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Abstract. Open-Vocabulary Detection (OVD) is the task of detecting
all interesting objects in a given scene without predefined object classes.
Extensive work has been done to deal with the OVD for 2D RGB images,
but the exploration of 3D OVD is still limited. Intuitively, lidar point
clouds provide 3D information, both object level and scene level, to gener-
ate trustful detection results. However, previous lidar-based OVD meth-
ods only focus on the usage of object-level features, ignoring the essence
of scene-level information. In this paper, we propose a Global-Local Col-
laborative Scheme (GLIS) for the lidar-based OVD task, which contains a
local branch to generate object-level detection result and a global branch
to obtain scene-level global feature. With the global-local information, a
Large Language Model (LLM) is applied for chain-of-thought inference,
and the detection result can be refined accordingly. We further propose
Reflected Pseudo Labels Generation (RPLG) to generate high-quality
pseudo labels for supervision and Background-Aware Object Localiza-
tion (BAOL) to select precise object proposals. Extensive experiments on
ScanNetV2 and SUN RGB-D demonstrate the superiority of our meth-
ods. Code is released at https://github.com/GradiusTwinbee/GLIS.

Keywords: Open-Vocabulary Detection · 3D Object Detection · Large
Language Model

1 Introduction

As a basic function of machine perception, object detection has attracted much
attention within computer vision communities. The traditional training pipeline
for the detection model relies on elaborately labeled data, resulting in a limited
number of classes that can be collected and annotated. In this way, the detection
model fails to detect objects not belonging to the training object classes. In
⋆ Corresponding author
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Fig. 1: (a) The previous 3D OVD paradigm determines the class of an object proposal
by comparing its point cloud feature with the class text features. As it only considers
object-level/local information, the proposal may be wrongly recognized, e.g . mistaking
the cabinet for a desk. (b) In contrast, we propose a Global-Local Collaborative Infer-
ence Scheme (GLIS) for 3D OVD, considering both the scene-level/global information
and the object-level/local information. Additionally, we leverage the LLM to provide
common sense for chain-of-thought inference, which can clarify the ambiguous object
class step by step.

recent years, open-vocabulary detection has become a popular topic, which is
hopeful to solve the problem. Generally, an open-vocabulary detection model
requires no human-labeled data in the training stage and possesses the ability
to detect any interested object in a given scene. However, although many open-
vocabulary detection methods focus on 2D RGB images, the 3D point clouds,
a data modality widely used in autonomous driving and robot vision, have not
been thoroughly investigated. In this paper, we focus on the task of lidar-based
open-vocabulary object detection, where only point clouds are utilized in the
testing stage.

Compared to open-vocabulary detection for 2D RGB images, lidar-based
open-vocabulary detection suffers from more difficulties. Firstly, point clouds
have lower resolutions compared to 2D RGB images, leading to the loss of object
details, e.g . material, texture, color, etc. Additionally, the quality of the point
cloud could be easily affected by environmental conditions, thus noisy points may
exist in the point cloud. Therefore, it is harder for a lidar-based detection model
to recognize the class only based on the lidar information of a single object,
emphasizing the necessity of environmental information in lidar-based OVD.

However, the dominant paradigm of current state-of-the-art lidar-based OVD
methods only focuses on object-level features and neglects the importance of
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scene-level information. As shown in Fig. 1a, the current paradigm determines
the class of an object by comparing the object-level features and the text features
of class names. Such a paradigm could be easily affected by the point cloud’s
low resolution and noises since it only considers local information.

To address this issue, we propose a Global-Local Collaborative Inference
Scheme (GLIS) for the lidar-based OVD task, considering both the global scene-
level information and the local object-level information. Additionally, the Large
Language Model (LLM) is introduced to provide common sense for chain-of-
thought inference. The common sense from LLM could help the model clarify
the ambiguous object features, while chain-of-thought inference allows the model
to refine the detection result step by step. For example, in the case of Fig. 1, the
class-agnostic proposal, which is a cabinet in fact, is wrongly recognized as a desk.
The previous paradigm (shown in Fig. 1a) does not perceive this error as it only
considers local information. Contrastly, in GLIS (shown in Fig. 1b), such error
could be corrected with the clues from global information. Specifically, with the
scene being identified as a bathroom, the LLM recognizes that a desk is unlikely
to be present, suggesting the object proposal might have been misclassified.
Drawing on both local and global features, as well as insights from previous
conversations, the mislabeled desk can be accurately reclassified as a cabinet.
In summary, GLIS proactively employs global and local information within a
chain-of-thought inference framework.

To support high-quality global-local collaborative inference, both the local
branch and the global branch are elaborately designed. For the local branch, we
propose Reflected Pseudo Labels Generation (RPLG) to generate high-quality
pseudo labels for training. Additionally, Background-Aware Object Localization
(BAOL) is proposed to generate precise object proposals. For the global branch,
the model is learned to generate scene descriptions following the demonstration
of MiniGPT-v2 [3].

In summary, our contributions are as follows.

– We propose a lidar-based open-vocabulary detection method, GLIS, which is
the first work to explore the interactions of the global scene-level information
and local object-level information in this field.

– We introduce LLM to conduct chain-of-thought inference in the lidar-based
open-vocabulary detection pipeline, where the common sense extracted from
LLM is utilized to refine the detection result.

– To further improve the detection performance of GLIS, we propose Reflected
Pseudo Labels Generation (RPLG) and Background-Aware Object Local-
ization (BAOL), which can alleviate the influence of noises in training and
testing.

Superior performance on ScanNetV2 [7] and SUN RGB-D [38] demonstrates
the effectiveness of our methods.
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2 Related Work

2.1 Open Vocabulary Detection

2D Open Vocabulary Detection. Many works have been done to deal with
2D OVD [3,8,10,12,13,18,21,29,34,35,45,51,52,54,55,61,62]. Some works [55,62]
utilize image-text pairs to conduct open-vocabulary detection. Other works [54,
61] try to use pre-aligned text-image embedding space (e.g ., CLIP [33]) to im-
prove the detection performance. For example, RegionCLIP [61] utilizes CLIP
to match captions with image regions, achieving fine-grained alignment between
images and texts. Recently, with the prosperity of Generative Pre-training Trans-
former (GPT), some works [3, 18, 21] also try to conduct 2D OVD via image
grounding. GLIP [18] proposes a scheme to unify the pre-training of object detec-
tion and image grounding. Grounding DINO [21] utilizes grounded pre-training
to equip the closed-set detector DINO [58] with open-vocabulary detection abil-
ities. Minigpt-v2 [3] builds a unified LLM for completing various vision-language
tasks including object detection and image caption.

3D Open Vocabulary Detection. As point cloud plays an important role in
autonomous driving and robot vision, some researchers are paying attention to
3D OVD [2,25,26,43,56,59]. OV-3DET [25,26] utilizes pre-trained 2D detectors
to generate 2D pseudo labels from RGB images, which are then converted to
3D pseudo labels via projection. Besides, a debiased contrastive learning strat-
egy is proposed in OV-3DET to bridge connections between texts, images and
point clouds. Unlike OV-3DET, CoDA [2] trains a based detector with limited
annotations for localization and discovers novel objects with 3D box geometry
priors and 2D semantic open-vocabulary priors. FM-OV3D [56] obtains knowl-
edge from pre-trained foundation models to improve the detection performance.
OpenSight [59] explores 3D OVD in outdoor scenes.

However, all previous methods for lidar-based OVD only focus on the usage
of object-level features, ignoring the value of the scene-level information.

2.2 3D Object Detection

As a basic technique for 3D world perception, lidar-based 3D object detection
has achieved great progress in recent years [4,5,9,11,15,17,19,24,27,28,30–32,36,
37,39,42,46,47,49,50,53,60,63]. Some works [4,49] project 3D point clouds onto
the Bird’s Eye View, so they can be processed by 2D CNNs. Other works [17,
19, 37, 50] design networks for direct feature extraction from point clouds. For
example, PointRCNN [37] proposes a two-stage detection pipeline to handle
proposal generation and refining respectively. With the rise of Transformer [41],
transformer-based 3D detectors [24,30] are also devised. Group-Free [24] utilizes
the attention mechanism of Transformer to directly learn the contribution of
each point to a single object. 3DETR [30] builds an end-to-end transformer-
based detector for 3D object detection.

However, these works are focused on closed-set lidar-based 3D object detec-
tion. In contrast, our GLIS is targeted for 3D open-vocabulary object detection.
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2.3 Large Language Models

Trained on numerous texts from the Internet in a self-supervised way, Large
Language Models (LLMs) acquire the ability to generate human-like natural
language [1, 40]. For example, GPT-3 [1] can chat with users or write essays
according to instructions. To apply pre-trained LLMs in specific areas, many
fine-tuning methods are proposed, e.g . P-Tuning [22,23] and Lora [14]. There are
also works [16,44] trying to improve the inference ability of LLMs. For example,
[44] utilizes the technique of Chain-of-Thought Prompting (CoT) to help LLMs
conduct reasoning step by step. To introduce the advantages of LLMs from
texts to other modals, Multi-Modal Large Language Models (MLLMs) [20, 57]
are proposed. For example, LLaVA [20] equips LLMs with visual encoders for
visual and language understanding.

In this paper, we devise a global-local collaborative inference scheme to utilize
the inference ability of LLMs in lidar-based OVD.

3 Methods

3.1 Notation and Preliminaries

Generally, a training sample for lidar-based OVD is consisted of three parts:
the point cloud P , the image I, and the projection matrix M . The point cloud
P is a set of 3D points {(xi, yi, zi)}

Np

i=1, where Np is the points number. The
2D RGB image I ∈ Rh×w×3 is in pair with P . Following the lidar-based OVD
experiment setup [25, 26, 56, 59], images are only utilized during the training
stage, while test is purely based on point clouds. The projection matrix M is
used for bounding box conversion between 2D and 3D. It should be noted that
OVD is an unsupervised task, and no ground-truth label is provided in the
training stage.

We record a bounding box as (x, y, z, l, w, h, θ), where (x, y, z) is the cen-
ter, l, w, h are length, width, height respectively, and θ is the heading angle.
We also use a 3D backbone to extract local feature floc ∈ RNq×Dp and global
feature fglob ∈ R1×Dp from the point cloud, where Nq is the query number of
Transformer in 3D backbone, and Dp is the 3D feature dimension.

3.2 Overview

For lidar-based open-vocabulary object detection, the object-level information
and scene-level information are both useful. In this way, we propose a Global-
Local Collaborative Inference Scheme (GLIS) for lidar-based open-vocabulary
object detection. The whole GLIS is comprised of a training pipeline and an
inference pipeline.

Fig. 2 shows the training pipeline of GLIS. Initially, the point cloud is in-
put into the 3D backbone to extract local feature floc and global feature fglob.
Since the unsupervised OVD task lacks supervisory signals, both local and
global branches contain model training and pseudo-label acquisition. For the
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Fig. 2: The training pipeline of GLIS.

local branch, the bounding boxes are extracted by the Background-Aware Ob-
ject Localization (BAOL) module, while the object classes are predicted by the
LLM. Note that a Reflected Pseudo Labels Generation (RPLG) module is de-
signed to generate pseudo labels, which are used as the supervised signals for
loss computing. For the global branch, the scene caption is generated by the
LLM based on the global feature. The scene caption is supervised by the image
caption from MiniGPT-v2 [3]. Note that the snow symbol in Fig. 2 means that
model parameters are fixed during training.

The inference pipeline of GLIS is presented in Fig. 3. Firstly, the LLM gen-
erates a description of the scene and predicts what type the scene is. Then a
preliminary detection result is formed based on the local feature. Finally, chain-
of-thought prompts are used to guide the LLM’s inference, where the detection
result is refined accordingly. The detailed process will be introduced in section
Sec. 3.5.

3.3 Local Object Localization and Classification

The local branch is responsible for the generation of preliminary detection re-
sults. Firstly, the Background-Aware Object Localization (BAOL) module ex-
tracts object proposals {bi, f i

obj}
Nobj

i=1 from the local feature floc:

{bi, f i
obj}

Nobj

i=1 = BAOL(floc), (1)
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where bi is the i-th object bounding box, f i
obj is the i-th object feature, Nobj is

the object number. Then object classes {ci}
Nobj

i=1 are predicted by LLM:

ci = LLM(Tloc,Local-Projector(f i
obj)), (2)

where ci is the predicted class of i-th object and Tloc is the LLM prompt. In
practice, we use "What is it?" as Tloc. The Local Projector is a linear layer, which
aligns object features {f i

obj}
Nobj

i=1 to the LLM embedding space. The training of
BAOL and Local Projector is supervised by the pseudo labels from the Reflected
Pseudo Labels Generation (RPLG) module. In the following paragraph, we will
introduce the proposed RPLG and BAOL in detail.

Reflected Pseudo Labels Generation (RPLG). As an unsupervised task,
OVD lacks off-the-shelf labels for model training. To deal with this problem,
previous works [25, 26, 56, 59] firstly obtain 2D pseudo labels from the image by
2D open-vocabulary detectors. Then these 2D pseudo labels are converted to
3D pseudo labels via the 2D-to-3D projection matrix. However, due to the lim-
ited detection ability, 2D open-vocabulary detectors may generate false labels,
which may further confuse the OVD training. To alleviate this issue, we pro-
pose a reflected pseudo labels generation scheme to reduce the noise in pseudo
labels. Specifically, Detectron2 [45] is used to generate 2D labels from images
and CLIP [33] is further adopted to play the role of reflection, i.e., checks the
correctness of these labels.

Specifically, initial 2D labels {b̄i2D, c̄i}N̄i=1 are generated by Detectron2, where
b̄i2D is the i-th 2D bounding box, c̄i is the i-th object class, N̄ is the number of 2D
labels. Then corresponding patches {pi}N̄i=1 are cropped from image I according
to {b̄i2D}N̄i=1. To apply CLIP for label checking, we set two prompt templates:

T+(class): "This is a {class}.",
T−(class): "This is not a {class}.".

These templates, together with patches {pi}N̄i=1 and classes {c̄i}N̄i=1, are sent into
CLIP to calculate confidence scores:

[ϕ+
i , ϕ

−
i ] = Softmax(CLIP(T+(c̄i), pi),CLIP(T−(c̄i), pi)), (3)

where ϕ+
i is the confidence score that pi belongs to class ci and vice versa. We

keep labels with ϕ+
i higher than a predefined threshold ϕCLIP , creating new 2D

labels {b̃i2D, c̃i}Ñi=1. These 2D labels are converted to 3D pseudo labels {b̃i, c̃i}Ñi=1

via projection matrix M , where Ñ is the number of 3D pseudo labels.

Background-Aware Object Localization (BAOL). Due to noises within
the point cloud, the detector may confuse foreground objects with the back-
ground and outputs false object proposals. To select high-quality object propos-
als, we propose background-aware object localization . Basically, class-agnostic
object proposals {b̂i, ôi}

Nq

i=1 are extracted from floc via a series of prediction
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heads, where b̂i is the i-th bounding box, and ôi is the confidence of the i-th pro-
posal. Then proposals whose confidence is below a threshold ϕobj are removed,
forming the class-agnostic detection result {bi, oi}

Nobj

i=1 , where Nobj is the number
of objects.

In closed-vocabulary detection, the prediction of confidence can be learned
from groundtrurh labels. However, in OVD, we have to design the supervision
signals manually. Preliminarily, we conduct bipartite matching between the pro-
posals {b̂i}

Nq

i=1 and the pseudo labels {b̃i}Ñi=1 based on IoU. Then all proposals
are labeled via:

yi =

{
1 ∃j, b̂i is matched with b̃j ,

0 otherwise,
(4)

where yi = 1 means the i-th proposal is positive, i.e., is a foreground object, and
vice versa. However, such label assignment can be inaccurate in two situations:
(i) The matched proposal has a low IoU with the matched label, which means
the proposal is not accurate enough; (ii) Two different proposals refer to the
same object, yet only one of the proposal could be labeled as foreground object,
which may cause confusion. To tackle these situations, we further modify the
label rule. For situation (i), if a proposal has a IoU below ϕlow with the matched
pseudo bounding box, then it will be labeled as negative. For situation (ii), if the
IoU of the two proposals are higher than ϕhigh, then both of them will be labeled
as positive. For simplicity, we still use {yi}

Nq

i=1 to denote the refined labels.

3.4 Global Scene Understanding and Description

The global branch predicts scene type s (e.g ., bedroom, kitchen, etc.) and gen-
erates scene description d based on global feature fglob. Specifically, we prompt
LLM with the following text:

Tglob: "What kind of scene is it mostly like? Describe the scene.".

Besides, we use the global projector to align global feature fglob to the LLM
embedding space. The whole process could be represented as

s, d = LLM(Tglob,Global-Projector(fglob)). (5)

For supervision, we utilize the 2D-based MiniGPT-v2 [3] to generate scene
type label s̃ and scene description label d̃ from the paired image, which are used
for loss computation with the LLM answer.

3.5 Global-Local Collaborative Inference with LLM

In this section, we will introduce the inference pipeline of our proposed GLIS,
which is presented in Fig. 3. Firstly, as shown in Fig. 3a, global feature fglob and
local feature floc are extracted from 3D backbone. Then class-agnostic object
proposals, as well as their confidence scores and 3D features fobj , are generated
by the BAOL module.
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Fig. 3: The inference pipeline of GLIS.

With the extracted local and global information, we can conduct global-
local collaborative inference (GLCI) with LLM and refine the detection result
accordingly. Generally, as shown in Fig. 3b, chain-of-thought prompts are used
to guide the LLM’s inference. The whole inference process could be divided into
three stages, i.e., global QA, local QA, and global-local collaborative QA. In
global QA, the LLM is asked to predict the scene type and describe the scene
based on the global feature fglob. In local QA, fobj is utilized to predicted the
classes of the class-agnostic object proposals.

After finishing global QA and local QA, a preliminary detection result is
given. This detection result will be refined step by step in global-local collabo-
rative QA. Specifically, for each predicted class, the following prompt template
is used to check its rationality: "Is it normal to see a {class} in a {scene type}
?". If a class c is thought as reasonable to exist in the predicted scene type, then
all predicted objects belonging to class c are reserved, e.g ., toilet in Fig. 3b.
Contrastly, those objects that are not likely to be in the scene will be further
inspected. Specifically, for each unreasonable object, if its confidence is below a
predefined threshold ϕkeep = 0.75, it will be automatically removed, and vice
versa. For example, in Fig. 3b, the object proposal of desk is kept as its confi-
dence is beyond ϕkeep. To obtain the correct class of this proposal, we further
prompt LLM with following template: "If the object is not a desk, what is it
probably based on the scene description and the object feature?". Then the LLM
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utilizes the information from both local and global to give the answer. Finally,
the object class is corrected according to the LLM’s answer.

3.6 Training Objectives

The training loss contains four parts, i.e., bounding box regression loss Lbbox,
confidence prediction loss Lconf , object classifiction loss Lcls, and scene un-
derstanding loss Lscene. We use the regression loss function in 3DETR [30] to
compute Lbbox, which could be represented as:

Lbbox = RegressionLoss({bi}
Nobj

i=1 , {b̃i}Ñi=1). (6)

The confidence prediction loss is defined as:

Lconf = − 1

Nq

Nq∑
i=1

[yi log ôi + λconf (1− yi) log(1− ôi)], (7)

where λconf is a balanced factor. As object classes are predicted by LLM, we
compute Lcls by maximizing the possibility of label text tokens [48]. Specifically,
assuming the label text is a sequence of tokens t = (w1, w2, · · · , wl) and the
predicted possibility for each token is p(t) = [p(w1), p(w2), · · · , p(wl)], the text
loss is defined as:

Ltext(p(t)) = −
l∑

i=1

log p(wi). (8)

In this way, Lcls could be computed as:

Lcls =
1

Ñ

Ñ∑
i=1

Ltext(ploc(c̃i)), (9)

where ploc is the LLM predicted token possibility in the local branch. Similarly,
Lscene could be computed via:

Lscene = Ltext(pglob(s̃)) + Ltext(pglob(d̃)), (10)

where pglob is the LLM predicted token possibility in the global branch.
In summary, the total loss is computed as

L = λ1Lbbox + λ2Lconf + λ3Lcls + λ4Lscene, (11)

where λ1, λ2, λ3, λ4 are balanced factors.

4 Experiments

4.1 Datasets and Metrics

We conduct experiments on two datasets: ScanNetV2 [7] and SUN RGB-D [38].
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Table 1: Comparisons with other methods on ScanNetV2

Method mAP 10cls
25 toilet bed chair sofa dresser table cabinet bookshelf pillow sink

OV-3DETIC [25] 12.65 48.99 2.63 7.27 18.64 2.77 14.34 2.35 4.54 3.93 21.08
FM-OV3D [56] 21.53 62.32 41.97 22.24 31.80 1.89 10.73 1.38 0.11 12.26 30.62
OV-3DET [26] 24.36 57.29 42.26 27.06 31.50 8.21 14.17 2.98 5.56 23.00 31.60

CoDA [2] 28.76 68.09 44.04 28.72 44.57 3.41 20.23 5.32 0.03 27.95 45.26
GLIS (ours) 30.94 73.90 39.69 39.51 44.41 6.09 25.38 5.92 8.31 25.63 43.51

Method mAP 20cls
25 bathtub refrigerator desk nightstand counter door curtain box lamp bag

OV-3DET [26] 18.02 56.28 10.99 19.72 0.77 0.31 9.59 10.53 3.78 2.11 2.71
CoDA [2] 19.32 50.51 6.55 12.42 15.15 0.68 7.95 0.01 2.94 0.51 2.02

GLIS (ours) 20.83 53.21 4.76 20.79 7.62 0.09 0.95 7.79 3.32 3.73 1.93

ScanNetV2 is a widely used 3D object detection and semantic segmentation
dataset, which has 1513 scenes with over 200 object classes.

SUN RGB-D is a large 3D object detection and scene understanding dataset,
which contains 10335 samples with around 800 object classes.

Metrics. We use the mean Average Precision (mAP) at the IoU threshold of
0.25 to evaluate the detection performance. For a fair comparison, we evaluate
our GLIS on the top-20 object classes in ScanNetV2 and SUN RGB-D respec-
tively, following OV-3DET [26]. We also report the results on top-10 classes for
comparison with methods like [25, 56]. The metrics are notated as mAP 20cls

25

and mAP 10cls
25 respectively for distinguishing.

4.2 Implementation Details

The training process contains two phases: 1) training the 3D backbone and the
bounding box prediction heads; 2) training the object confidence prediction head,
as well as the local projector and global projector. The training of phase 1 lasts
for 400 epochs with a total batch size of 32 (i.e., a single batch size 4 × 8 GPUs).
The training of phase 2 lasts for 50 epochs with a total batch size of 16. The
base learning rate is set as 1e−4. The loss balanced factors are λconf = 0.2, λ1 =
4, λ2 = 10, λ3 = 1, λ4 = 1, respectively. The mentioned thresholds are ϕCLIP =
0.5, ϕobj = 0.1, ϕlow = 0.25, ϕhigh = 0.6, ϕkeep = 0.75, respectively. We choose
the model architecture of 3DETR [30] as our 3D backbone and bounding box
prediction heads. We use LLaMA [40] as the LLM backbone, which is initialized
by the checkpoint vicuna-7b-v1.5-16k [6]. All experiments are conducted on 8
A800 GPUs.

4.3 Main Results

ScanNetV2. As shown in Tab. 1, our proposed GLIS greatly improves the
open-vocabulary detection performance on ScanNetV2. Compared to previous
sota method CoDA [2], mAP 10cls

25 is raised from 28.76% to 30.94% and mAP 20cls
25

is raised from 19.32% to 20.83%. Our methods also significantly improve the
detection precision of many classes, e.g ., chair is improved by 10.79%, toilet is
improved by 5.81%, and table is improved by 5.15%.
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Table 2: Comparisons with other methods on SUN RGB-D

Method mAP 10cls
25 toilet bed chair bathtub sofa dresser scanner fridge lamp desk

OV-3DETIC [25] 13.03 43.97 6.17 0.89 45.75 2.26 8.22 0.02 8.32 0.07 14.60
FM-OV3D [56] 21.47 55.00 38.80 19.20 41.91 23.82 3.52 0.36 5.95 17.40 8.77
OV-3DET [26] 31.06 72.64 66.13 34.80 44.74 42.10 11.52 0.29 12.57 14.64 11.21
GLIS (ours) 30.83 69.88 63.83 34.78 49.62 40.78 10.73 1.49 8.37 16.40 12.44

Method mAP 20cls
25 table stand cabinet counter bin bookshelf pillow microwave sink stool

OV-3DET [26] 20.46 23.31 2.75 3.40 0.75 23.52 9.83 10.27 1.98 18.57 4.10
GLIS (ours) 21.45 19.17 13.84 2.75 0.59 22.22 12.65 15.78 5.30 27.62 0.84

Table 3: Ablation study on ScanNetV2

Method mAP 10cls
25 mAP 20cls

25

Base Model 28.59 19.36
+RPLG 28.80 +0.21 19.51 +0.15
+BAOL 29.75 +0.95 20.03 +0.52
+GLCI 30.94 +1.19 20.83 +0.80

SUN RGB-D. The detection precision on SUN RGB-D is reported in Tab. 2.
When tested on 20 classes, mAP 20cls

25 is improved from 20.46% to 21.45%, demon-
strating the effectiveness of our methods. Specifically, stand is improved by
11.09%, sink is improved by 9.05%, and bathtub is improved by 4.88%, etc.
Our methods also achieve competitive performance compared to OV-3DET [26]
when evaluated on 10 classes.

4.4 Ablation Study

To analyze the effect of each module in our proposed GLIS, we conduct an
ablation study on ScanNetV2. Detailed results are presented in Tab. 3

Base Model. Base model is different from GLIS in three aspects: i) In RPLG,
all pseudo labels from Detectron2 are reserved. ii) In BAOL, all local features
are reserved (i.e., fobj = floc). iii) Global inference is not performed.

Effect of RPLG. With RPLG added to the Base Model, the detection pre-
cision increases. For example, mAP 10cls

25 is improved from 28.59% to 28.80%.
Such improvement demonstrates that RPLG can recognize false detection in
MiniGPT-v2 and improve the pseudo labels’ quality.

Effect of BAOL. BAOL further refines the detection performance. For in-
stance, mAP 10cls

25 is lifted from 28.80% to 29.75% and mAP 20cls
25 is lifted from

19.51% to 20.03%. This proves that BAOL can overcome the disturbance of
noises in point clouds, resulting in better localization for interested objects.
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What kind of scene 
is it mostly like? 
Describe the scene.

Scene: conference room
Description: There is a couch with a 
table and a chair around.

What 
is this?

sofa

bed 

chair

table

Is it normal to see a bed in a 
conference room?

It is not normal to see a bed in a 
conference room. Conference rooms 
are typically used for meetings, 
presentations, and other business-
related activities.

[ The proposal confidence 0.4388 is 
below 𝜙!""#, and the object class bed 
is not suitable for this scene. 
Therefore, this proposal is unlikely to 
be a true object, so we delete it. ]

(a)

GLIS

LLM

0.6705 0.8419

0.4388 0.8141

What kind of scene 
is it mostly like? 
Describe the scene.

Scene: library
Description: There is a bookshelf 
containing numerous books.

What is this?

cabinet

Is it normal to see a cabinet in a 
library?

It is not normal to see a cabinet in a 
library. A library is a place where 
books are kept, and a cabinet is a 
piece of furniture used for storage.

[ The proposal confidence 0.8148 is 
above 𝜙!""#, so keep the proposal. ]
If the object is not a cabinet, what is 
it probably based on the scene 
description and the object feature?

It is probably a bookshelf.

(b)

0.8148

[ Based on the LLM’s answer, the 
proposal class is changed from cabinet 
to bookshelf. ]

Fig. 4: Visualizations of GLIS. The score of each proposal is the confidence that the
proposal is truly a foreground object. These proposals, as well as their confidence scores,
are generated by BAOL.

Effect of GLCI. As shown in Tab. 3, GLCI significantly improves the detec-
tion performance. Specifically, mAP 10cls

25 is increased by 1.19% and mAP 20cls
25 is

increased by 0.80%. Such results show that GLIS successfully utilizes the infor-
mation from both local and global, and refines the detection result with effective
inference.

4.5 Visualizations

To further show the effectiveness of our proposed GLIS, we present visualization
results in Fig. 4. The visualization mainly exhibits the dialogue between GLIS
and the LLM. Besides, the detection result of each stage is presented, which
changes according to the dialogue.

As shown in Fig. 4a, LLM recognizes the scene as a conference room based
on global information. Then, four class-agnostic object proposals are generated
by BAOL. The four proposals are recognized as a sofa, a chair, a bed, and a
table respectively by LLM. Note that the score (e.g ., 0.6705) of each proposal is
the confidence that the proposal is truly a foreground object. So far, an initial
detection result has formed. Subsequently, the global-local collaborative infer-
ence is conducted with predefined questions. For example, the question "Is it
normal to see a bed in a conference room?" is used to guide the LLM’s infer-
ence. Then LLM outputs the answer to the question, i.e., "It is not normal to
see a bed in a conference room.", and gives reasonable explanations. Based on
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Scene: kitchen
Objects: sink, cabinet, fridge

Scene: dining room
Objects: chair, table

Scene: bathroom
Objects: bathtub 

Scene: bedroom
Objects: pillow, bed

Fig. 5: Visualizations of detection results.

the LLM’s answer, our scheme automatically recognizes the bed as false detec-
tion. Subsequently, as the confidence of the bed is below the predefined threshold
ϕkeep = 0.75, the wrongly detected bed is automatically deleted from the result.
Such example shows that GLIS can effectively conduct inference with global
and local information, extracting common sense from LLM to eliminate wrongly
detected objects.

Fig. 4b exhibits another example. Initially, LLM recognizes the scene as a li-
brary, and generates scene description "There is a bookshelf containing numerous
books.". Only one object proposal is generated from BAOL, and the proposal is
recognized as a cabinet. Then, our scheme automatically asks the LLM with the
question "Is it normal to see a cabinet in a library?", and LLM answers that "It
is not normal to see a cabinet in a library.". As the proposal confidence 0.8148
is above the threshold ϕkeep = 0.75, the proposal is not removed. To correct the
predicted class of this proposal, our scheme asks LLM to change the object class
according to the scene description and the object feature. Based on local and
global information, LLM corrects the object class from cabinet to bookshelf.

More visualizations of detection results are presented in Fig. 5.

5 Conclusion and Discussion

In this paper, we propose GLIS for lidar-based open-vocabulary detection task,
which is the first to introduce global-local collaboration in this area. The pro-
posed GLIS extracts object-level information from the local branch and scene-
level information from the global branch. With local and global information, a
pre-trained LLM is utilized for inference to refine the detection result. To fur-
ther improve the performance, RPLG and BAOL are devised to ameliorate the
object-level information. Experiments on ScanNetV2 and SUN RGB-D demon-
strate the effectiveness of GLIS, which achieves state-of-the-art results.

Limitation. The limitation of GLIS exists due to the noises within the point
cloud and the false pseudo labels generated from the 2D image. Though we have
proposed methods to alleviate the influence, these noises may still confuse the
model. These limitations could inspire our future work.
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