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In this supplementary material, we provide more details that are not included
in the paper due to space limitations. This includes the conceptual comparisons
(Sec. A), implementation details (Sec. B), and more experimental results and
analyses (Sec. C), respectively.

A Conceptual Comparisons

We provide a conceptual comparison to highlight the differences from existing
methods. Se-CFF [7] fuses multi-density event stacks within a single timeframe.
Other methods [6, 10] use recurrent architecture to aggregate feature-level tem-
poral information. As shown in Table A1, conceptually, our method explicitly
retrieves temporal information based on flow rather than relying on an implicit
feature-level approach. This approach offers the advantage of reusing the com-
puted flow in both feature and cost volume. Furthermore, a key difference lies
in our cost volume aggregation, which is essential and task-dependent for stereo
matching.

Table A1: The summary of the conceptual differences.

Method
Target Temporal Temporal

Information Retreieval
Feature Cost Volume Method

DDES [8], EITNet [1]
Se-CFF [7] △ CNN-based
EIS-E [6], DTC [10] RNN-based
Ours Flow-based

⋆ Equal contribution.
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B Implementation Details

B.1 Measurement of Inference Time

As mentioned in the official implementations of [3, 5], measuring the inference
time of PyTorch models requires avoiding the use of ‘time.time()’ due to the
asynchronous nature of GPU operations. Instead, two main steps must be fol-
lowed to accurately measure the inference time:
1. GPU Warm-up. Before measuring inference time, we should warm up the
GPU by running some dummy examples through the network. This step is crucial
because a GPU can exist in various power states, and without warm-up, the
device might not operate at its full capacity during the initial runs, leading to
inaccurate timing measurements.
2. GPU and CPU Synchronization. To ensure accurate timing measure-
ments, it is essential to use ‘torch.cuda.synchronize()’ before and after the in-
ference calls. This function synchronizes the CPU and GPU, ensuring that all
GPU tasks are completed before the time is measured. This step overcomes the
potential inaccuracies caused by the asynchronous execution of GPU operations.

For accurate and fair measurement of FPS, we followed the mentioned meth-
ods. Additionally, we performed a GPU warm-up using 100 dummy examples to
ensure the GPU was fully operational for the actual measurements.

B.2 Network Architecture

The network structure and parameters for the MVSEC dataset are detailed
in Table B1. We designed the network to be efficient by significantly reducing
the channel dimension of features while allowing for temporal aggregation. For
DSEC, we increased the channel dimensions of the multi-scale in Table B1 from
12, 24, and 36 to 32, 64, and 128, respectively.

B.3 More Implementation Details

In the MVSEC dataset, event streams are sliced every 50ms and processed to
voxels [12] of bin 5. For flow loss weights, λt = 0.1 and λc = 1 · 10−5 are used.
For stereo loss, λ0 = 0.5, λ1 = 0.7, and λf = 1.0. The maximum disparity of
cost volume is set to 48. In the train phase, four serial event voxel pairs are
sequentially fed into the model, and only the last stereo pair is used for loss
calculation, while previous frames are only inferenced for temporal information.
Training is done in an end-to-end manner for 60 epochs and a batch size of 2.
The learning rate is set to 0.0008 using Adam optimizer [4].

Faster ego-motion in DSEC tends to trigger more events per unit of time.
Therefore, each 50ms event stream is processed to bin 15 voxel. Also, flow loss
weights are reduced to λt = 0.01 and λc = 1 · 10−8 for stable training. The
maximum disparity is set to 192. The model is trained for 100 epochs with
batch size 4.
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During training, we grouped 4 sequential event voxel pairs into one clip for
a training purpose, and similarly, for testing, we also used clips consisting of 4
voxels each. Additionally, to make the temporal disparity consistency more sta-
ble, we adopted the approach of pseudo ground-truth (GT), a method previously
utilized in stereo research [9]. For this purpose, we first trained a single event
stereo network without any temporal aggregation and performed inference of
disparity maps for pseudo-GT. In areas where sparse GT was available, we used
the GT, and in areas without GT, we filled in with pseudo-GT. The densified
GT disparity map is only used for flow loss calculation, not for the stereo loss.

In the main paper, our explanation focuses on cost volume warping and tem-
poral disparity consistency loss. Due to the epipolar constraint, there is no need
to consider ∆yR in cost volume warping and temporal disparity consistency, so
we omitted ∆yR for a better explanation of our core ideas. In actual implemen-
tation, ∆yR is also estimated with other components by the single stereoscopic
flow network and only used for feature warping, as mentioned in the main paper.

B.4 Details About the Ablation Study in Table 4 of the Main Paper

In the main paper, we present Table 4 for the ablation study of stereoscopic flow.
Table 4 aims to validate stereoscopic flow from two perspectives.

First, it validates the impact of sharing stereo features by comparing out-
comes between sharing and not sharing stereo features as inputs to the flow
network. Instead of sharing stereo features, we employ the comprehensive op-
tical flow network, EV-Flow [11], with event voxel input. In the table, “ours”
signifies feature sharing with a stereo network, and “EV-Flow” denotes a flow
network independent of stereo features.

Second, we validate the relationship between the left and the right flows in
stereo matching. In other words, we tested the assumption of the ‘hard’ epipolar
constraint that matching points share the same vertical flow. In a hard con-
straint setup, which is our baseline, both left and right event information are fed
into a single stereoscopic flow network, estimating 4-dimensional flow for stereo.
Also, cost volume warping and temporal disparity consistency (TDC) loss are
calculated based on the assumption that matching pixels share the same vertical
flow. In contrast, in soft epipolar constraint experiments, the left and the right
flows are estimated independently and calculated separately. Two twin flow net-
works are used for each left and right flow. {∆xL

t→t−1
, ∆yL
t→t−1

} are estimated from

using only left event while {∆xR

t→t−1
, ∆yR
t→t−1

} are predicted only from right events.

Moreover, cost volume and TDC loss calculation are modified to accommodate
different vertical flows. As a result, computational complexity is increased for an
extra flow network. However, the redundant degree of freedom on vertical flows
negatively affected the stereo matching performance.
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C Additional Experimental Results and Analyses

C.1 Hyper-parameter Analysis of Flow Loss (Eq. (8))

The flow loss (Eq. (8)) consists of the temporal disparity consistency loss, pro-
posed for jointly learning stereoscopic flow with stereo, and a minor contrast
loss [12] serving as an auxiliary loss. Table C1 provides results based on the co-
efficient of the loss in the flow loss. Contrast loss becomes unstable when jointly
trained with the stereo network, and setting the λc beyond a certain value leads
to a significant decrease in the performance of the stereo network. On the other
hand, our TDC loss is robust even when trained together with the stereo net-
work, maintaining results within a certain range regardless of the scale of the
weight becoming larger or smaller.

C.2 Streaming Experiment

The main MVSEC experiments are only conducted with limited past informa-
tion; 4 stereo frames at the test phase. However, in the real world, streams of
events are continuously fed into the model. Therefore, we conducted additional
experiments to validate the real-world application, and to verify the long-term
information propagation. We inferred our model, which is trained with 4 sequen-
tial frames, with different numbers of stereo frames: 2, 4, 8, and streaming. In
the streaming experiment, all event voxels are sequentially processed and the
random test sets are evaluated. The results are provided in Table C2. Even if
the model is trained only for 4 frames setting, it can retrieve information from
further past frames to enhance current disparity prediction.

C.3 Stereoscopic Flow

Stereoscopic flow is an auxiliary output to facilitate temporal information from
the past. Even if the quality and quantity of flow results are not our main
interest, visualization of the intermediate outputs is useful for understanding
the model behavior. The stereoscopic flow network generates 4-dimensional flow,
{∆xL

t→t−1
, ∆xR

t→t−1
, ∆yL
t→t−1

, ∆yR
t→t−1

}, and we visualize the left camera flow {∆xL

t→t−1
, ∆yL
t→t−1

}

among them in the Fig. C1. As the network estimates flow in 1/4 resolution of
the input voxel grid, we applied bilinear upsampling for visualization.

Table C1: The result according to hyper-paramter in Eq. (8). λt and λc refer to the
weight of temporal disparity consistency (TDC) loss and contrast loss, respectively.

λt \ λc
10−6 10−5 10−4 10−3

Mean Depth 1PA Mean Depth 1PA Mean Depth 1PA Mean Depth 1PA
0.01 13.8 92.6 13.4 92.3 13.5 92.4 15.5 90.1
0.1 13.1 92.7 13.0 92.9 14.4 91.9 14.6 91.3
1.0 13.3 92.8 13.5 92.5 14.3 91.7 15.7 90.5
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Table C2: Streaming experiment with different train/test frame

train \ test
2 frames 4 frames (Base) 8 frames Streaming

Mean Depth 1PA Mean Depth 1PA Mean Depth 1PA Mean Depth 1PA
4 frames 17.2 (4.2 ↑) 89.9 (3.0 ↓) 13.0 92.9 12.8 (0.2 ↓) 93.0 (0.1 ↑) 12.8 (0.2 ↓) 93.0 (0.1 ↑)

Table C3: Experimental results according to the bin size of the voxel grid.

Bin Size Mean Depth ↓ Mean disp ↓ 1PA ↑
1 13.7 0.47 92.2
5 13.0 0.46 92.9
10 13.7 0.48 92.4

C.4 Experiments with Different Voxel Dimensions

Table C3 presents the results of our method with different bin sizes of the voxel
grid. With the smallest bin size of 1, optimal performance is not achieved due
to information loss, as much temporal information is aggregated into a single
channel. However, as the bin size increases to 5, the performance improves be-
cause the discretely separated bins allow for the efficient utilization of temporal
information. Nonetheless, when the bin size becomes excessively large, the events
become spatially sparse, and the convolutional layers are unable to fully exploit
this temporal information, resulting in a performance drop.

C.5 Qualitative Ablation Study of Temporal Aggregation

Fig. C2 shows comparisons between our temporal event stereo network and a
single stereo network, where other components are kept constant while modules
related to temporal aggregation, specifically feature warping and cost volume
warping, are removed. Temporal stereo, in contrast to single stereo, leverages
preceding information continuously for compensation, enabling more accurate
detail reconstruction of scenes. It also shows resilience in difficult conditions,
including noisy night environments and instances of fewer events.



6 Cho et al.

Table B1: Structure details of the networks.

Name Layer setting Output Dimension
Input Voxel Grid H ×W × 5

Feature Extractor
Conv0 [3× 3, 12]× 3, stride=2 H/2×W/2× 12

Conv1
[
3× 3, 12
3× 3, 12

]
× 2 H/2×W/2× 12

Conv2
[
3× 3, 24
3× 3, 24

]
× 3, stride=2 H/4×W/4× 24

Conv3
[
3× 3, 36
3× 3, 36

]
× 2 H/4×W/4× 36

Conv4
[
3× 3, 36
3× 3, 36

]
× 2, dilation=2 H/4×W/4× 36

Avg1
16× 16 avg. pooling

H/4×W/4× 123× 3, 12
bilinear interpolate

Avg2
8× 8 avg. pooling

H/4×W/4× 123× 3, 12
bilinear interpolate

Fusion
Concat(Conv2, Conv4, Avg1, Avg2)

H/4×W/4× 123× 3, 36
3× 3, 12

Feature Spatial Warping, Ws (Eq.(1)) & Concat
H/4×W/4× 12Warping 3× 3, 12

Stereoscopic Flow

Flow0 Concatenate Left and Right
H/4×W/4× 12

[3× 3, 24]× 8

Flow1 Add Flow0 & 3× 3, 3 H/4×W/4× 4

Initial Cost Volume
Cost Volume Concatenate Left and Shifted Right Dmax/4×H/4×W/4× 24

3D-Conv0 [3× 3× 3, 12]× 2 Dmax/4×H/4×W/4× 12

3D-Conv1 [3× 3× 3, 12]× 2 Dmax/4×H/4×W/4× 12

3D-Conv2 Add 3D-Conv0 & 3D-Conv1 Dmax/4×H/4×W/4× 12

Initial Hourglass
3D-Stack0-0 7× 7× 7, 24, stride=3 Dmax/12×H/12×W/12× 24

3D-Stack0-1 3× 3× 3, 24 Dmax/12×H/12×W/12× 24

3D-Stack0-2 [3× 3× 3, 24]× 2 Dmax/12×H/12×W/12× 24

3D-Stack0-3 3× 3× 3, 24, add 3D-Stack0-1 Dmax/12×H/12×W/12× 24

3D-Stack0-4 deconv 7× 7× 7, 24, stride=3
Dmax/4×H/4×W/4× 12add 3D-Conv2

3D-Output0 3× 3× 3, 12
Dmax/4×H/4×W/4× 1

3× 3× 3, 1

Output0 bilinear interpolate & regression H ×W

3D-Stack1-0 7× 7× 7, 24, stride=3 Dmax/12×H/12×W/12× 24

3D-Stack1-1 3× 3× 3, 24, add 3D-Stack0-3 Dmax/12×H/12×W/12× 24

3D-Stack1-2 [3× 3× 3, 24]× 2 Dmax/12×H/12×W/12× 24

3D-Stack1-3 3× 3× 3, 24, add 3D-Stack0-1 Dmax/12×H/12×W/12× 24

3D-Stack1-4 deconv 7× 7× 7, 24, stride=3
Dmax/4×H/4×W/4× 12add 3D-Conv2

3D-Output1 3× 3× 3, 12
Dmax/4×H/4×W/4× 1

3× 3× 3, 1

Output1 bilinear interpolate & regression H ×W

Cost Volume Refinement & Aggregation
Warped 3D Warping, Wc (Eq.(3)) to Prev Final Cost Dmax/4×H/4×W/4× 12Cost Volume

Entropy Filter Generate the entropy filter based on 3D-Output1 H/4×W/4× 1

Weight0 & Weight1
Concatenate the entropy filters

H/4×W/4× 2[3× 3, 12]× 3
3× 3, 2 & Sigmoid

Fused Cost Volume Weight0 × 3D-Stack1-4 + Weight1 × Warped Cost Dmax/4×H/4×W/4× 12

Final Output
3D-Stack2-0 7× 7× 7, 24, stride=3 Dmax/12×H/12×W/12× 24

3D-Stack2-1 [3× 3× 3, 24]× 2 Dmax/12×H/12×W/12× 24

3D-Stack2-2 [3× 3× 3, 24]× 3, add 3D-Stack3-1 Dmax/12×H/12×W/12× 24

3D-Stack2-3 deconv 7× 7× 7, 24, stride=3
Dmax/4×H/4×W/4× 12add 3D-Conv2

3D-Output2 3× 3× 3, 12
Dmax/4×H/4×W/4× 1

3× 3× 3, 1

Output2 bilinear interpolate & regression H ×W
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Events ∆𝑥𝐿 , ∆𝑦𝐿 Reference Overlaid Images 

Fig. C1: Visualization of the components ∆xL and ∆yL of the left camera in stereo-
scopic flow. For the visualization, we set the color wheel identical to that of [2]. To
make the direction of motion clear, we presented a visualization by overlaying the cur-
rent image with the one from three frames earlier, indicating the direction of forward
movement using red arrows. Note that our stereoscopic flow is a backward flow.
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Events Ours (Single) Ours (Temporal) Reference Image

Fig. C2: Qualitative comparison between single and temporal event stereos on DSEC
test datasets.
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