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Abstract. We present a new interaction mechanism of prediction and
planning for end-to-end autonomous driving, called PPAD (Iterative In-
teraction of Prediction and Planning Autonomous Driving), which con-
siders the timestep-wise interaction to better integrate prediction and
planning. An ego vehicle performs motion planning at each timestep
based on the trajectory prediction of surrounding agents (e.g., vehi-
cles and pedestrians) and its local road conditions. Unlike existing end-
to-end autonomous driving frameworks, PPAD models the interactions
among ego, agents, and the dynamic environment in an autoregressive
manner by interleaving the Prediction and Planning processes at ev-
ery timestep, instead of a single sequential process of prediction fol-
lowed by planning. Specifically, we design ego-to-agent, ego-to-map, and
ego-to-BEV interaction mechanisms with hierarchical dynamic key ob-
jects attention to better model the interactions. The experiments on the
nuScenes benchmark show that our approach outperforms state-of-the-
art methods. Project page at https://github.com/zlichen/PPAD.

Keywords: End-to-end Autonomous Driving

1 Introduction

The blossom of deep learning techniques has empowered autonomous driving,
where many exciting milestones in autonomous driving have burst into our eyes
owing to the convenient and interpretable discrete module designs. Recently, the
planning-oriented [19] philosophy resonated with the community for pursuing a
more effective end-to-end driving system, which is the focus of this work.

Traditional methods in an autonomous driving system often break down
the system into modular components, including localization, perception, track-
ing, prediction, planning, and control for interpretability and visibility. However,
there are several drawbacks: 1) the accumulation of errors between modules be-
comes more significant as the system complexity increases. 2) the performance of
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(a) Traditional one-shot approach. (b) Our proposed PPAD framework.

Fig. 1: A high-level illustration of our proposed PPAD framework. The agent
(in blue) intends to drive straight, while the ego (in red) plans to change lanes. Fig. 1(a)
presents the typical one-shot method that might result in invalid motion plans and lead
to an accident because of a lack of in-depth interactions. Fig. 1(b) demonstrates the
gaming process between the ego and the agent under the PPAD architecture. During
the prediction process, the agent executes an assertive plan by accelerating to stop the
ego from blocking its route. The planning process of the ego plans trajectory based on
the previous prediction process of the agent. The ego decelerates to avoid a potential
accident and then changes lanes to achieve its driving goal.

the downstream task is highly related to the upper stream module, which makes
it very difficult to construct a unified data-driven infrastructure.

Recently, end-to-end autonomous driving has gained popularity due to its
simplicity. Two main lines are proposed based on the learning architecture. The
first kind of method [10] takes the raw sensor data as input and directly outputs
the planning trajectories or control command without any view transformation
as intermediate representations for scene understanding. The other kinds of ap-
proaches [19,23] are built upon BEV representation and fully utilize the queries
to generate the intermediate outputs as guidance for producing the planning
results. One of the most significant advantages lies in the interpretability. In this
work, we follow the design of the second kind of work.

VAD [23] and UniAD [19] are typical one-shot motion planning methods,
which only consider a single-step interaction between agents, ego-agent and sur-
rounding environment (e.g., map elements). ThinkTwice [22] makes it a two-stage
framework to enhance the gaming or interaction procedure. QCNet [56] and
GameFormer [21] also recurrently model the trajectory prediction task. Given
motion planning is a computational problem that finds a sequence of valid tra-
jectories, often based on surrounding agents’ forecasting, environmental under-
standing, and historical and future contexts. It can also be viewed as a game
in which agents continuously plan their next move according to other agents’
intentions and the encountering environment, further achieving their ultimate
goals through incremental actions. To model these dynamic interactions of pre-
diction and planning in end-to-end autonomous driving, it is crucial to consider
the possible variance of predicted trajectories through multi-step modeling for
planning feasible trajectories.

Inspired by VAD [23], we aim to introduce the step-by-step Prediction-
Planning into a learning-based framework. Intuitively, the prediction and plan-
ning modules can be modeled as a motion forecasting task, which predicts future
waypoints by the given historical information. The results of prediction and plan-
ning modules at each time step are highly dependent on each other. Therefore,
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we need to consider the agent-agent and agent-environment interactions iter-
atively and bidirectionally to maximize the expectation of agents’ prediction
under the given observation of the other agents. We propose our PPAD to plan
the ego agent’s future trajectories step-by-step to model the timestep-wise bidi-
rectional interaction or gaming in a vectorized learning framework as shown in
Fig. 1. PPAD consists of the prediction and planning process. For each motion
forecasting step, 1) Prediction process generates current step motion states
by cross-attention and self-attention among agents and environment based on
previous motion states to model the fine-grained bidirectional interactions. We
take ego-agent-environment-BEV interaction into account to propagate features
among all the traffic participants. 2) Planning process predicts the current
step motion trajectories based on the expectation process. Our contributions
are summarized as follows:

• We propose PPAD that optimizes ego-agent-environment interactions in an
iterative prediction-planning manner. Iterative optimization could model the
interactions and gaming better and more naturally in a planning task. The
prediction process deals with more fine-grained and complex future uncer-
tainties for multi-agent context learning, while the planning process plans a
one-step future trajectory for the ego vehicle.

• We model fine-grained interactions among the ego vehicle, agents, environ-
ment, and BEV features map, step-by-step with hierarchical dynamic key
objects attention emphasizing on the spatial locality.

• The experiments conducted on the nuScenes [3] and Argoverse [6,44] datasets
have demonstrated the effectiveness of our approach over state-of-the-art
approaches.

2 Related Work

2.1 Multi-stage Autonomous Driving

Most autonomous driving systems are built upon the multi-stage design phi-
losophy, which commonly consists of localization, perception, and planning.
The perception module has been well studied recently due to the emergence
of deep learning. Camera-based [20, 28, 29], Lidar-based [26, 48–50, 55] or fused-
based [36, 46] approaches are proposed to fully exploit the potential of raw
sensor data in order to produce accurate 3D objects prediction, semantic seg-
mentation or tracking velocity. Prediction takes the outputs of the perception
module to generate the future waypoints for the ego and the agents. Current
approaches [1, 5, 11–13, 16, 30, 32, 40, 42, 48, 52, 56, 57] explore different represen-
tations to encode surrounding environment (map information) and agent in-
teractions to predict final trajectories by regression or postprocessing sampling
strategies. Some other works [4, 37] propose a joint perception and prediction
framework, which aggregates historical information to generate tracklets with
future trajectories. This unified learning framework could help address the non-
differential process and alleviate the unstable perception problem, compared
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with previous works. Based on the perception and prediction results, planning
module [1,7,12,39] plan its future behavior by cost-map optimization or learning-
based approaches.

2.2 End-To-End Autonomous Driving

Recently, more and more works have focused on end-to-end autonomous driving
due to its merits in reducing internal accumulative errors and direct yet simple
learning objectives. Typical methods [2,45] take the raw visual inputs to regress
the final control command or trajectory points without any view transforma-
tions. To embrace reinforcement learning, a series of following works [8, 45, 54]
utilize policy-based or valued-based approaches to improve driving behavior.
With the popularity of BEV representation, more advanced architectures [9,22]
are introduced to attach more interpretability and help deal with the complex
interactions in the driving scenarios. Another merit of BEV representation lies
in its simplicity in fusing multi-modality sensors. Moreover, the modularized
approaches [14, 18, 19, 23] decouple the end-to-end learning-based methods into
several submodules or subtasks, while in a multi-task learning manner. The uni-
fied design could propagate and share learning context between modules through
queries or feature maps.

2.3 BEV Representation

BEV representation has gained significant prominence in the field of autonomous
driving systems due to its inherent distortion-free characteristics and its sim-
plicity in facilitating multi-sensor fusion. There are two main lines for BEV
representation, including bottom-up and top-down ways. LSS [38] stands out
as a bottom-up pioneering work that explores depth distribution for the 3D
space frustum sampling to form BEV representation. Works [20, 28] optimize
the pipeline through better depth estimation or lightweight sampling design.
BEVFormer [29] and its following works [20, 33–35, 43, 47] adopt the top-down
architecture, which uses a deformable transformer for the view transformations
without depth supervision.

3 Method

3.1 Framework Overview

We present the overall framework, PPAD, in Fig. 2, which comprises the principal
modules of the Perception Transformer and our proposed Iterative Prediction-
Planning Module. The Perception Transformer encodes the scene contexts into
the BEV features map and further decodes as vectorized agents and map repre-
sentations. The Iterative Prediction-Planning module consists of Prediction and
Planning process in general. It dissects the dynamic interactions between the
ego vehicle and the agents along the temporal dimension. Eventually, it predicts
the motions of the agents and plans the future trajectory for the ego vehicle.



PPAD 5

Perception Transformer

Multi-camera Videos

BEV Query Map QueryAgent Query

Prediction Planning

Iterative Prediction-Planning

×𝑵

BEV Query

Planning

Agent Query

Ego Query

Agent 
Interaction

Map 
Interaction

BEV 
Interaction

k, v

Ego 
Interaction

Map 
Interaction

BEV 
Interaction

Go Straight

Ego Query
k, v

Prediction
Agent Query

Map Query
k, v k, v

Lane Change

Acceleration

Decelerate
Lane Change

Ego QueryAgent Query + Motion

Map Query
k, v

BEV Query
k, v

Fig. 2: Overall architecture of our proposed self-driving framework, PPAD.
It consists of the Perception Transformer and the Iterative Prediction-Planning Module.
The Perception Transformer encodes scene contexts into agent queries, map queries,
and BEV queries. Then, the Prediction-Planning Module interleaves the processes of
the agent motion prediction and the ego planning for N times. Throughout the iterative
Prediction and Planning processes, in-depth interactions are conducted among the
ego, agents, map elements, and BEV features. In the Prediction process, the agent
initially intends to go straight and is unaware of the potential motion of the ego.
After interacting with the ego, map elements, and BEV features, the agent plans to
be assertive and proceeds to accelerate. In the following Planning process, the ego
knows the agent will accelerate through interacting with the updated agent query. It
eventually plans to decelerate first and then conduct the lane change for safety reasons.

Image Features Module uses a shared image backbone network (e.g., ResNet
[15]) to extract image features for separate camera views.
BEV Features Module transform the semantic features from the multi-view
cameras into a united bird’s-eye-view. Specifically, we inherit the encoder from
BEVFormer [29, 47] to construct the BEV features. The grid-shape learnable
BEV queries B ∈ RH×W×C are randomly initialized and learned to interact
with the multi-view image features through deformable attention [58] to conduct
spatial modeling. Temporal modeling is conducted in a recurrent manner, which
applies the deformable attention between the current frame’s BEV queries and
the one from the previous time step.
Vectorized Features Module Inspired by the VAD [23] paradigm, we also
encode the scene contexts into vectorized representations through a detection
decoder head [29,58] and a map element decoding head [31], resulting in NA of
learned agent queries A ∈ RNA×C and NM of learned map queries M ∈ RNM×C .
Separate MLP-based decoders will be attached to produce side output, which
takes the learned queries as inputs and predicts with the agent attributes (lo-
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cations, dimensions, classes, etc.) or map attributes (classes and map vectors
described by points). Additionally, the agent queries will be combined with the
learnable motion embeddings for modeling the diverse motions of the agents. The
agents with motions are represented as A ∈ RNA×Nmot

A ×C . Similarly, the ego ve-
hicle is modeled with three modes, representing the high-level driving commands
of going straight, turn left, and turn right, in the form of E ∈ RNE×Nmot

E ×C .
Iterative Prediction-Planning Module predicts the future trajectories for
the ego vehicle and the agents in an interleaved fashion. Different from the tradi-
tional practice that predicts all the trajectories in one go, our PPAD framework
articulates each step of motion planning by iterating the agent motion prediction
and the ego planning processes. Thanks to the PPAD framework, we can conduct
in-depth design to enforce key objects interactions (in Sec. 3.3) on scene contexts
in a coarse-to-fine manner. We further improve the driving performance for the
ego vehicle by taking the noisy trajectory as each step prediction and training
the PPAD framework to reconstruct its original position at the following time
step (in Sec. 3.4).

3.2 Iterative Interactions of Prediction and Planning

In the real world, the driving traffic changes constantly. Drivers plan and execute
their decisions by ceaselessly reasoning the relationships among traffic partici-
pants in the scene. The planning task requires the self-driving system to have a
good understanding of the scene and be capable of resolving the spatial-temporal
causal factors. Therefore, we innovate the PPAD to dissect the planning task into
multi-steps of the agent prediction and the ego planning processes and eventually
promote consensuses among the ego’s and the agents’ future trajectories. The
PPAD framework embodies the traffic interactions as gaming along space-time,
producing a more accurate planning trajectory for the ego vehicle.

Specifically, the ego and agents inherit the same philosophy of alternatively
optimizing their motion behavior based on each other’s motion forecasting at
each future time step. In the following section, we will demonstrate the agent
prediction process and elaborate on the details of the ego planning process.

Prediction Process As illustrated in Fig 2, the agent predicts its subsequent
step motion during the Prediction process, conditioned on the output of the ego
vehicle’s outcome from the previous Planning process. Specifically, the initial
state of the agent query comprises its driving intention. It will then interact
with the ego query updated from the previous planning process, which indicates
the latest driving plan of the ego vehicle. After that, it will interact with map
elements to choose the driving paths. At last, it gathers detailed geometric in-
formation by interacting with the BEV features and comes up with its precise
next-step movement.

Planning Process We consider the period of history with Tobs steps and the
future with Tfut steps. The future trajectory of ego is denoted as {ptE}t∈Tfut .
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For each agent a ∈ A, the trajectory is represented as {pta}t∈Tfut . The positions
of the detected map elements are denoted as {pm}m∈M. We define the operator
of M(ptE , pA/pM, s) to mask out the agents or map elements that are beyond
a distance of s towards the ego located at ptE to conduct key objects attention,
and we will discuss the algorithm details in Sec. 3.3.
Agent Interaction The resulting agents’ motions from the prediction process
are located at {pt+1

a }a∈A, comprising the motion states up to the time step of
t+1. Moving the ego from ptE to the future one-step of pt+1

E , the ego vehicle should
consider the agents’ traffic globally and locally. From a more global perspective,
the agents at a larger range provide more extensive information on traffic flow,
which is essential in long-term trajectory planning. Regarding the spatial locality,
the nearby agents are recognized as the key agents, which are supposed to be
vitally related to the ego’s driving decision.

Therefore, we propose to conduct a hierarchical interaction with the agents
through the attention mechanism to learn coarse-to-fine traffic context features
for the ego. Centered at the ego’s space-time position ptE , we initially define a
distance set of S of {+∞ m, 15 m, 7.5 m} which covers the coarse-to-fine per-
ception ranges. We formed the multi-scale agent sets by applying M(ptE , pA, s)
with different ranges. Then, the ego query interacts with the agents hierarchi-
cally through multi-head cross-attention, MHCA. We take the sum of the learned
hierarchical attention results as the final values:

Ek =
∑
s∈S

MHCA(E,Ak,M(ptE, p
t+1
Ak , s)), k ∈ [1, Nmot

A ], (1)

where the ego independently queries information from different modes k ∈ Nmot
A

of agents, and then we stack the results output from different modes. Further,
we apply the set operations to condense the features:

E′ = MAX([E1, ..,ENmot
A ]) + MEAN([E1, ..,ENmot

A ]), (2)

where the MAX and MEAN are applied to aggregate features along the agents’ mode
dimension and output with the updated ego query E′.
Map Interaction Existing works [19, 23] tried to summarize all the required
map information for planning by simply applying the global-level interaction
once. They overlook the complexity of the evolving motion dynamic and overrate
that the ego can plan precisely in the longer term by a single interaction with
the map information.

With our proposed PPAD framework, we can enrich the ego-map interaction
by considering the ego’s local road conditions based on its latest position. This
results in better identifying the useful map information for each step of plan-
ning. The ego query interacts with the map queries in a similar practice as the
interaction with the agents. The difference is that the map instances are not
movable in the future time steps. The local and global map information can be
abstracted into the ego query by MHCA:

E′′ =
∑
s∈S

MHCA(E′,M,M(ptE, pm, s)), (3)
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where E′′ is the ego query updated with the critical map information for the
next step of planning.
BEV Interaction BEV is the fundamental representation of the whole system,
which is the abstraction of the multi-camera features. Beyond the vectorized rep-
resentation, there is other non-structural environmental information, including
roads and fences. UniAD [19] models these non-structural pieces of stuff with an
occupancy grid map. There are several drawbacks in UniAD: 1) occupancy grids
consume large memory considering the whole scene’s range. 2) UniAD failed
to build the explicit interactions with the grid map. Therefore, we propose the
BEV interactions that dynamically query the surrounding environment for each
possible future step. This query process could help agents understand and learn
the effects of their actions. Specifically, after applying the interactions above, the
ego vehicle understands the dynamic agents’ traffic better and knows its fronting
road conditions. Nevertheless, planning a more precise motion requires the ego
to comprehend the local detail geometric information. Hence, the ego query
further interacts with BEV features to extract low-level geometric information.
Specifically, we achieve by the deformable attention [58]:

E′′′ = DeformAttn(E′′, ptE,B), (4)

where ptE is the location of ego at time t, and it serves as the reference point on
the BEV features. The deformable attention DeformAttn applies sparse attention
around the reference points ptE and learns to pick up the low-level geometric
information from the BEV for planning.
Motion Planning PPAD follows the same practice as [18, 19, 23], which uses
the information of the high-level driving commands: go straight, turn left, and
turn right. The concatenated features of hE = [E′,E′′,E′′′] contain the informa-
tion of the dynamic agent traffic, map semantics, and the precise environmental
geometry. An MLP takes hE as input and predicts the future one-step waypoint
offset wt+1

E = (x, y). We then update the ego state by applying another MLP on
hE for the next step of processing.

3.3 Hierarchical Feature Learning

Hierarchical structure has a better capability to capture and recognize fine-
grained patterns. For the driving scenarios, the driving behavior is based on
scene understanding both globally and locally. Driving tends to focus on only
a few key objects, which demonstrates the spatial locality or local attention.
Therefore, we design hierarchical key objects attention to exploit the coarse-
to-fine scene contexts. Specifically, given a set of distance ranges, we first find
the key objects (agents or map elements) within the given range. Consequently,
we apply dynamic local attention, which only considers the interactions among
agents or map elements in the local area. The pseudo code shown in Alg. 1
delineates the implementation of dynamic key objects attention.
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Algorithm 1 Pseudo code of Key objects attention in a
PyTorch-like style.

################### initialization ###################
layer = nn.MultiheadAttention(embed_dim, num_head)
#################### forward pass ####################
def forward(layer, query, key, q_pos, k_pos, max_dis):

# q_pos: position of the query with shape [B,Lq,2]
# k_pos: position of the key with shape [B,Lk,2]
# layer: attention layer as initialization
# max_dis: distance threshold
diff = (q_pos.unsqueeze(2) - k_pos.unsqueeze(1))
dist = (diff ** 2).sum(-1).sqrt()
attn_mask = (dist > max_dis).repeat(num_head, 1, 1)
return attention(query, key, attn_mask=attn_mask)

3.4 Noisy Trajectory as Prediction

PPAD interleaves the prediction and the planning processes to plan the ego and
agents’ trajectories step-by-step. Expert driving knowledge is then enforced into
the model through imitation learning. Thanks to our multi-step framework and
the inspiration from [27], we introduce the noisy trajectory as the prediction to
the PPAD while training. Specifically, we perturb each step of the ground truth
ego trajectory by adding noise. The ego is then trained to predict the original
next step waypoint offset of the ego regardless of disturbance on its starting
noisy positions. The system is learned to predict the accurate waypoint offset by
interacting with vectorized instances and the environment even though it starts
at an inaccurate position. This strategy brings improvement to the planning
performance.

3.5 End-to-End Learning

Scene Context Loss Similar to VAD [23], we formulate the loss for the agents’
motion and map as follows:

LS = λ1Lagent + λ2Lmap, (5)

where λ1 and λ2 are set as 1.0.
Constraint Loss Inspired by [23], we propose the confidence-aware collision loss
LCA−Col, which considers the potential collision of all the agents’ motion modal-
ities instead of only computing the loss on the agents’ most confident mode. We
multiply the resulting collision loss from each mode with the predicted confidence
score. For the trajectories having the potential to collide, it will penalize more
when the predicted confidence score is higher. Combined with ego-boundary
overstepping Lbd and ego-lane directional Ldir constraints proposed by [23], the
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Method L2 (m) ↓ Collision (%) ↓ Latency (ms)
1s 2s 3s Avg. 1s 2s 3s Avg.

FPS

ST-P3 Metrics

ST-P3 [18] 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71 628.3 1.6
VAD-Tiny [23] 0.46 0.76 1.12 0.78 0.21 0.35 0.58 0.38 59.5 16.8
VAD-Base [23] 0.41 0.70 1.05 0.72 0.07 0.17 0.41 0.22 224.3 4.5
OccNet [41] 1.29 2.13 2.99 2.13 0.21 0.59 1.37 0.72 - -
FusionAD [51] - - - 1.03 0.25 0.13 0.25 0.21 - -
Ours (Progress.) 0.31 0.56 0.87 0.58 0.08 0.12 0.38 0.19 385 2.6
Ours 0.25 0.45 0.73 0.48 0.07 0.15 0.36 0.19 385 2.6

UniAD Metrics

NMP† [53] - - 2.31 - - - 1.92 - - -
SA-NMP† [53] - - 2.05 - - - 1.59 - - -
FF† [17] 0.55 1.20 2.54 1.43 0.06 0.17 1.07 0.43 - -
EO† [24] 0.67 1.36 2.78 1.60 0.04 0.09 0.88 0.33 - -
UniAD [19] 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31 555.6 1.8
VAD-Base [23] 0.50 1.02 1.69 1.07 0.00 0.30 0.95 0.42 224.3 4.5
Ours (Progress.) 0.38 0.83 1.45 0.89 0.02 0.20 0.93 0.38 385 2.6
Ours 0.30 0.69 1.26 0.75 0.03 0.22 0.73 0.33 385 2.6

Table 1: Open-loop planning results on the nuScenes dataset [3]. The results of
other methods are obtained from the original paper. We faithfully re-evaluate VAD [23]
based on the UniAD [19] metrics. As for our PPAD, we provide two versions of results
that utilize different training strategies. Progress. means that we follow the progressive
training pipeline as proposed in VAD [23], which trained all tasks except the planning
task in the first 48 epochs and then finetuned with another 12 epochs for the planning
task. The second row for our method trains the whole network for 60 epochs and then
finetuned for another 12 epochs incorporating noisy trajectories. The latency of ST-
P3 [18], VAD [23], and ours are measured on one NVIDIA Geforce RTX 3090 GPU,
while UniAD is measured on one NVIDIA Tesla A100 GPU.

overall constraint loss is

LC = λ3LCA−Col + λ4Lbd + λ5Ldir, (6)

where λ3 and λ4 are set as 1.0, and λ5 is set as 0.5.
Planning Loss We conduct L1 loss between each step of the ego’s prediction
wt

E and the ground truth’s waypoint offset w̃t
E along the future time horizon:

LPlan =
1

Tfut

Tfut∑
t=1

∥wt
E − w̃t

E∥1. (7)

The overall end-to-end trainable loss function is formed by the sum of the
perception loss, constraint loss, and planning loss. The same constraint losses
Lnoisy
C and planning losses Lnoisy

plan will be applied to the predictions taking the
noisy trajectories as input:

L = LS + ζ1(LC + LPlan) + ζ2(Lnoisy
C + Lnoisy

P lan ), (8)

where ζ1 is set as 0.6 and ζ2 is set as 0.4.
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Method L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

VAD [23] 1.04 1.79 2.60 1.81 0.61 1.26 2.25 1.37
Ours 0.73 1.30 1.98 1.34 0.51 0.85 1.31 0.89

Table 2: Open-loop planning results on the Argoverse dataset [3]. The results
are evaluated under the ST-P3 [18] and VAD [23] metrics.

Method Detection Map Motion Forecasting
NDS ↑ mAP↑ mAP↑ minADE (m)↓ minFDE (m) ↓ MR↓

VAD [23] 0.459 0.329 0.476 0.678 0.882 0.08
UniAD [19] 0.499 0.382 - 0.708 1.02 0.13
Ours 0.465 0.332 0.519 0.676 0.889 0.07

Table 3: Results comparison on the tasks beyond the planning task.

4 Experiments

4.1 Experimental Setup

Dataset We evaluate our method on two challenging large-scale real-world
datasets, nuScenes [3] and Argoverse2 [44]. We conduct ablation studies to eval-
uate the effectiveness of our proposed components on the nuScenes [3] dataset.
The nuScenes dataset [3] provides about 1K 20-second diverse driving scenes col-
lected in Boston, Pittsburgh, Las Vegas, and Singapore for open-loop settings.
Key samples which contain 6 camera images are annotated at 2Hz. The Argov-
erse2 dataset comprises 1K 15-second scenes. It captures 7 RGB images on each
frame. We align the data sampling frequency to nuScenes [3] by downsampling
the annotated frames by an interval of 5 frames.
Metrics We adopt the metrics of L2 Displacement Error (L2) and Collision Rate
(CR) for evaluation [18]. L2 is measured between the prediction and ground-
truth trajectories over the timesteps 1-s, 2-s, and 3-s, evaluating the trajectory
quality. Collision Rate (CR) measures how often the collision occurs between
the ego vehicle and the other agents along the planning horizon, reflecting the
trajectory safety. We notice that the UniAD [19] adheres to different calculations
from ST-P3 [18] and VAD [23]: the former [19] reports the evaluations at each
second. In contrast, the latters [18, 23] reports the results of the cumulative
average by each second. We faithfully make comparisons of our method to others
with these two kinds of computations.
Implementation Details We strictly follow the standard settings as proposed
by UniAD [19] and VAD [23], which did not use the information of the historical
ego trajectory. Same as VAD [23], the perception range is 60m × 30m. PPAD
also recurrently encodes 2-s historical information into BEV and predicts the
3-s trajectory in the future. It also conducts the tasks of motion prediction and
map construction. Our PPAD trains with a batch size of 1 using the Adam [25]
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optimizer set with an initial learning rate of 2e-4. It takes us about six days to
conduct the end-to-end training on eight NVIDIA A30 24GB GPUs.

4.2 Main Results

Planning Results As shown in Tab. 1, our PPAD outperforms the current
state-of-the-art performance by a large margin. Especially for the L2 distance
metrics, there are about 20% of consistent improvements can be observed along
the temporal horizon. Thanks to the iterative interaction of prediction and plan-
ning, PPAD can help avoid collisions, leading to better results on collision rate
compared to the one-shot representative VAD [23]. At the same time, we main-
tain a competitive efficiency compared to UniAD [19].

We further make a fair comparison between our method and the baseline,
VAD [23], on the other dataset of Argoverse 2 [6,44]. In Tab. 2, our method can
consistently outperform the baseline with a clear margin in both L2 distance
and collision rate metrics.
Subtasks Results To demonstrate the overall performance of our PPAD, we
also provide the evaluation results besides planning metrics on the traditional
perception and motion forecasting task in Tab. 3. Our PPAD also achieves
promising performance in upstreaming perception and prediction tasks, which
demonstrates that the whole system is jointly optimized.
Qualitative Results We provide qualitative results shown in Fig. 3. PPAD can
perceive the scene precisely and predict with reasonable and diverse motions for
the surrounding agents. It also plans a smooth and accurate trajectory for the
ego vehicle.

4.3 Ablation Study

The following experiments adhere to the progressive training pipeline as pro-
posed in VAD [23].
Effectiveness of Designs We provide ablation studies to verify the effectiveness
of our proposed components. As shown in Tab. 4, the proposed PPAD framework
(row 2) brings a remarkable improvement compared with one-shoot methods [23]
(row 1). The multi-step interactions help the ego agent better understand the
intention and potential effects brought by its actions along the temporal horizon,
leading to an over 10% L2 distance error reduction. We can observe a further
improvement regarding the L2 distance with our proposed key objects attention
(row 3). The slight degradation in collision rate might be due to the key objects
attention being conducted on the ego with each mode of the agents, and the
diverse modes of the agents mislead the behavior of the ego vehicle. From rows
5-7, the confidence-aware collision loss and noisy trajectory as the prediction
can circumvent this phenomenon and further escalate the capability in planning
accuracy and avoiding a collision. When we keep all of the remaining components
while not applying key objects attention (row 4), we observed the degradations
from row 7 in L2 (0.58 m vs. 0.59 m) and collision rate (0.19% vs. 0.21%), proving
the effectiveness of the key objects attention.
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Decelerate and 
waiting for
lane change

Yield to 
motorcyclist

Driving through 
intersection

Fig. 3: Qualitative results of PPAD. The green box in the figure demonstrates the
ego agent, while the red ones are agents.

PPAD Key Objects Attn. LCA−Col Noisy Traj. L2 (m) ↓ Collision (%) ↓ Latency (ms)
1s 2s 3s Avg. 1s 2s 3s Avg.

1 - - - - 0.41 0.70 1.05 0.72 0.07 0.17 0.41 0.22 224
2 ✓ - - - 0.35 0.59 0.88 0.60 0.11 0.18 0.41 0.23 318
3 ✓ ✓ - - 0.32 0.55 0.83 0.57 0.19 0.28 0.58 0.35 385
4 ✓ - ✓ ✓ 0.33 0.57 0.88 0.59 0.10 0.14 0.38 0.21 318
5 ✓ ✓ ✓ - 0.35 0.59 0.89 0.61 0.08 0.14 0.32 0.18 385
6 ✓ ✓ - ✓ 0.34 0.59 0.90 0.61 0.10 0.14 0.34 0.19 385
7 ✓ ✓ ✓ ✓ 0.31 0.56 0.87 0.58 0.08 0.12 0.38 0.19 385

Table 4: Component study for PPAD. Models follow the progressive training
pipeline. PPAD means the auto-regressive framework with the designed stepwise in-
teractions. Key Objects Attention represents hierarchical feature learning for the key
objects. LCA−Col represents the loss design for the confidence-aware collision loss. Noisy
Traj. means that we incorporate noisy trajectories while training.

Effectiveness of Interactions Our PPAD framework enables richer interac-
tions among scene contexts, introducing local and global understandings of the
world to the model. We further conduct ablation studies to demonstrate the per-
formance gains brought by the interactions. We conduct the ablation study on
interactions under the setting (Tab. 4 in row 5) without using the noisy trajectory
as the prediction for better comparison. As illustrated in Tab. 5, we can achieve
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EA Map BEV L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

✓ - - 0.35 0.58 0.89 0.61 0.23 0.24 0.49 0.32
✓ ✓ - 0.38 0.64 0.95 0.66 0.17 0.18 0.48 0.28
✓ ✓ ✓ 0.35 0.59 0.89 0.61 0.08 0.14 0.32 0.18

Table 5: Interaction study for PPAD. EA, Map, BEV mean the interactions of
the ego with agents, the ego and agents with the map, the ego and agents with the
BEV, respectively.

Interaction Iterations L2 (m) ↓ Collision (%) ↓ Latency (ms)
1s 2s 3s Avg. 1s 2s 3s Avg.

2 (Every 1.5 sec) 0.36 0.63 0.96 0.65 0.14 0.20 0.43 0.25 306
3 (Every 1.0 sec) 0.37 0.63 0.95 0.65 0.10 0.15 0.39 0.21 326
6 (Every 0.5 sec) 0.31 0.56 0.87 0.58 0.08 0.12 0.38 0.19 385

Table 6: The ablation study of conducting different interaction iterations in the future
time horizons.

the best performance in terms of L2 distance and collision by incorporating all
of the interactions.
Effect of Different Iterations on Prediction and Planning Interaction
Our innovative PPAD interaction mechanism not only better models motion
planning as gaming among the ego and the agents but also enriches the ego’s /
agents’ interactions with their local environments. We further conducted the ab-
lation study on the different iterations in applying the interactions of prediction
and planning, as shown in Tab. 6. Specifically, PPAD plans the trajectories with
3, 2, and 1 steps of waypoints after each of the prediction-planning processes for
the interaction iterations of 2, 3, and 6 in Tab. 6. It is demonstrated that the
performance reaches the best as we conduct the interactions of prediction and
planning processes at every future step.

5 Conclusion

In this paper, we have presented a novel autonomous driving framework, PPAD.
Different from the previous methods that lack in-depth modeling of interactions,
we pose the planning problem as a multi-step Prediction and Planning gam-
ing process among the ego vehicle and agents. With PPAD architecture, our
proposed hierarchical dynamic key objects attention is incorporated to learn
local and global scene contexts at each step and eventually plan with a more
precise trajectory. The confidence-aware collision constraint and noisy trajec-
tories are utilized while training to improve driving safety further. In general,
our proposed novel PPAD achieves compelling performance upon the existing
state-of-the-art methods, and we hope the PPAD framework can inspire the
community to further exploration.
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