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Abstract. Most Camouflaged Object Detection (COD) methods heav-
ily rely on mask annotations, which are time-consuming and labor-intensive
to acquire. Existing weakly-supervised COD approaches exhibit signif-
icantly inferior performance compared to fully-supervised methods and
struggle to simultaneously support all the existing types of camouflaged
object labels, including scribbles, bounding boxes, and points. Even for
Segment Anything Model (SAM), it is still problematic to handle the
weakly-supervised COD and it typically encounters challenges of prompt
compatibility of the scribble labels, extreme response, semantically erro-
neous response, and unstable feature representations, producing unsat-
isfactory results in camouflaged scenes. To mitigate these issues, we pro-
pose a unified COD framework in this paper, termed SAM-COD, which
is capable of supporting arbitrary weakly-supervised labels. Our SAM-
COD employs a prompt adapter to handle scribbles as prompts based
on SAM. Meanwhile, we introduce response filter and semantic matcher
modules to improve the quality of the masks obtained by SAM under
COD prompts. To alleviate the negative impacts of inaccurate mask
predictions, a new strategy of prompt-adaptive knowledge distillation is
utilized to ensure a reliable feature representation. To validate the effec-
tiveness of our approach, we have conducted extensive empirical experi-
ments on three mainstream COD benchmarks. The results demonstrate
the superiority of our method against state-of-the-art weakly-supervised
and even fully-supervised methods.

Keywords: Weakly-Supervised Camouflaged Object Detection · SAM
· Prompt Adapter · Prompt-Adaptive Knowledge Distillation

1 Introduction

Camouflaged Object Detection (COD) aims to detect concealed objects from
various backgrounds [4, 8, 25, 32, 33], which have imperceptible visual appear-
ances with extremely high similarity to the environment. It holds great promise
for practical applications, e.g., species discovery [9, 10, 12, 17, 18, 20], medical
⋆ Corresponding author
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Fig. 1: Comparison of COD methods for different granularity labels. A larger circle
denotes a higher-parameter model. SAM-COD is capable of handling three different
labels for camouflaged objects. It achieves the highest performance under the weakly-
supervised learning setting and even outperforms the fully supervised ZoomNet [25].

image segmentation, and animal tracking [7]. Considering that mask annota-
tions as fully-supervised learning labels [8] are not always available for the time-
consuming and laborious cost, e.g., 60 minutes per image [8], weakly-supervised
labels are promising as an attractive alternative, including scribble (∼10 sec-
onds) [15], bounding box (∼5 seconds), point (∼2 seconds), etc.

However, few works explore how to employ weakly-supervised labels for COD.
There are only two works, CRNet [15] utilizes scribble annotation, and WS-
SAM [14] utilizes scribble and point annotation to address weakly-supervised
COD. However, they exhibit a significant performance gap compared to fully su-
pervised COD methods. Thus, in this paper, we make an early attempt to explore
a unified resolution of weakly-supervised COD for different weakly-supervised
labels, including point, bounding box, and scribble, achieving comparable perfor-
mance to fully supervised COD methods, shown in Fig. 1.

Although Segment Anything Model (SAM) [19] directly provides candidates
for WSCOD, it is not trivial to address WSCOD task with the aid of SAM. It
mainly faces four typical challenges, 1) Prompt compatibility of scribble: SAM
mainly supports box, point, and text-type inputs, but does not support scribble
inputs which are applicable for existing WSCOD [15], as shown in Fig. 2(a).
Then, the direct use of point input does not always yield satisfactory results. It
is desirable to explore how to make different types of annotations in WSCOD
compatible with SAM. 2) Extreme response: For COD, SAM is prone to pro-
ducing erroneous responses in extremely small regions or the entire background
area, as shown in Fig. 2(b). This is due to the protective features of camouflaged
objects, such as various mimetic patterns, spots, and low-contrast surface tex-
tures. 3) Semantically erroneous response: SAM is also prone to wrong semantic
responses for camouflage objects, including Specifically, a) non-camouflaged ob-
ject response: SAM lacks training on relevant data, and lacks an understanding
of camouflage semantics, b) local response: SAM has a rich segmentation gran-
ularity, making it prone to generating local semantic responses, as shown in
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Fig. 2: Issues arising from SAM in COD, i.e., a) prompt compatibility of scribble:
SAM does not support the scribble input. b) extreme response: SAM produces exten-
sive background responses (rows 3, 4) and minimal object responses (rows 1, 2). c) se-
mantically erroneous response: SAM produces erroneous responses to non-camouflaged
objects (rows 3, 4) and object-biased fine-grained semantic responses (rows 1, 2). d)
unstable feature representation: SAM produces varied outcomes (1, 2 rows vs. 3, 4
rows) in similar scenarios. The contours of camouflaged objects are highlighted in blue.

Fig. 2(c). 4) Unstable feature representation: The images of WSCOD task can
exhibit completely different performance in very similar situations, as shown in
Fig. 2(d). This is due to COD scenarios being challenging, and there is a signif-
icant gap in scale between the foundation model SAM and the student model.
Direct distillation with limited supervision results in unstable learned features.

In this work, we propose a unified weakly-supervised COD framework, SAM-
COD, supporting the input of arbitrary weakly-supervised label, i.e., point, box
or scribble by integrating the large visual model, SAM. We forgo the use of fully
supervised labels for fine-tuning SAM and instead explore the use of weakly-
supervised labels to prompt SAM. To mitigate the issues aforementioned, we
first introduce the Prompt Adapter, which extracts the skeleton of the scribble
label and then discretely samples it to points, making it compatible with SAM.
Subsequently, we devise a Response Filter to filter out extreme responses from
SAM by computing the ratio of the mask to the image size. Then, we construct a
Semantic Matcher, which measures the semantic score of the mask by semantic
entropy, which combines with the segmentation score of SAM to select masks
that balance segmentation details and accurate semantics. We design a Prompt-
Adaptive Knowledge Distillation according to different types of prompts, which
enhances knowledge distillation by introducing prompt-guided knowledge for
COD tasks, improving the quality of feature representation distilled from SAM.

Overall, our contributions are summarized as follows:

– We present a novel unified framework inheriting from SAM, integrating
three supervision labels, i.e., scribble, bounding box, and point, for weakly-
supervised camouflaged object detection. To the best of our knowledge, this
is the first WSCOD method to support all current weakly-supervised labels.

– We devise Response Filter and Semantic Matcher modules, addressing the
issue that SAM is error-prone to producing unreliable extreme responses in
COD scenarios, to obtain high-quality object masks.
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– We propose a Prompt-adaptive Knowledge Distillation (PKD) for WSCOD.
The distilled knowledge could be adaptively learned according to the three
types of input prompts, which promotes knowledge distillation in WSCOD
by focusing on distillation in high-value regions within the camouflage scene.

– We conduct extensive experiments on three widely-used COD datasets, demon-
strating that our method achieves state-of-the-art performance. To the best
of our knowledge, this is the first WSCOD method to outperform the state-
of-the-art fully supervised methods under all the weakly-supervised labels.
Moreover, when migrated to Salient Object Detection (SOD) and Polyp Seg-
mentation tasks, our framework also achieves favorable results.

2 Related Work

Camouflaged Object Detection. COD focuses on detecting camouflaged ob-
jects within an image. SINet [8] proposes a COD dataset with 10K camouflaged
images, which takes an average of around 60 minutes to annotate each image.
[24, 27] attempt to mine inconspicuous features of camouflage objects from the
background through meticulously designed feature exploration modules. Zoom-
Net [25] introduces a mixed-scale triplet network to address the challenges posed
by COD. The aforementioned COD methods heavily rely on large-scale datasets
with pixel-level annotations. However, the unclear boundaries make pixel-wise
annotation of camouflaged objects a time-consuming and labor-intensive task.
CRNet [15] was the first to introduce the S-COD dataset, which employs scrib-
ble annotations as weak supervision. WS-SAM [14] employs scribble and point
annotations as weak supervision, but there is no dataset constructed with point
annotation. Furthermore, box annotation has yet to be explored. So we propose
box and point annotations to construct COD datasets. Furthermore, we propose
the first model that simultaneously supports various weak supervision labels and
outperforms fully supervised methods.
SAM in COD. SAM [19] excels in traditional segmentation tasks, achieving re-
markable results, sometimes matching the performance of fully supervised meth-
ods, even in a zero-shot setting. [3, 28] indicate that while SAM shows promise
in generic object segmentation, its performance on the COD task is constrained.
SAM-Adapter [3] employs an adapter for efficient tuning instead of relying on
traditional fine-tuning methods. This adaptation enables SAM to align with the
data distribution in COD, reducing the cost of fine-tuning while simultaneously
enhancing the performance of SAM in COD. WS-SAM [14] processes three aug-
mented images through SAM and fuses the obtained masks to obtain the final
pseudo-label. But the drawbacks of it are also obvious: 1) tripled SAM inference
time 2) the full potential of SAM was not utilized, and only the highest scoring
mask was used instead of the top-3 masks. We apply SAM to design a unified
framework for point, box, and scribble annotations.
Knowledge Distillation. Knowledge distillation (KD) [1,16] has been primar-
ily designed to train a small network to mimic the output of a larger network
to compress models. DINO [2] has introduced a straightforward self-supervised
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Fig. 3: The architecture of the proposed SAM-COD framework. Prompt Adapter sup-
ports scribbles to adapt the input prompt of SAM. Response Filter handles the extreme
responses of SAM. Semantic Matcher is utilized to solve SAM’s response issues arising
from a lack of semantics in COD. Prompt-Adaptive Knowledge Distillation is designed
for knowledge distillation in WSCOD.

method, which can be described as a label-less self-distillation model to optimize
the representation learning. Distillation under WSCOD differs from traditional
distillation, as 1) the COD scenario is challenging, and 2) there is little supervi-
sion. This makes traditional distillation methods unsuitable, and currently, there
is a lack of exploration into distillation under the WSCOD task. So we design
the prompt-adaptive knowledge distillation for the WSCOD task.

3 Approach

The overall architecture of the proposed framework is shown in Fig. 3. Prompt
adapter is used to process scribbles to adapt SAM prompt input. Response filter
is employed to handle extreme response situations of SAM under the prompt.
Semantic matcher is utilized to improve SAM’s response issues arising from a lack
of COD-related semantics. Prompt-adaptive knowledge distillation is employed
for the knowledge distillation in WSCOD.

3.1 Prompt Adapter

We use three kinds of weakly-supervised labels as prompts: point, box, and
scribble. SAM directly supports types of point and box as input prompts. Un-
fortunately, SAM does not support scribble-type prompt. Therefore, we design
a prompt adapter to convert scribbles into discrete points, making it compatible
with SAM, as shown in Fig. 3.

Specifically, we first use the Zhang-Suen algorithm [35] to extract the skeleton
of the scribble. Then, we perform discrete sampling on it. Specifically, we first
create a grid G, where the grid points are uniformly distributed and the distance
is min(αW,αH), where H and W represent the length and width of the input
image, respectively. α is the hyperparameter. Afterwards, we form a discrete
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point set Sa by sampling points that coincide with both the scribble skeleton
and grid lines. By now, we obtain the SAM prompt: prt = {P,B, Sa}, where P
and B indicate Point and Box labels, respectively.

3.2 Response Filter

In COD, the camouflage objects usually exhibit excellent mimicry. So, SAM
is prone to locate the extreme response under limited prompts, as shown in
Fig. 2(b). To solve this, we design a response filter to prevent taking advantage
of these evidently abnormal responses, as shown in Fig. 3.

Specifically, SAM outputs three valid masks and corresponding confidence
scores given the prompt input:

{V i, Si
con|i = 1, 2, 3} = SAM(I, prt), (1)

where V i donate the i-th objects masks and Si
con represents the corresponding

segmentation confidence score. SAM defaults to using the mask with the max-
imum confidence score. Subsequently, we design a response filter to determine
whether the mask exhibits extreme response by calculating the ratio of the mask
size to the image size:

Ri = I(τs <
Ai

HW
< τb), (2)

where I(·) is an indicator function. Ai is the area of the i-th mask V i. τs and τb
represent the maximum and minimum thresholds, respectively.

3.3 Semantic Matcher

SAM lacks the semantic knowledge, specifically the semantic understanding of
camouflaged and overall granularity, leading to responses that do not align with
the objects, as shown in Fig. 2(c). To solve it, we design a semantic matcher to
measure the semantic score by the semantic entropy. It then selects masks with
accurate semantics, as shown in Fig. 3.

Specifically, we first train the model on COD data to obtain the mask Mo:

Mo = D(E(I)), (3)

where I donates input image, E and D are the encoder and decoder of the
model, respectively. Although Mo may not rival the masks of SAM in segmen-
tation details, training on COD data provides the model with a preliminary
understanding of camouflage semantics.

Then, we design semantic entropy Si
ent using Mo to measure the semantic

score of the mask V i:

Si
ent = −

∑
j

Mo
j log(V

i
j ) + (1−Mo

j )log(1− V i
j ), (4)

where j is the pixel index. Smaller values of Si
ent indicate higher semantic score

for V i.
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We select the mask with the highest product of Si
ent and Si

con scores, which
balance segmentation details and accurate semantics, forming the optimal mask
V opt in V i as:

opt = argmax(
Si
con

Si
ent

). (5)

3.4 Prompt-Adaptive Knowledge Distillation

We employ knowledge distillation method to transfer the knowledge from large
visual model SAM to a smaller model, thereby reducing the data cost and model
size. However, COD task is challenging and the weak supervision makes knowl-
edge distillation more difficult. Specifically, the proposed framework distillates
the optimal mask V opt from SAM as teacher knowledge Kt to the student knowl-
edge Ks in our model. Moreover, we leverage the prior knowledge of different
prompts to enhance the distillation quality,
Prompt-adaptive Mask Generation. The input prompts (scribble, box, and
point) contain the structure, boundary, and discriminative region of camouflaged
objects, respectively. These have been confirmed to be crucial for COD tasks [15,
33]. Therefore, we construct a prompt-adaptive mask Mf for the knowledge
distillation according to the input prompt. The key distillation regions in Mf are
marked as 0 (black areas). Specifically, 1) Scribble label, retaining the labeled
foreground while discarding the background yields the corresponding Mf . 2)
Point label, an inscribed circle of Kt with point label as the center. 3) Box
labels, represented by bold boxes, with edge width and height being one-fourth
of the length and width of box label, respectively.

Then, the prompt-adaptive knowledge distillation loss is defined as:

Lpkd = −
∑
j

MF (Kt
j log(K

s
j ) + (1−Kt

j)log(1−Ks
j )), (6)

where Ks is the prediction mask and j is the pixel index. MF=1+I(Mf=0)
and I(·) is an indicator function. MF as a coefficient in the distillation loss to
allocate weight to prompt-guided regions, guides the distillation process to focus
on learning key distillation regions.
Self-Knowledge Distillation. The learned feature representation of the model
may not be robust enough, as shown in Fig. 2(d). Inspired by Self-Knowledge
Distillation (SKD), we design a student model to enhance the representation
learning. Specifically, for image I, we adopt visual transformations T , selecting
from scale, colorjitter, etc. These visual transformations are able to change the
appearance of images, as It = T (I).

Then we encode and decode the augment images It, and transform them into
two prediction maps Ks and Kl, denoting as:

Ks = D(E(I)),Kl = D(E(It)), (7)

Our objective is to minimize the distance between two prediction maps:

minD(Ks,Kl) =
∑
i

|Ks
i −Kl

i |, (8)



8 H. Chen et al.

where i is the pixel index, when a transformation T (e.g., scale, crop) is applied to
the image I, this transformation T should be applied to Ks to be aligned with
Kl. Here we follow the design of SKD, i.e., stopping the gradient (stopgrad)
update at one end, so the SKD loss function is defined as

Lskd = D(Ks, stopgrad(Kl)). (9)

A robust feature representation could be learned from the teacher model to
the student one by minimizing the above loss.

3.5 Network

Encoder&Decoder. Encoder and decoder designs can be flexibly replaced with
existing models. In this work, we employ PVT [29] as the encoder, which obtains
multi-scale features (Feat1 , Feat2 , Feat3 , Feat4). The decoder consists of four 3x3
convolutional layers to reduce the channel dimension of Feati to 64, followed
by upsampling these Feati to the same size. Subsequently, they are combined
through concatenation, and finally, a 3× 3 convolutional layer is used to obtain
the final mask. In our method, all encoders and decoders refer to the same model.
Training Details. Our training process consists of two main steps. In Training
Step 1, we train the encoder and decoder in the semantic matcher to obtain the
distillation source Kt at the end. In Training Step 2, we use Kt for knowledge
distillation to retrain the encoder and decoder. Further details are in the S.M.
Loss. Compared to other weakly-supervised methods [15, 31, 34], we have only
two losses. The final loss L includes Lpkd and Lskd defined as:

L = Lpkd + Lskd. (10)

4 Experiments

4.1 Experimental Setup

Datasets. Our experiments are conducted on three COD benchmarks, CAMO
[20], COD10K [8], and NC4K [22]. In order to evaluate our method, we first
train our network on scribble annotated dataset S-COD [15]. Subsequently, we re-
annotated 4040 images (3040 from COD10K, 1000 from CAMO) to create point-
supervised dataset (P-COD) and bounding box-supervised dataset (B-COD) for
training, while the remaining images are used for testing.
Evaluation Metrics. We adopt four evaluation metrics: Mean Absolute Error
(MAE), S-measure (Sm) [5], E-measure (Em) [6], weighted F-measure (Fw

β ) [23].
Implementation Details. We implement our method with PyTorch and con-
duct experiments on one GeForce RTX4090 GPU and use ViT-H version of SAM.
We chose PVT-B4 [29] as the encoder. We use the stochastic gradient descent
optimizer with a momentum of 0.9, a weight decay of 5e-4, and triangle learning
rate schedule with maximum learning rate 1e-3. The batch size is 8, and the
training epoch is 60. Input images are resized to 512× 512. We adopt the offline
distillation, and the forward computation is performed only once, taking only 7
hours in training.
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Table 1: Quantitative comparison with state-of-the-arts on three benchmarks. “F”,
“U”, “S”, “P”, “Mix” denote fully-supervised label, unsupervised, scribble, point, and
mixed random selection of one of three weakly-supervised labels, respectively. “–” is not
available. Red and blue represent the first and second best performance, respectively.

Methods Label
CAMO COD10K NC4K

MAE ↓ Sm ↑ Em ↑ Fw
β ↑ MAE ↓ Sm ↑ Em ↑ Fw

β ↑ MAE ↓ Sm ↑ Em ↑ Fw
β ↑

SINet [8] F 0.092 0.745 0.804 0.644 0.043 0.776 0.864 0.631 0.058 0.808 0.871 0.723
MGL-R [32] F 0.088 0.775 0.812 0.673 0.035 0.814 0.851 0.666 0.052 0.833 0.867 0.740
PFNet [24] F 0.085 0.782 0.841 0.695 0.040 0.800 0.877 0.660 0.053 0.829 0.887 0.745
UGTR [30] F 0.086 0.784 0.822 0.684 0.036 0.817 0.852 0.666 0.052 0.839 0.874 0.747
UJSC [21] F 0.073 0.800 0.859 0.728 0.035 0.809 0.884 0.684 0.047 0.842 0.898 0.771
ZoomNet [25] F 0.066 0.820 0.892 0.752 0.029 0.838 0.911 0.729 0.043 0.853 0.896 0.784
SAM-Ada. [3] F 0.070 0.847 0.873 0.765 0.025 0.883 0.918 0.801 - - - -
SAM [19] - 0.132 0.684 0.687 0.606 0.050 0.783 0.798 0.701 0.078 0.767 0.776 0.696
SCSOD [31] S 0.102 0.713 0.795 0.618 0.055 0.710 0.805 0.546 - - - -
CRNet [15] S 0.092 0.735 0.815 0.641 0.049 0.733 0.832 0.576 0.063 0.775 0.855 0.688
SAM-S [19] S 0.105 0.731 0.774 - 0.046 0.772 0.828 - 0.071 0.763 0.832 -
WS-SAM [14] S 0.092 0.759 0.818 - 0.038 0.803 0.878 - 0.052 0.829 0.886 -
SAM-P [19] P 0.123 0.677 0.693 - 0.069 0.765 0.796 - 0.082 0.776 0.786 -
WS-SAM [14] P 0.102 0.718 0.757 - 0.039 0.790 0.856 - 0.057 0.813 0.859 -
SAM-COD S 0.060 0.836 0.903 0.779 0.029 0.833 0.904 0.728 0.039 0.859 0.912 0.795
SAM-COD B 0.062 0.837 0.901 0.786 0.028 0.842 0.914 0.745 0.037 0.867 0.923 0.813
SAM-COD P 0.066 0.820 0.885 0.760 0.031 0.831 0.901 0.725 0.041 0.858 0.918 0.802
SAM-COD Mix 0.058 0.839 0.907 0.784 0.031 0.833 0.903 0.725 0.039 0.862 0.912 0.798

4.2 Compare with State-of-the-art Methods

Quantitative Comparison. Being the first WSCOD method to incorporate
point, scribble and box supervision, the proposed approach primarily leverages
scribble supervision and full (mask) supervision as baselines. As demonstrated in
Tab. 1, our method achieves substantial improvements, we averaged the results
under three weakly-supervised labels, with an average enhancement of 26.8% for
MAE, 6.1% for Sm, and 5.5% for Em compared to the state-of-the-art weakly-
supervised COD method, WS-SAM [14]. In particular, our approach performs
exceptionally well under point and box supervision. It highlights our capabil-
ity to achieve better performance with fewer annotations. Our approach even
outperforms the state-of-the-art fully supervised method, ZoomNet [25]. To ver-
ify the advantages of our method over simply using of SAM, we compare with
SAM-S and SAM-P, which fine-tune the mask decoder of SAM with scribble and
point supervisions, respectively, by the partial cross-entropy loss. When testing,
SAM-S and SAM-P use the automatic prompt generation strategy and report the
results with the highest IoU scores. We do see performance gains after finetuning
SAM with point (SAM-P) and scribble (SAM-S) supervision, but the results are
still far below our method. This demonstrates the superiority of our method,
which utilizes SAM prompt-adaptive knowledge distillation for small models. To
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Fig. 4: Density distribution map about Sm and object size. Box and ellipse respectively
represent challenging small and big objects, which have poor performance.
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Fig. 5: Visual comparison with some representative state-of-the-art fully-supervised
and scribble-supervised models.

further analyze the segmentation quality, we draw the density distribution map
about Sm and object size on the test dataset in Fig. 4. It can be observed that
the proposed method achieves an overall improvement and more stable perfor-
mance on arbitrary sized objects compared to CRNet and ZoomNet. Especially
for challenging small and large objects, our model has a significant improvement
compared to CRNet and ZoomNet. Specifically, we design the “Mix” training
method, i.e., randomly assigning one type of weakly-supervised label to each im-
age in training. It is found that the performance is close to that of box-supervised
method, particularly demonstrating a significant performance advantage on the
CAMO dataset. The diversity of training introduced by mixing different labels
is beneficial to learn more complex and rich feature representations comprehen-
sively, capturing the feature at various levels.
Qualitative Evaluation. Our method produces prediction maps characterized
by clearer and more complete object regions, along with sharper contours, sig-
nificantly outperforming state-of-the-art weakly-supervised COD method CR-
Net [15] and fully supervised COD method ZoomNet [25], as shown in Fig. 5.
Our method performs well in various challenging scenarios, including scenarios



SAM-COD 11

Table 2: Comparison of parameters and MACs. “W” denotes the average of three
weakly-supervised labels. All metrics are averages of the three datasets.

Methods Label Para. MACs MAE↓ Sm ↑ Em ↑ Fw
β ↑

ZoomNet F 32.38 95.50 0.046 0.837 0.899 0.755
Ours W 62.64 52.63 0.044 0.843 0.907 0.770

Baseline w/ IGTImage w/ I&II w/ I&II&III

Fig. 6: Visualization of the component ablation study. I, II, and III represent prompt
adapter, response filter, and semantic matcher, respectively.

with tiny objects (row 3), huge objects (row 4), high intrinsic similarities (row
2), indefinable boundaries (row 2 and 3), and complex backgrounds (row 1).
Parameter Complexity. Under similar parameter complexity and computa-
tional cost overhead, our model outperforms fully-supervised method Zoom-
Net [25], as shown in Tab. 2.

4.3 Ablation Study

As COD10K is the most representative dataset, all following ablation experi-
ments are performed on it. Unless specifically indicated, all results are the aver-
ages of three different prompts (point, box, and scribble).
Effectiveness of Prompt Adapter. The ablation results of prompt adapter
are presented in Tab. 4. Adapter has a large influence on the performance for
scribble prompt. In addition, compared with baseline, a more accurate prediction
map can be obtained by using the adapter, as shown in Fig. 6. In addition,
adapter has a hyperparameter α to control the degree of discrete sampling, as
shown in Tab. 5, with optimal effects achieved for suitable discrete sampling.
Effectiveness of Response Filter. As shown in Tab. 3, the results are sig-
nificantly improved using response filter. Fig. 6 intuitively illustrates that the
response filter enhances the precision of prediction maps. In addition, response
filter has two hyperparameters τs and τb to control effects, as shown in Tab. 5.
Effectiveness of Semantic Matcher. We conduct ablation experiments for
the semantic matcher, as shown in Tab. 3. In addition, a more complete visu-
alization of the prediction map can be obtained by using semantic matcher, as
shown in Fig. 6.
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Table 3: Ablations study of SAM-COD.

Settings Box Point Scribble

SAMSKDFilt.Match.PKDMAE↓ Sm ↑ Em ↑ Fw
β ↑ MAE↓ Sm ↑ Em ↑ Fw

β ↑ MAE↓ Sm ↑ Em ↑ Fw
β ↑

✓ 0.039 0.792 0.866 0.680 0.056 0.793 0.849 0.663 0.041 0.801 0.864 0.696

✓ ✓ 0.037 0.801 0.874 0.685 0.053 0.800 0.865 0.680 0.038 0.814 0.874 0.701

✓ ✓ ✓ 0.035 0.817 0.883 0.698 0.036 0.821 0.890 0.708 0.035 0.823 0.890 0.711

✓ ✓ ✓ ✓ 0.031 0.831 0.903 0.725 0.032 0.829 0.899 0.720 0.032 0.827 0.901 0.722

✓ ✓ ✓ ✓ ✓ 0.028 0.8420.9140.745 0.028 0.8310.9010.725 0.029 0.8310.9040.728

Table 4: Effect of the operation in
prompt adapter. Discret. represents dis-
crete sampling in the prompt adapter.

Zhang-suan Discret. MAE↓ Sm ↑ Em ↑ Fw
β ↑

× × 0.189 0.591 0.592 0.364
✓ × 0.093 0.712 0.751 0.519
✓ ✓ 0.038 0.814 0.874 0.701

Table 5: The impact of α, τs, and τb
in model.

α MAE↓ τs MAE↓ τb MAE↓

0.025 0.031 0.001 0.038 0.5 0.032
0.050 0.030 0.003 0.036 0.6 0.029
0.075 0.029 0.005 0.029 0.7 0.029
0.100 0.038 0.010 0.039 0.8 0.033

Effectiveness of Prompt-Adaptive KD. We test the effect of prompt-adaptive
KD compared with traditional KD. Tab. 3 shows that our PDK has a better
performance. Additionally, using PKD also enhances the precision of prediction
maps and able to continuously optimize representation and separate entangled
object from background, making the model eventually learn robust representa-
tions, as shown in Fig. 7. Tab. 7 shows that CE loss performs best in PKD.
Effectiveness of Self-Knowledge Distillation. We conduct ablation experi-
ments for SKD. Firstly, we separately test the performance of models with and
without SKD, our proposed self-knowledge distillation obtains a significant im-
provement, as shown in Tab. 3. In addition, we conduct exhaustive experiments
for data augmentation, which is an important operation for SKD, as shown in
Tab. 6. We test different types of knowledge distillation losses and find that L1
loss is performing best, as shown in Tab. 7.

4.4 Extension to SOD

Our method excels not only in COD but also demonstrates remarkable perfor-
mance in SOD. Specifically, we train on the SOD dataset using the labels of point,
scribble, and box, respectively, and the results obtained are shown in Tab. 8. We
attribute this success to our exploration of the potential of SAM and improve-
ments in knowledge distillation. which contributes to our strong performance in
WSSOD.
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Table 6: The ablation study for different
augmentations in Self-Knowledge Distilla-
tion. “S”, “C”, “T”, “F”, “G” are Scale, Crop,
Translate, Flip, Guassblur, respectively.

Augmentations
MAE↓ Sm ↑ Em ↑ Fw

β ↑
S C T F G

0.033 0.826 0.897 0.714
✓ 0.032 0.829 0.899 0.721
✓ ✓ 0.032 0.828 0.898 0.719
✓ ✓ ✓ 0.032 0.831 0.901 0.723
✓ ✓ ✓ ✓ 0.031 0.830 0.901 0.723
✓ ✓ ✓ ✓ ✓ 0.029 0.835 0.906 0.732

Table 7: Ablation study on knowledge
distillation losses. MSE, L1, CE mean
Mean Square Error, L1, and Cross En-
tropy loss, respectively.

SKD PKD MAE↓ Sm ↑ Em ↑ Fw
β ↑

w/o w/o 0.039 0.801 0.873 0.684
w/MSE w/o 0.038 0.801 0.878 0.693
w/CE w/o 0.039 0.798 0.875 0.689
w/L1 w/o 0.037 0.807 0.882 0.701
w/o w/ MSE 0.035 0.803 0.840 0.669
w/o w/ L1 0.032 0.788 0.845 0.678
w/o w/ CE 0.034 0.821 0.891 0.707

Table 8: Comparison with state-of-the-art WSSOD methods in SOD task.

Methods Label
ECSSD DUT-O HKU-IS DUTS-TE

MAE ↓ Sm ↑ Fmax
β ↑MAE ↓ Sm ↑ Fmax

β ↑MAE ↓ Sm ↑ Fmax
β ↑MAE ↓ Sm ↑ Fmax

β ↑

AFNet [11] F 0.042 0.913 0.935 0.057 0.826 0.797 0.036 0.905 0.923 0.046 0.867 0.863
BASNet [26] F 0.037 0.916 0.943 0.057 0.836 0.805 0.032 0.909 0.928 0.048 0.866 0.859
SCSOD [31] S 0.049 0.881 0.914 0.060 0.811 0.782 0.038 0.882 0.908 0.049 0.853 0.858
PSOD [13] P 0.036 0.913 0.935 0.064 0.824 0.808 0.033 0.901 0.923 0.045 0.853 0.858
SAM-COD P 0.033 0.925 0.947 0.051 0.844 0.826 0.024 0.946 0.941 0.034 0.892 0.898
SAM-COD S 0.034 0.921 0.944 0.050 0.846 0.829 0.024 0.947 0.944 0.033 0.898 0.901
SAM-COD B 0.031 0.929 0.952 0.051 0.844 0.828 0.023 0.952 0.949 0.033 0.899 0.903

4.5 Discussion

Is the prompt-adaptive KD from SAM important?
1) Data efficiency. We also evaluate the performance of our model and CRNet
in few-shot setting, as shown in Fig. 8(a). Specifically, our model is trained
only using the COD10K-Train dataset, which contains categories, and tested on
the COD10K-Test dataset. Compared to CRNet, our model achieves promising
results with much fewer training data. Especially in the extreme scenario, our
method only uses one training image in each category, performance significantly
surpasses that of CRNet training on the complete dataset. Fig. 8(a) verifies the
effectiveness and efficiency of the proposed method. Through prompt-adaptive
knowledge distillation, we transfer the knowledge from SAM to our model, only
requiring a small amount of data.
2) Training efficiency. We visualize the curves of various metrics during the
training, as shown in Fig. 8(b), where CRNet and our model share the same
implementation details, including the optimizer, learning rate, epochs, and other
relevant parameters. It is observed that our model demonstrates extremely fast
convergence speed. To achieve the same performance, our model only needs one
epoch of training, while CRNet typically requires more than 10 epochs. Because
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Fig. 7: Visualization of the feature. Entangled features from foregrounds and back-
grounds are well separated by our prompt-adaptive KD. (visualized by t-SNE). Green
and red colors represent features acquired under KD and PKD, respectively.
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Fig. 8: The benefits of prompt-adaptive distilling knowledge from SAM. (a) Data ef-
ficiency: Few-shot performance. For each k-shot setting, we repeat the experiment 5
times to randomly select k images as training data. The average results are shown in
the curve. (b) Training efficiency: Performance across different training epochs with
the same training setting.

our model transfers the teacher knowledge from SAM to our small model through
prompt-Adaptive knowledge distillation, which is much faster than learning a
model from scratch.

5 Conclusion

In this paper, we propose a SAM-guided unified framework for weakly-supervised
camouflaged object detection (WSCOD), named SAM-COD. It integrates all
the existing labels for camouflaged objects (i.e., scribbles, bounding boxes, and
points), and achieves remarkable performance against the state-of-the-art weakly-
supervised methods and even fully-supervised methods. The proposed SAM-
COD typically aims to address the issues of SAM in the WSCOD task, i.e.,
prompt compatibility of the scribble labels, extreme response, semantically erro-
neous response, and unstable feature representations. Specifically, in SAM-COD,
we devise a prompt adapter to handle different labels and employ response fil-
ter and semantic matcher to mitigate the issue of imperfect outputs of SAM
for camouflaged objects. Moreover, a prompt-adaptive knowledge distillation is
proposed for reliable feature representations. We have conducted extensive ex-
periments on camouflaged object datasets, demonstrating the effectiveness of the
proposed method, which improves SAM to be more applicable to WSCOD.
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1. Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining. pp. 535–541 (2006)

2. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin,
A.: Emerging properties in self-supervised vision transformers. In: Proceedings of
the IEEE/CVF international conference on computer vision. pp. 9650–9660 (2021)

3. Chen, T., Zhu, L., Ding, C., Cao, R., Zhang, S., Wang, Y., Li, Z., Sun, L., Mao, P.,
Zang, Y.: Sam fails to segment anything?–sam-adapter: Adapting sam in underper-
formed scenes: Camouflage, shadow, and more. arXiv preprint arXiv:2304.09148
(2023)

4. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. pp.
15750–15758 (2021)

5. Fan, D.P., Cheng, M.M., Liu, Y., Li, T., Borji, A.: Structure-measure: A new way
to evaluate foreground maps. In: Proceedings of the IEEE international conference
on computer vision. pp. 4548–4557 (2017)

6. Fan, D.P., Gong, C., Cao, Y., Ren, B., Cheng, M.M., Borji, A.: Enhanced-alignment
measure for binary foreground map evaluation. In: Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI-18. pp.
698–704 (2018)

7. Fan, D.P., Ji, G.P., Cheng, M.M., Shao, L.: Concealed object detection. IEEE
transactions on pattern analysis and machine intelligence 44(10), 6024–6042 (2021)

8. Fan, D.P., Ji, G.P., Sun, G., Cheng, M.M., Shen, J., Shao, L.: Camouflaged object
detection. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 2777–2787 (2020)

9. Fan, D.P., Ji, G.P., Zhou, T., Chen, G., Fu, H., Shen, J., Shao, L.: Pranet: Par-
allel reverse attention network for polyp segmentation. In: International confer-
ence on medical image computing and computer-assisted intervention. pp. 263–273.
Springer (2020)

10. Fan, D.P., Zhou, T., Ji, G.P., Zhou, Y., Chen, G., Fu, H., Shen, J., Shao, L.: Inf-net:
Automatic covid-19 lung infection segmentation from ct images. IEEE transactions
on medical imaging 39(8), 2626–2637 (2020)

11. Feng, M., Lu, H., Ding, E.: Attentive feedback network for boundary-aware salient
object detection. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. pp. 1623–1632 (2019)

12. Pérez-de la Fuente, R., Delclòs, X., Peñalver, E., Speranza, M., Wierzchos, J.,
Ascaso, C., Engel, M.S.: Early evolution and ecology of camouflage in insects.
Proceedings of the National Academy of Sciences 109(52), 21414–21419 (2012)

13. Gao, S., Zhang, W., Wang, Y., Guo, Q., Zhang, C., He, Y., Zhang, W.: Weakly-
supervised salient object detection using point supervision. In: Proceedings of the
AAAI Conference on Artificial Intelligence. pp. 670–678 (2022)

14. He, C., Li, K., Zhang, Y., Xu, G., Tang, L., Zhang, Y., Guo, Z., Li, X.: Weakly-
supervised concealed object segmentation with sam-based pseudo labeling and
multi-scale feature grouping. Advances in Neural Information Processing Systems
36 (2024)

15. He, R., Dong, Q., Lin, J., Lau, R.W.: Weakly-supervised camouflaged object de-
tection with scribble annotations. In: Proceedings of the AAAI Conference on
Artificial Intelligence. pp. 781–789 (2023)



16 H. Chen et al.

16. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
stat 1050, 9 (2015)

17. Ji, G.P., Chou, Y.C., Fan, D.P., Chen, G., Fu, H., Jha, D., Shao, L.: Progressively
normalized self-attention network for video polyp segmentation. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention. pp.
142–152. Springer (2021)

18. Ji, W., Yu, S., Wu, J., Ma, K., Bian, C., Bi, Q., Li, J., Liu, H., Cheng, L., Zheng, Y.:
Learning calibrated medical image segmentation via multi-rater agreement model-
ing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 12341–12351 (2021)

19. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., Dollár, P., Girshick, R.B.: Segment anything.
2023 IEEE/CVF International Conference on Computer Vision (2023)

20. Le, T.N., Nguyen, T.V., Nie, Z., Tran, M.T., Sugimoto, A.: Anabranch network
for camouflaged object segmentation. Computer vision and image understanding
184, 45–56 (2019)

21. Li, A., Zhang, J., Lv, Y., Liu, B., Zhang, T., Dai, Y.: Uncertainty-aware joint
salient object and camouflaged object detection. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 10071–10081 (2021)

22. Lv, Y., Zhang, J., Dai, Y., Li, A., Liu, B., Barnes, N., Fan, D.P.: Simultane-
ously localize, segment and rank the camouflaged objects. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11591–
11601 (2021)

23. Margolin, R., Zelnik-Manor, L., Tal, A.: How to evaluate foreground maps? In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 248–255 (2014)

24. Mei, H., Ji, G.P., Wei, Z., Yang, X., Wei, X., Fan, D.P.: Camouflaged object seg-
mentation with distraction mining. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 8772–8781 (2021)

25. Pang, Y., Zhao, X., Xiang, T.Z., Zhang, L., Lu, H.: Zoom in and out: A mixed-scale
triplet network for camouflaged object detection. In: Proceedings of the IEEE/CVF
Conference on computer vision and pattern recognition. pp. 2160–2170 (2022)

26. Qin, X., Zhang, Z., Huang, C., Gao, C., Dehghan, M., Jagersand, M.: Basnet:
Boundary-aware salient object detection. In: Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition. pp. 7479–7489 (2019)

27. Sun, Y., Chen, G., Zhou, T., Zhang, Y., Liu, N.: Context-aware cross-level fu-
sion network for camouflaged object detection. In: Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI-21. pp. 1025–1031
(2021)

28. Tang, L., Xiao, H., Li, B.: Can sam segment anything? when sam meets camou-
flaged object detection. arXiv preprint arXiv:2304.04709 (2023)

29. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao,
L.: Pyramid vision transformer: A versatile backbone for dense prediction with-
out convolutions. In: Proceedings of the IEEE/CVF international conference on
computer vision. pp. 568–578 (2021)

30. Yang, F., Zhai, Q., Li, X., Huang, R., Luo, A., Cheng, H., Fan, D.P.: Uncertainty-
guided transformer reasoning for camouflaged object detection. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 4146–4155
(2021)



SAM-COD 17

31. Yu, S., Zhang, B., Xiao, J., Lim, E.G.: Structure-consistent weakly supervised
salient object detection with local saliency coherence. In: Proceedings of the AAAI
conference on artificial intelligence. pp. 3234–3242 (2021)

32. Zhai, Q., Li, X., Yang, F., Chen, C., Cheng, H., Fan, D.P.: Mutual graph learning
for camouflaged object detection. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 12997–13007 (2021)

33. ZHAN, C., WANG, A., WANG, M.: Camouflage object segmentation method based
on channel attention and edge fusion. Journal of Computer Applications 43(7),
2166 (2023)

34. Zhang, J., Yu, X., Li, A., Song, P., Liu, B., Dai, Y.: Weakly-supervised salient
object detection via scribble annotations. In: Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition. pp. 12546–12555 (2020)

35. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns.
Communications of the ACM 27(3), 236–239 (1984)


	 SAM-COD: SAM-guided Unified Framework for Weakly-Supervised Camouflaged Object Detection

