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Table 1: Quantitative comparison with state-of-the-arts on three popular polyp image
segmentation benchmarks. Red and blue represent the first and second best perfor-
mance, respectively.

Methods Label CVC-ColonDB ETIS Kvasir
MAE ↓ Sm ↑ Fw

β ↑ Em ↑ MAE ↓ Sm ↑ Fw
β ↑ Em ↑ MAE ↓ Sm ↑ Fw

β ↑ Em ↑

U-Net [27] F 0.061 0.711 0.498 - 0.036 0.682 0.366 - 0.055 0.858 0.794 -
U-Net++ [41] F 0.064 0.691 0.467 - 0.035 0.681 0.390 - 0.048 0.862 0.808 -
SFA [8] F 0.094 0.634 0.379 - 0.109 0.557 0.231 - 0.075 0.782 0.670 -
PraNet [7] F 0.043 0.820 0.699 - 0.031 0.791 0.600 - 0.030 0.815 0.885 -
MSNet [40] F 0.041 0.836 0.737 - 0.020 0.840 0.678 - 0.028 0.822 0.893 -
SAM [15] - 0.479 0.427 0.343 0.419 0.429 0.503 0.439 0.512 0.320 0.582 0.545 0.564
SAM-P [15] P 0.194 0.671 0.587 0.664 0.144 0.715 0.625 0.719 0.108 0.802 0.793 0.811
WSSA [39] P 0.127 0.713 0.645 0.732 0.123 0.762 0.647 0.733 0.082 0.828 0.822 0.852
SCWS [37] P 0.082 0.787 0.674 0.758 0.085 0.731 0.646 0.768 0.078 0.831 0.837 0.860
TEL [19] P 0.089 0.761 0.669 0.743 0.083 0.726 0.639 0.776 0.091 0.804 0.810 0.826
CRNet [13] P 0.077 0.802 0.691 0.795 0.071 0.766 0.664 0.802 0.071 0.836 0.853 0.877
WSSAM [12] P 0.043 0.816 - 0.839 0.037 0.797 - 0.849 0.046 0.877 - 0.917
SAM-COD P 0.036 0.839 0.737 0.848 0.020 0.841 0.651 0.849 0.029 0.861 0.902 0.930
SAM-COD B 0.031 0.844 0.748 0.889 0.019 0.854 0.679 0.854 0.025 0.926 0.908 0.942

1 Framework Details

1.1 Detailed Structure of the Encoder and Decoder.

As shown in Fig. 1, we use PVT [32] as the encoder, for an input image I ∈
R3×H×W , we put it into the encoder to get the output features Feati for the i-th.
Then, we get the multi-scale features (Feat1, Feat2, Feat3, Feat4) with ( 14 ,

1
8 ,

1
16 ,

1
32 )

resolution of input images. We downsize the channel dimension of Feati into
64 by using 3 × 3 convolutional layers. Next, these feature maps are unified
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Fig. 1: The architecture of encoder and decoder.
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Fig. 2: Visualized results for polyp image segmentation.

into the same size by an up-sampling operation, and combined through the
concatenation. Finally the output map Ŝ∈ R1×W×H is obtained by the 3 × 3
convolution layer.

1.2 Details about Step 1 of Training.

The original labels (where boxes are transformed into pixel-level supervision
through SAM) are directly used as the supervision information, and Partial
Cross-Entropy is employed as the loss function for training, following the settings
outlined in Section 4.1.

2 Comparison with using ResNet50 Backbone.

We provide additional comparisons using ResNet50 as the backbone, as shown
in the Tab. 2. Our model outperforms significantly CRNet and WS-SAM when
using the ResNet50 backbone even with weaker supervision (point).
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Fig. 3: Examples of BCOD and PCOD datasets. It includes many categories of animals
in challenging scenarios.
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Table 2: Quantitative comparison with state-of-the-arts on three datasets using
ResNet50 as a backbone. “S”, “P”, “B” denote scribble, point, and box labels, respec-
tively. “–” is not available. Red and blue represent the first and second best performance,
respectively.

Methods Label CAMO (250) COD10K (2026) NC4K (4121)
MAE Sm Em Fw

β MAE Sm Em Fw
β MAE Sm Em Fw

β

CRNet [11] S .092 .735 .815 .641 .049 .733 .832 .576 .063 .775 .855 .688
SAM-S [15] S .105 .731 .774 - .046 .772 .828 - .071 .763 .832 -

WS-SAM [12] S .092 .759 .818 - .038 .803 .878 - .052 .829 .886 -
SAM-P [15] P .123 .677 .693 - .069 .765 .796 - .082 .776 .786 -

WS-SAM [12] P .102 .718 .757 - .039 .790 .856 - .057 .813 .859 -
SAM-COD P .080 .768 .832 .687 .034 .797 .867 .685 .054 .824 .883 .753
SAM-COD B .073 .804 .879 .733 .032 .801 .883 .698 .048 .837 .897 .769
SAM-COD S .070 .818 .884 .751 .032 .803 .885 .699 .049 .836 .896 .766

3 Experiment on Polyp Segmentation.

Common concealed scenarios include camouflaged object detection, medical im-
age segmentation (polyp segmentation), and transparent object detection. There-
fore, we attempt to apply the SAM-COD model to polyp segmentation and
transparent object detection.

3.1 Datasets.

We evaluate the proposed model on three benchmark datasets: CVC-ColonDB [29],
ETIS [28], Kvasir [14]. We adopt the same training set as the previous polyp seg-
mentation method [7], that is, 900 samples from the Kvasir and 550 samples from
the CVC-ClinicDB are used for training. The remaining images and the other
three datasets are used for testing.

3.2 Evaluation Metrics.

We adopt four evaluation metrics: Mean Absolute Error (MAE), S-measure (Sm)
[4], E-measure (Em) [5], and weighted F-measure (Fw

β ) [22].

3.3 Implementation Details.

We implement our method with PyTorch and conduct experiments on one GeForce
RTX4090 GPU and use ViT-H version of SAM. We chose PVT-B4 as the en-
coder. We use the stochastic gradient descent optimizer with a momentum of
0.9, a weight decay of 5e-4, and triangle learning rate schedule with maximum
learning rate 1e-3. The batch size is 8, and the training epoch is 60. We adopt
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Table 3: Quantitative comparison with state-of-the-arts on CAMO dataset. “F”, “U”,
“S”, “P”, “Mix” denote fully-supervised label, unsupervised, scribble, point, and mixed
random selection of one of three weakly-supervised labels, respectively. “–” is not avail-
able. Red and blue represent the first and second best performance, respectively.

Methods Label CAMO (250)
MAE ↓ Sm ↑ Em ↑ F w

β ↑ Ea
m ↑ Ex

m ↑ Fa
β ↑ Fm

β ↑ Fx
β ↑

SINet [CVPR20] [6] F .092 .745 .804 .644 .825 .829 .712 .702 .708
MGL-R [CVPR21] [38] F .088 .775 .812 .673 .848 .842 .738 .726 .740
PFNet [CVPR21] [23] F .085 .782 .841 .695 .855 .855 .751 .746 .758
UGTR [ICCV21] [36] F .086 .784 .822 .684 .861 .854 .749 .738 .754
UJSC [CVPR21] [17] F .073 .800 .859 .728 .865 .873 .779 .772 .779
ZoomNet [CVPR22] [24] F .066 .820 .892 .752 .883 .892 .792 .794 .805
FEDER [CVPR23] [11] F .069 .807 .873 .785 .877 .873 .786 .781 .789
SAM-Adapter [ICCV23] [2] F .070 .847 .873 .765 - - - - -
CRNet [AAAI23] [13] S .092 .735 .815 .641 .829 .830 .709 .701 .707
SAM [ICCV23] [15] - .132 .684 .687 .606 .742 .742 .705 .705 .710
SAM-S [ICCV23] [15] S .105 .731 .774 - - - .709 - -
WS-SAM [NIPS23] [12] S .092 .759 .818 - - - .742 - -
SAM-P [ICCV23] [15] P .123 .677 .693 - - - .649 - -
WS-SAM [NIPS23] [12] P .102 .718 .757 - - - .703 - -
SAM-COD S .060 .836 .903 .779 .897 .897 .801 .804 .821
SAM-COD B .062 .837 .901 .786 .901 .907 .805 .809 .834
SAM-COD P .066 .820 .885 .760 .888 .889 .784 .787 .804
SAM-COD Mix .058 .839 .907 .784 .905 .920 .798 .803 .840

the offline distillation, where SAM is pre-computed, and forward computation
is performed only once. So, it only takes around 3h in training. During training
and inference, input images are resized to 512× 512.

3.4 Comparisons with state-of-the-art

We compare our SAM-COD with U-Net [27], U-Net++ [41], SFA [8], PraNet [7],
MSNet [40], WSSA [39], SCWS [37], TEL [19], CRNet [13], SAM [15], WS-
SAM [12] and SAM-P [15] which fine-tune the mask decoder of SAM with point
supervision. To be fair, the predictions of these competitors are directly provided
by their respective authors or computed by their released codes.
Quantitative Evaluation. As shown in Tab. 1, our method significantly out-
performs the second-ranked weakly supervised CRNet method and similarly sur-
passes many fully supervised methods. SAM and SAM-P do not perform well on
this task, further substantiating their weakness in this challenging segmentation
task. This again verifies our benefit in handling challenging Concealed Object
Segmentation tasks.



6 H. Chen et al.

Table 4: Quantitative comparison with state-of-the-arts on COD10K dataset. “F”,
“U”, “S”, “P”, “Mix” denote fully-supervised label, unsupervised, scribble, point, and
mixed random selection of one of three weakly-supervised labels, respectively. “–” is not
available. Red and blue represent the first and second best performance, respectively.

Methods Label COD10K (2026)
MAE ↓ Sm ↑ Em ↑ F w

β ↑ Ea
m ↑ Ex

m ↑ Fa
β ↑ Fm

β ↑ Fx
β ↑

SINet [CVPR20] [6] F .043 .776 .864 .631 .867 .874 .667 .679 .691
MGL-R [CVPR21] [38] F .035 .814 .851 .666 .865 .890 .681 .711 .738
PFNet [CVPR21] [23] F .040 .800 .877 .660 .868 .890 .676 .701 .725
UGTR [ICCV21] [36] F .036 .817 .852 .666 .850 .891 .671 .712 .742
UJSC [CVPR21] [17] F .035 .809 .884 .684 .882 .891 .705 .721 .738
ZoomNet [CVPR22] [24] F .029 .838 .911 .729 .893 .911 .741 .766 .780
FEDER [CVPR23] [11] F .032 .823 .900 .740 .901 .905 .740 .751 .768
SAM-Adapter [ICCV23] [2] F .025 .883 .918 .801 - - - - -
CRNet [AAAI23] [13] S .049 .733 .832 .576 .845 .845 .637 .633 .636
SAM [ICCV23] [15] - .050 .783 .798 .701 .800 .800 .758 .756 .758
SAM-S [15] S .046 .772 .828 - - - .695 - -
WS-SAM [12] S .038 .803 .878 - - - .719 - -
SAM-P [15] P .069 .765 .796 - - - .694 - -
WS-SAM [12] P .039 .790 .856 - - - .698 - -
SAM-COD S .029 .833 .904 .728 .900 .926 .739 .763 .803
SAM-COD B .028 .842 .914 .745 .901 .928 .740 .763 .803
SAM-COD P .031 .831 .901 .725 .887 .920 .720 .743 .794
SAM-COD Mix .031 .833 .903 .725 .888 .921 .719 .744 .793
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Table 5: Quantitative comparison with state-of-the-arts on NC4K dataset. “F”, “U”,
“S”, “P”, “Mix” denote fully-supervised label, unsupervised, scribble, point, and mixed
random selection of one of three weakly-supervised labels, respectively. “–” is not avail-
able. Red and blue represent the first and second best performance, respectively.

Methods Label NC4K (4121)
MAE ↓ Sm ↑ Em ↑ F w

β ↑ Ea
m ↑ Ex

m ↑ Fa
β ↑ Fm

β ↑ Fx
β ↑

SINet [CVPR20] [6] F .058 .808 .871 .723 .883 .883 .768 .769 .775
MGL-R [CVPR21] [38] F .052 .833 .867 .740 .890 .893 .778 .782 .800
PFNet [CVPR21] [23] F .053 .829 .887 .745 .894 .898 .779 .784 .799
UGTR [ICCV21] [36] F .052 .839 .874 .747 .889 .899 .779 .787 .807
UJSC [CVPR21] [17] F .047 .842 .898 .771 .903 .907 .803 .806 .816
ZoomNet [CVPR22] [24] F .043 .853 .896 .784 .907 .912 .814 .818 .828
FEDER [CVPR23] [11] F .045 .846 .905 .817 .913 .915 .822 .824 .833
CRNet [AAAI23] [13] S .063 .775 .855 .688 .885 .887 .682 .680 .682
SAM [ICCV23] [15] - .078 .767 .776 .696 .778 .778 .754 .752 .754
SAM-S [15] S .071 .763 .832 - - - .747 - -
WS-SAM [12] S .052 .829 .886 - - - .802 - -
SAM-P [15] P .082 .776 .786 - - - .728 - -
WS-SAM [12] P .057 .813 .859 - - - .801 - -
SAM-COD S .039 .859 .912 .795 .912 .917 .803 .813 .848
SAM-COD B .037 .867 .923 .813 .920 .931 .819 .828 .855
SAM-COD P .041 .858 .918 .802 .915 .925 .720 .743 .794
SAM-COD Mix .039 .862 .912 .798 .912 .928 .803 .813 .848

Table 6: Quantitative comparison with state-of-the-arts on four popular SOD bench-
marks. “F”, “S”, “P” denote fully-, scribble-, and point-supervised methods, respectively.
Red and blue represent the first and second best performance, respectively.

Methods Label ECSSD DUT-O HKU-IS DUTS-TE
MAE ↓ Sm ↑ Fmax

β ↑MAE ↓ Sm ↑ Fmax
β ↑MAE ↓ Sm ↑ Fmax

β ↑MAE ↓ Sm ↑ Fmax
β ↑

RAS [1] F 0.056 0.893 0.921 0.062 0.814 0.786 0.045 0.887 0.913 0.059 0.839 0.831
R3Net [3] F 0.056 0.903 0.925 0.071 0.818 0.788 0.048 0.892 0.910 0.066 0.836 0.824
DGR [31] F 0.041 0.903 0.922 0.062 0.806 0.774 0.036 0.892 0.910 0.050 0.842 0.828
PiNet [20] F 0.046 0.917 0.935 0.065 0.832 0.803 0.043 0.904 0.919 0.051 0.869 0.860
MLMS [33] F 0.045 0.911 0.928 0.064 0.809 0.774 0.039 0.907 0.921 0.049 0.862 0.852
AFNet [9] F 0.042 0.913 0.935 0.057 0.826 0.797 0.036 0.905 0.923 0.046 0.867 0.863
BASNet [26] F 0.037 0.916 0.943 0.057 0.836 0.805 0.032 0.909 0.928 0.048 0.866 0.859
MFNet [25] S 0.084 0.834 0.879 0.087 0.741 0.706 0.059 0.846 0.876 0.076 0.774 0.770
SCSOD [37] S 0.049 0.881 0.914 0.060 0.811 0.782 0.038 0.882 0.908 0.049 0.853 0.858
PSOD [10] P 0.036 0.913 0.935 0.064 0.824 0.808 0.033 0.901 0.923 0.045 0.853 0.858
SAM-COD P 0.033 0.925 0.947 0.051 0.844 0.826 0.024 0.946 0.941 0.034 0.892 0.898
SAM-COD S 0.034 0.921 0.944 0.050 0.846 0.829 0.024 0.947 0.944 0.033 0.898 0.901
SAM-COD B 0.031 0.929 0.952 0.051 0.844 0.828 0.023 0.952 0.949 0.033 0.899 0.903
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Qualitative Evaluation. Fig. 2 illustrates visual comparison with other ap-
proaches. It can be seen that the proposed method has good detection perfor-
mance for small, medium, and large scale polyps (see the 1st - 3rd rows).

4 Experiment Details

4.1 Experiments on SOD.

In order to show good generalization and further verify the rationality of the
structural design, we evaluate the proposed model on the SOD task.
Datasets. Our experiment on SOD is based on the existing four SOD datasets,
ECSSD [34], DUT-O [35], HKU-IS [18], and DUTS-test [30]. We only use the
training set of DUTS for training. During the test phase, we use the remaining
data for inference.
Implementation Details. We use the stochastic gradient descent optimizer
with a momentum of 0.9, a weight decay of 5e − 4, and triangle learning rate
schedule with maximum learning rate 1e−3. The batch size is 8, and the training
epoch is 60. During training and inference, input images are resized to 512×512.

4.2 Experiments on COD.

PCOD Dataset Our experiments are conducted on three COD benchmarks,
CAMO [16], COD10K [6], and NC4K [21]. To evaluate the performance of our
approach under point supervision, we relabel 4040 images (3040 from COD10K,
1000 from CAMO) and propose the Point-supervised Dataset for training and
the remaining is for testing. Three annotators participate in the annotation
task. To mitigate personal bias, we randomly choose one annotation from the
three for each image. For every image, we annotate one foreground point for
each camouflaged object and one background point for the background. More
examples of our dataset are shown in Fig. 3 (We exaggerate the size of the labeled
position in visualization).
BCOD Dataset. To evaluate the performance of our approach under bounding
box supervision, we relabel 4040 images (3040 from COD10K, 1000 from CAMO)
and propose the Box-supervised Dataset for training and the remaining is for
testing. Three annotators participate in the annotation task, we select the best
one of the three annotations as the final annotation of each image. For each
image, annotate a bounding box for each camouflaged object. More examples of
our dataset are shown in Fig. 3

5 More Results and Analysis.

5.1 Qualitative Comparison

Due to the space limitations of the manuscript, we add more visual comparisons
to this supplementary material for further demonstration of the performance of
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Fig. 4: Visual comparson with other competitors in detecting small camouflaged ob-
jects. Please zoom in for details.
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Fig. 5: Visual comparison with other competitors in detecting big camouflaged objects.
Please zoom in for details.
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Fig. 6: Visual comparison with other competitors in detecting obscured camouflaged
objects. Please zoom in for details.
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Fig. 7: Visual comparison with other competitors in detecting camouflaged objects
with indistinguishable boundaries . Please zoom in for details.
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OursGTImage

Fig. 8: Two failure cases of our method.

our model. Fig 4, 5, and 6 show examples containing small, large, and obscured
objects, respectively. As can be seen from these visual comparisons, our model
is more robust to a wide range of challenging scenarios, showing superior visual
performance for more accurate and complete predictions.

5.2 Quantitative Comparison.

As shown in Tab. 3 and Tab. 5, we further list more comprehensive evalua-
tion results on three COD datasets. It can be seen that our model achieves the
best detection performance overall. It is worth noting that our proposed weakly-
supervised model SAM-COD outperforms state-of-the-art fully supervised mod-
els ZoomNet [24] and FEDER [11]. We also find that our method has the largest
improvement in CAMO (significantly surpassing the best fully-supervised COD
methods), which is the most challenging one among all of the three COD datasets
(worst metric value). This shows that our method is indeed better at discovering
complex camouflage objects.

5.3 Results on SOD Datasets

We compare the proposed model with existing methods. All the results are listed
in Tab. 6. Our model outperforms all the competitors. Especially, it significantly
outperforms the state-of-the-art weakly supervised method PSOD [10] by a sub-
stantial margin. It shows that the proposed model can deal with the more general
binary segmentation task.

6 Failure Cases

Our method is effective, but also has limitations. Because SAM sometimes fails
to fully cover extremely detailed boundaries under particularly limited supervi-
sion conditions (especially point supervision). The trained model may perform
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below expectations in scenes with particularly complex boundary details. Fig.
8 illustrates two failed cases where our method predicts approximate parts but
fails to detect details at the edges, such as spikes and slender legs. In the future,
we will pay more attention to local details, especially intricate boundaries, to
segment more precisely in the weak supervision.
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