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1 Visualization of Foreground Proposals and Deformable
Offsetting

We demonstrate the chosen crucial positions in which we construct the sparse
HR BEV queries in Fig. 1. As shown in the middle of Fig. 1, the red spots
indicate the positions that are likely to contain objects. The initial proposals
are close to each other. After applying the deformable offsetting, the proposals
dispersed to the regions of interest and covered broader regions, as demonstrated
in the right of Fig. 1.
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Fig. 1: Visualization of recognizing foreground regions by taking the di-
rectional top-k on the predicted heatmap and then applying deformable
offsetting based on these proposals. The bird’s-eye-view of LiDAR with detection
predictions and the corresponding ground truths is shown on the left. As presented in
the middle, we obtain the foreground proposals (red spots) by taking top-k along the
x−axis and y−axis. We construct the sparse HR BEV query for the proposal positions
(red spots) after applying deformable offsetting, as demonstrated on the right.
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2 Loss Details

We followed similar loss designs of BEVFormer [3] for bounding boxes’ categories
classification and attributes regression. The same losses will be computed for the
decoded Vector queries from the intermediate encoding layers. We denote the
overall classification loss as Lcls and the regression loss as Lreg, respectively.

As discussed in Sec. 3.2, we apply a Gaussian focal loss to supervise the
heatmap predictions, which are denoted as Lhm = Lfocal(H) + Lfocal(h

′).
The overall training loss is:

L = λ1 ∗ Lcls + λ2 ∗ Lreg + λ3 ∗ Lhm, (1)

where λ1 = 2.0, λ2 = 0.25, and λ3 = 0.5.

3 Results Details

We present the 3D detection results of each object category in Tab. 1. Com-
pared to BEVFormer-S [3] under the small setting, our VectorFormer-S shows
significant improvements on almost all of the object classes. Regarding the base
setting with a larger model, we demonstrate a leading performance in general.

Method Car Truck Bus Trailer C. V. Ped. Motor. Bicycle T. C. Barrier
BEVFormer-S [3] 56.0 28.3 43.1 16.5 10.5 44.0 36.2 33.8 54.1 47.8
VectorFormer-S 59.8 33.4 45.6 16.1 13.5 47.0 41.5 36.6 58.0 54.0
BEVFormer-B [3] 61.8 37.0 44.5 17.1 12.9 49.4 43.1 39.8 58.4 52.5
VectorFormer-B 61.8 36.2 43.3 19.2 10.2 50.6 44.4 43.2 59.8 56.4

Table 1: 3D detection results of each object category on nuScenes [1] valida-
tion set. C.V., Ped., Motor., and T. C. represent the construction vehicle, pedestrian,
motorcycle, and traffic cone, respectively. The best results compared to the baselines
are in bold.

4 Additional Ablation Studies

The settings of the following experiments are consistent with Sec. 4.3, which
used VectorFormer-S by default and training with 12 epochs.
Effect of Heatmap Loss Weights We introduced the heatmap loss to the
overall training loss and conducted an ablation study on the weights of the
heatmap loss in Tab. 2. Among different settings, the performance reach the
best when we set λ3 = 0.5 in Eqn. 1.
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Heatmap Loss Weight NDS mAP mATE mASE mAOE
λ3 = 0.25 49.54 39.17 70.86 27.58 39.68
λ3 = 0.5 49.73 39.76 70.92 27.37 38.77
λ3 = 1.0 49.71 40.19 68.87 27.58 43.34

Table 2: The ablation study on the weights of heatmap loss in Eqn. 1.

Effect of Selecting Decoding Queries from BEV Guided by the Heatmap
This ablation study is based on the settings of adding the heatmap supervision
to the baseline (the second row of Tab. 6 in the main paper and Tab. 3 in sup-
plementary). In contrast to this setting that used the initialized embeddings as
decoding queries, we further experimented with using the Top-k BEV queries as
the decoding queries, which were obtained according to the Top-k objectiveness
score indicated by the heatmap prediction. It is observed that the experiment
of decoding from the BEV queries achieves the worst results at the third row of
Tab. 3. We conjecture that selecting object queries by the heatmap might not
be stable and cause the decoding queries to barely receive supervision signals
while training, which leads to a worse result.

NDS mAP mATE mASE mAOE
Baseline 48.4 38.1 72.8 27.8 39.9
+ Heatmap 48.9 38.8 72.1 27.8 41.3
+ Decoding from the BEV 47.2 37.0 72.3 27.7 41.7
Ours 49.7 39.8 70.9 27.4 38.8

Table 3: This is the ablation study using the Top-k BEV queries as the decoding
queries. The second row adds heatmap supervision to the baseline while using the
randomly initialized embeddings as the decoding queries. The third row uses the Top-
k BEV queries selected by the heatmap guidance.

Effect of Intermediate Supervision As discussed in Sec. 3.5, the Vector
queries with the representative scene context priors will be sent to the decoder
as the decoding queries. Inspired by the DETR training strategy proposed in [2],
we also decode the Vector queries from the intermediate encoding layers for
additional supervision. As shown in Tab. 4, this training strategy can boost
training convergence, resulting in better performance.
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Intermed. Sup. NDS mAP mATE mASE mAOE
- 49.0 39.4 70.1 27.8 42.1
✓ 49.7 39.8 70.9 27.4 38.8

Table 4: The ablation study on decoding the intermediate Vector query while training.
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Fig. 2: Additional visualization results of VectorFormer on nuScenes [1] val-
idation set. Detection predictions with ground truth in multi-view camera images are
shown on the left and in bird’s-eye-view is shown on the right.

5 Additional Qualitative Results

We present additional visualization results in Fig. 2. The VectorFormer achieves
overall outstanding detection performance and accurately recognizes objects of
small-scale remarkably. We observed some cases in which the VectorFormer failed
to detect distant objects or the objects being severely occluded.
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