Lipschitz constant. We demonstrate the effectiveness of our approach on the challeng-
ing task of 3D sparse-view X-ray computed tomography and outperform state-of-the-art
methods in terms of PSNR. Our method provides experimentally grounded reconstruc-
tions with better geometrical consistency than FDK-UNet. Our approach maximizes
data fidelity while maintaining a high level of quantitative reconstruction.
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