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Abstract. The Bird’s-Eye-View (BEV) representation is a critical fac-
tor that directly impacts the 3D object detection performance, but the
traditional BEV grid representation induces quadratic computational
cost as the spatial resolution grows. To address this limitation, we present
a new camera-based 3D object detector with high-resolution vector rep-
resentation: VectorFormer. The presented high-resolution vector repre-
sentation is combined with the lower-resolution BEV representation to
efficiently exploit 3D geometry from multi-camera images at a high res-
olution through our two novel modules: vector scattering and gathering.
To this end, the learned vector representation with richer scene contexts
can serve as the decoding query for final predictions. We conduct exten-
sive experiments on the nuScenes dataset and demonstrate state-of-the-
art performance in NDS and inference time. Furthermore, we investigate
query-BEV-based methods incorporated with our proposed vector rep-
resentation and observe a consistent performance improvement. Project
page at https://github.com/zlichen/VectorFormer.

Keywords: Multi-view 3D Object Detection · Bird’s-Eye-View

1 Introduction

Integrating multi-camera information into a powerful, unified representation has
been a challenging task in the perception system for autonomous driving cars
and robotics [20, 38]. To better fuse features from different cameras with vari-
ous viewpoints, BEV (bird’s-eye-view) is proposed, which constructs a unified
discrete spatial space in which features are transformed through forward projec-
tion [12,40] or backward projection [25,26].

One mainstream approach to lifting multi-camera features into BEV space
is through backward projection methods, with BEVFormer [25] pioneering this
technique by utilizing transformers and deformable attention to sample camera
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(a) The Query-BEV
Architecture
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(b) Our proposed Vec-
torFormer
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(c) Resolution & NDS
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(d) Resolution & Re-
source Cost

Fig. 1: Comparison between the typical query-BEV architecture [25] and
our proposed VectorFormer with the novel vector query. Compared to the
traditional design in Fig. 1a, our vector queries in Fig. 1b are encoded with finer-
grained scene contexts, which transform into more accurate 3D predictions by decoder.
Fig. 1c and Fig. 1d are the effectiveness and efficiency comparisons. Compared to the
architecture in Fig. 1a, the performance (Fig. 1c) of VectorFormer keeps benefitting by
scaling up the representation resolution without leading to a long inference time and
high memory cost (Fig. 1d). Noted that BEVFormer will be out-of-memory (OOM)
when training under the BEV resolution of 450×450 with NVIDIA A100 40GB GPUs.

features for each BEV location. Works of [12,35,46,52] follow a similar pipeline
while replacing with polar representations or more efficient operations including
sparse queries. To sum up, the standard BEV formulation process could be two
steps: 1) construct BEV grids and associate them with image features according
to the projection matrix. 2) Update the feature of each grid in the BEV space
through learnable grid sampling based on the constructed association of the
previous step [25]. However, we observe an apparent dilemma in the BEV repre-
sentation. The BEV grid with higher spatial resolution can lead to a decent per-
ception performance, as illustrated in Fig. 1c. It is primarily due to the fact that
a more fine-grained BEV grid results in a higher sampling frequency in world co-
ordinates, which ensures a more precise association with the image features [20].
As a trade-off, the computational cost (Fig. 1d and Tab. 4) of the BEV formu-
lation grows quadratically with the BEV grid resolution because of the denser
sampling. To solve the overhead of BEV representation formulation, a series
of works [4, 11, 55] design efficient operations for view transformations through
hashing the corresponding position calculation, which has predominantly focused
on the input resolution and optimized the 2D-to-3D projection. However, they
have not addressed the optimization of the BEV resolution itself.

Different from the prior approaches to solving this problem, we propose our
VectorFormer, as shown in Fig. 1b. It is based on vector factorization on the
crucial regions into two low-rank tensor components, which consists of a pair of
learnable vector queries that represent the x-axis and y-axis to compress those
scenario representations at a finer granularity. As the first time proposing vec-
tor factorization by vector queries in query-BEV-based methods, we can encode
crucial regions at higher BEV resolution into the compact vector queries and
further decode into the 3D predictions. Consequently, our model achieves supe-
rior performance even when operating under comparable resolutions in Fig. 1c
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(e.g., BEVFormer with BEV size 200×200 v.s. ours with BEV size 150×150 and
vector tensor size 200). Furthermore, we represent the innovative sparse high-
resolution (HR) BEV features for the critical regions through our vector query
scattering module and then interact with the multi-view image features, achiev-
ing a substantial reduction in both time and memory complexity. This stands
in stark contrast to the O(n2) complexity observed in previous BEV methods,
as our vector representation introduces a more efficient O(n) complexity. This
significant reduction contributes directly to the overall improvement in both in-
ference time and memory efficiency within our proposed framework, as shown in
Fig. 1d.

Our contributions are summarized as follows:

• We introduce the VectorFormer, which incorporates a novel Vector repre-
sentation, a first for query-BEV-based methods. Our approach leverages the
factorization philosophy which enables efficient modeling of spatial and tem-
poral at a higher resolution. It consistently achieves performance gains as
the resolution increases.

• We design the Vector Query Scattering and the Vector Query Gathering
modules to learn the expressive high-resolution Vector queries from images.
Thanks to the proposed vector representation, our approach benefits from
fine BEV granularity with a more efficient O(n) complexity, making addi-
tional overhead negligible.

• We conduct extensive experiments on the challenging nuScenes [1] and Waymo
[44] datasets. VectorFormer outperforms state-of-the-art camera-based 3D
object detectors and is comparable to leading depth-aware methods.

2 Related Work

2.1 Sparse Query 3D detector

As transformer-based methods like DETR [2] generate great performance gain in
2D object detection [2,16,19,42,49,58], researchers begin to explore its potential
in 3D object detection [28–33,37,43,46,50,53]. As the pioneer of extending DETR
to 3D object detection, DETR3D [50] projects the 3D object center back to 2D
multi-view images and iteratively updates the object query from the correspond-
ing sampled image features. Although DETR3D is very efficient, the limitation
still exists. The inaccurate object location predicted previously will cause error
accumulation in the image feature sampling process. Besides, the model has less
information on the global features. To solve the above limitations, PETR [32] and
PETRv2 [32] transfer 2D multi-view image features into 3D perception features
through 3D position embedding. Sparse4D [28] and StreamPETR [46] aggre-
gating temporal information to help the detection of the current object query.
Although sparse query 3D detectors have a simple structure and are efficient,
they can still hardly reach the state-of-the-art performance, while our method
can reach the state-of-the-art performance while only inducing negligible addi-
tional overhead in computational cost.
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2.2 Dense BEV Feature 3D Detector

The dense bird’s-eye view (BEV) feature 3D detector has drawn great attention
in recent years due to its strong performance and wide application in autonomous
driving [10,12,21–25,40,41,51,52]. Different from sparse query detectors, dense
BEV feature detectors tend to build an explicit BEV feature representation
from multi-view 2D images and further utilize it for other perception tasks.
BEVFormer [25] and BEVFormerv2 [52] build a BEV query and utilize spatial
cross-attention to update the BEV query from the 2D multi-view images with the
sampled points in 3D space. Besides, they also propose a temporal self-attention
to fuse the temporal features. Based on BEVformer, OCBEV [41] has an object-
aligned temporal fusion module to align the fast-moving objects, and a heatmap
to provide prior knowledge of the position of the objects in the decoding stage.
Unlike BEVFormer, BEVDet [12] and BEVDet4D [10] attempt to build BEV
features in a forward way. They first extract the features from multi-view 2D
images and then transform them into BEV with the help of the predicted depth
and further encode them into BEV features.

Although BEV feature representation has rich information, the computation
cost of building the query from multi-view 2D images is also expensive. The
computational cost will grow quadratically as the resolution of the BEV query
increases, therefore limiting the information contained within the BEV features.
Our method can handle the BEV query with a high resolution while inducing
negligible additional computational cost.

3 Method

We demonstrate the overall architecture of VectorFormer in Fig. 2. Inheriting
the genre of query-BEV 3D detectors [25,52], it consists of the image backbone,
encoder, and decoder head. We mainly focus on innovating the encoder and
the decoder head for high-resolution (HR) Vector representation learning. We
introduce the HR BEV features factorization by two low-rank Vector queries
in Sec. 3.1. In Sec. 3.2, we demonstrate how to locate the sparse informative
regions and further guide the HR BEV features composition for those regions by
the Vector queries. Later, we present how we interact the LR and sparse HR BEV
features with the multi-view image features in a unified manner at Sec. 3.3. In
Sec. 3.4, we update the Vector queries by gathering information from the learned
HR BEV features with the multi-head cross-attention mechanism [45] (MHCA). By
further enhancing through the temporal modeling (Sec. 3.5), the Vector queries
are considered superior decoding queries and further transform into accurate
predictions in the decoder.

3.1 Vector Query

In the real world, the objects have a much smaller scale compared to the whole
perception range [1, 6]. We argue that not all regions are equally important,
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Fig. 2: The overall framework of our proposed VectorFormer. In the middle,
the encoder takes the BEV query and Vector query at the current timestamp and
the ones from the previous timestamp as inputs for interacting with multi-view image
features at each layer. The learned representations are further transformed into 3D
predictions by the decoder. We highlight our innovations for learning high-resolution
vector representation within the encoder and zoom in on the designs of Vector Query
Scattering (Fig. 3 for the details) and the Vector Query Gathering at the right. In the
Vector Query Scattering module, we represent the sparse high-resolution (HR) BEV
features by first recognizing the foreground regions and then compositing them with
the factorized Vector queries of VX and VY. After jointly interacting with the image
features, we finally factorize the learned HR BEV features back into VX and VY

through the Vector Query Gathering module.

and we instead overcome the limited computational resources by learning the
BEV features at high resolution for a sparse set of crucial regions. Inspired by
the factorization philosophy in the field of volume rendering [3, 8, 13], we pro-
pose to factorize the sparse HR BEV features by two vector-shaped queries
of VX ∈ RWHR×C and VY ∈ RHHR×C . Additionally, we initialize their ac-
companying learnable positional embeddings, PEX and PEY, having the same
dimensionality as VX and VY.

With two low-rank tensors VX and VY, the creation of a sparse HR BEV
feature is achieved to enhance granularity. Our work introduces three distinct
BEV representations: 1) Traditional BEV: Denoted as B ∈ RHLR×WLR×C , this
corresponds to the low-resolution full-grid BEV query. 2) Sparse BEV: Com-
prising sparse sets of the LR and HR BEV features, denoted as Bsp ∈ RNLR×C

and B̂sp ∈ RNHR×C , respectively. The latter enriches contextual features with
minimal additional computational overhead.
Data Representation The factorization operates on:

- Vector query representation VX = (cx,vx), where cx ∈ RWHR×2 denotes
the 2D center coordinate set of all vector cells, which is represented as (x, 0)
uniformly located along the x-axis vector representation. vx ∈ RWHR×C

denotes the feature set of all vector cells. Similar definition could be derived
for VY, PEX and PEY.

- Sparse HR BEV query representation is defined as B̂ = (c,b), where c is
the sparse 2D coordinate set and b are their corresponding composited HR
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Fig. 3: The design details for the Vector Query Scatter Module of our pro-
posed VectorFormer. We recognize the foreground regions by first predicting an
objectness heatmap using high-resolution (HR) Vector queries VX and VY and low-
resolution (LR) BEV queries as input and then locate the foreground regions by taking
the directional Top-k (k = 1 here as demonstration) on the heatmap. Next, we apply
deformable offsetting for learning to cover more informative regions. We finally con-
struct the sparse HR BEV by fusing the factorized Vector queries and the grid sampled
LR BEV features for these informative regions.

BEV features. We utilize an operation f(·) to obtain the sparse HR BEV
queries which takes the VX, VY, and c = [cx.x, cy.y] as input:

B̂sp = f(VX,VY, c),

b = GridSample(VX, cx) + GridSample(VY, cy),
(1)

where we utilize an operation GridSample(F,C) [15] to bilinearly sample
features by taking features F and the 2D coordinates C as input.

3.2 Vector Query Scattering

Throughout the BEV encoding module, the Vector queries VX and VY are
learned to encode with the finer-grained foreground contexts. The LR BEV
queries are uniformly sampled, which are learned with more background con-
texts. As shown in Fig. 3, the Vector Query Scattering module needs first to
utilize a heatmap to recognize the critical foreground areas and eventually com-
posite a sparse set of finer-grained BEV queries for the important regions de-
formed from the proposed areas indicated by the heatmap. These finer-grained
BEV queries will exploit the spatial geometry of these important regions from
the image features.
Foreground Region Recognition To predict the grid-shape heatmap from the
Vector queries, which indicates the probability of the objectness, we first apply
an MLP with two hidden layers to the Vector queries. Then, we conduct matrix
multiplication between VX and VY resulting in the heatmap h ∈ RHHR×WHR .
We apply a lightweight convolution module with two layers to the LR BEV
feature map, resulting in another heatmap h′. The final heatmap H is formed
by adding the h with the bilinear upsampled heatmap of h′:

h = MLP1(VX)MLP2(VY)T ,h′ = Conv(B),

H = h+ Upsample(h′),
(2)
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where the Conv module transforms the BEV query B by 256 → 64 → 1, followed
by a bilinear upsampling layer denoted as Upsample. We use a gaussian focal
loss [12,17,27,56] to supervise the the heatmap predictions, resulting in Lhm =
Lfocal(H) + Lfocal(h

′).
HR BEV Query Construction We select the foreground regions along x and
y directions separately instead of locating them globally. This practice allows
us to derive a uniform number of sparse HR BEV queries for each vector cell
of VX and VY, which can further enable us to parallelly aggregate the learned
sparse HR BEV queries into the vector queries via Vector Query Gathering
module, as discussed in Sec. 3.4. Specifically, we take the predicted heatmap as
input and then apply the Top-k operation along the H and W dimensions, as
illustrated in Fig. 3. We obtain k proposal positions for each entry of both vector
queries, resulting in a sparse set of 2D coordinates ctopk with a total number of
(WHR +HHR) ∗ k. The sparse HR BEV queries B̂topk

sp ∈ R(WHR+HHR)∗k∗C for
these proposal positions are constructed as defined in Eqn. 1:

B̂topk
sp = f(VX,VY, ctopk). (3)

However, the directional selection strategy might result in constructing sparse
HR BEV queries located in the less important areas, especially for the ones at
the margin of the perception range. To further exert the expressiveness for their
representing local areas, we deform the proposal positions to more informative
regions, namely deformable offsetting. Inspired by [5, 58], we predict δ offsets
with an MLP for each proposal position by taking the previously constructed
sparse HR BEV queries as input.

As a result, we ground each vector cell on Vector queries with k∗δ of 2D posi-
tions on the BEV grid defined at a higher resolution. We obtain the coordinate set
cdeform has a total number of (WHR+HHR)∗k∗δ after deformable offsetting. The
sparse HR BEV queries B̂deform

sp with a dimensionality of R(WHR+HHR)∗k∗δ∗C is
obtained as Eqn. 1:

B̂deform
sp = f(VX,VY, cdeform). (4)

However, approximating the BEV with the vector representation only would
definitely bring information loss. Therefore, we jointly interact the LR BEV
query B and the sparse HR BEV query B̂deform

sp with the image features. To
extract the complement information from the image features, we additionally
let the sparse HR BEV queries aware of their corresponding LR BEV queries.
Specifically, we first obtain their spatially aligned sparse LR BEV queries through
the operation of GridSample. Finally, we fuse the features through an MLP,
which takes the concatenation of the sparse LR and HR BEV queries as input:

Bsp = GridSample(B, cdeform), (5)

B̂PreF
sp = MLP([Bsp, B̂

deform
sp ]), (6)

where B̂PreF
sp are the resulting pre-fused sparse HR BEV queries before inter-

acting with the image features.
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3.3 Joint LR-HR Spatial Features Extraction

The LR and the sparse HR BEV queries exploit the 3D world geometric from im-
age features through deformable-attention [58] according to the sampled 3D-2D
mapping reference points. As discussed in Sec. 3.2, the sparse HR BEV queries
B̂sp are derived from a finer-grained BEV grid, which has a more precise 3D-
2D coordinates mapping. Compared to uniformly defined LR BEV queries B,
they focus on learning finer-grained BEV features for the foreground objects.
For efficiency, we use a shared spatial cross-attention (SCA) module from BEV-
Former [25] to jointly interact with the image features to exploit the spatial
geometric. The SCA module takes the BEV queries at different resolution gran-
ularity as attention queries, and the multi-view image features are considered
keys and values:

[BSCA, B̂SCA
sp ] = SCA

(
[B, B̂PreF

sp ],Ft,P[pLR, pHR])
)
, (7)

where [·] denotes the operation of concatenation, B and B̂PreF
sp are LR BEV

queries and sparse HR BEV queries, Ft is the multi-view image features are
used as keys and values, P is the 3D-2D projection function, pLR and pHR are
the 3D coordinates of the reference points correspond to the LR and the sparse
HR BEV queries, respectively.

The LR and sparse HR BEV queries independently interact with the image
features to extract complement geometric features. Compared to the sparse HR
BEV queries, LR BEV queries are evenly defined in the 3D world, which contains
global environmental semantics. On the other hand, the sparse HR BEV queries
are more foreground-focused and represent these regions at a finer-grained reso-
lution. Before factorizing these sparse HR BEV queries into the Vector queries of
VX and VY, we enhance the sparse HR BEV queries with more scene contexts
by applying a deformable attention [58] to the LR BEV queries:

B̂PosF
sp = Deform(B̂SCA

sp ,BSCA, cdeform) + B̂SCA
sp , (8)

where the sparse HR BEV features B̂SCA
sp regarded as the attention queries, the

LR BEV features BSCA as keys and values. The extracted contexts feature from
LR BEV features have a skip connection to B̂SCA

sp , eventually output with the
post-fused B̂PosF

sp .

3.4 Vector Query Gathering

With the learned sparse HR BEV queries from the image features, we further
aggregate them into vector queries through Vector Query Gathering. Benefiting
from the evenly derived k∗δ sparse HR queries for each vector cell, we can utilize
the multi-head cross-attention mechanism MHCA [45] to query information from
the learned HR queries back to both of the vector queries VX and VY.

For the aggregation of VX, it absorbs the first Nx
HR = WHR ∗ k ∗ δ of the

sparse HR BEV queries which are derived from each cell of VX along the side
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of the y-axis. And the remaining Ny
HR = HHR ∗ k ∗ δ of those will squeeze into

VY. To remedy the information loss of the dimension about to collapse while
conducting vector query gathering, we append the vector positional embeddings
of each other to the sparse HR BEV queries, which are obtained by:

pex = GridSample(PEX, cdeform),

pey = GridSample(PEY, cdeform),

pesp =
[
pey[0:Nx

HR],pe
x
[Nx

HR:(Nx
HR+Ny

HR)]

]
,

(9)

where we slice the first Nx
HR positional embeddings from pey for the sparse HR

BEV query about to aggregate into VX. The following Ny
HR HR BEV queries

that will go to VY uses the corresponding positional embeddings from pex.
The Vector Query Gathering process can be formulated as follows:

[VX′
,VY ′

] = MHCA(q, k, v, qpos, kpos),

q = [VX,VY], qpos = [PEX,PEY],

k = v = B̂PosF
sp , kpos = pesp,

(10)

where the attention query q is the concatenation of layer input VX and VY,
and their corresponding positional embeddings PEX and PEY are regarded
as the query position embeddings qpos. The sparse HR BEV features B̂PosF

sp are
considered attention keys and values. The key position embeddings are pesp. We
then obtain the resulting VX′ and VY ′, which will be passed to the following
encoding layer for further refinements.

3.5 Model Architecture Details

Temporal Features Extraction helps to reason about the existence of highly
occluded objects and infer the motion of the objects. Similar to the BEV rep-
resentation [25], the encoded Vector query from the previous frame can also be
considered as strong priors, which could further improve the scene understanding
ability. We apply multi-head self-attention [45] (MHSA) among vector queries of
the previous frame and those of the current frame and use the average operation
to fuse the attention output.
Vector Queries As Decoding Queries The Vector queries are encoded with
strong spatial and temporal contexts. Different from the traditional practices [25,
52,58] that use randomly initialized learnable embeddings as the decoder queries,
we use our learned Vector queries as the decoding query to enhance the decoding
head. The total number of the decoding queries equals the summation length
of the vector queries representing the x-axis and y-axis with the number of
HHR +WHR. Inspired by [16], the vector queries at intermediate encoder layers
are fed into the decoder and supervised to make 3D predictions for network
training acceleration.
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Method Backbone NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
BEVDet† [12] V2-99 [18] 48.8 42.4 52.4 24.2 37.3 95.0 14.8
BEVDet4D† [10] Swin-B [34] 56.9 45.1 51.1 24.1 38.6 30.1 12.1
PETRv1† [32] V2-99 [18] 50.4 44.1 59.3 24.9 38.3 80.8 13.2
PETRv2† [33] V2-99 [18] 58.2 49.0 56.1 24.3 36.1 34.3 12.0
BEVFormer [25] V2-99 [18] 56.9 48.1 58.2 25.6 37.5 37.8 12.6
VectorFormer V2-99 [18] 58.3 (+1.4) 49.2 (+1.1) 56.3 25.2 35.2 33.8 12.7

Table 1: Comparison of recent works on nuScenes detection [1] test set.
Methods trained with CBGS [57] are indicated with †. The best results among methods
are in bold.

Method Backbone NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
BEVDet† [12] Swin-T [34] 41.7 34.9 63.7 26.9 49.0 91.4 26.8
DETR3D [50] ResNet-101 42.5 34.6 77.3 26.8 38.3 84.2 21.6
DETR4D [37] ResNet-101 50.9 42.2 68.8 26.9 38.8 49.6 18.4
PETRv1† [32] ResNet-101 44.2 37.0 71.1 26.7 38.3 86.5 20.1
PETRv2† [33] ResNet-101 52.4 42.1 68.1 26.7 35.7 37.7 18.6
3DPPE [43]† ResNet-101 45.8 39.1 67.4 28.2 39.5 83.0 19.1
OCBEV [41] ResNet-101 53.2 41.7 62.9 27.3 33.9 34.2 18.7
AeDet§ [7] ResNet-101 50.6 39.4 60.9 26.6 41.2 42.0 20.1
BEVFormer-S [25] ResNet-101 47.9 37.0 72.1 28.0 40.7 43.6 22.0
VectorFormer-S ResNet-101 51.0 (+3.1) 40.5 (+3.5) 67.6 27.3 38.9 39.9 19.2
DFA3D-S [21] ResNet-101 50.1 40.1 72.1 27.9 41.1 39.1 19.6
VectorFormer-DFA3D-S ResNet-101 51.4 (+1.3) 40.4 (+0.3) 68.1 27.4 35.4 36.4 20.5
BEVFormer-B [25] ResNet-101 51.7 41.6 67.3 27.4 37.2 39.4 19.8
VectorFormer-B ResNet-101 53.2 (+1.5) 42.5 (+0.9) 64.3 27.5 35.2 34.4 18.8
DFA3D-B [21] ResNet-101 53.1 43.0 65.4 27.1 37.4 34.1 20.5
VectorFormer-DFA3D-B ResNet-101 54.0 (+0.9) 43.7 (+0.7) 64.3 27.0 36.3 32.4 18.6

Table 2: Comparison of recent works on nuScenes detection [1] validation
set. Methods trained with CBGS [57] are indicated with †. Results reproduced for fair
comparison are indicated as §. The best results among methods are in bold.

4 Experiments

4.1 Experimental Setup

nuScenes Dataset We conduct our experiments on the nuScenes [1] dataset
with 1000 scenes. Each scene sample contains six-view RGB images. We evaluate
the 3D detectors with the metrics of NDS, mAP, mATE, mASE, mAOE, mAVE,
and mAAE as the existing works [21,25].
Waymo Open Dataset We evaluate our method on the Waymo dataset [44],
which provides five-view images covering 252◦ horizontal FOV. We follow the
settings as [20, 25] to experiment on the same subset of the training split for a
fair comparison and evaluate with the metrics of LET-3D-mAP, LET-3D-mAH,
and LET-3D-mAL [14].
Implementation Details For the nuScenes dataset [1], we followed the typi-
cal practice as [25, 50] and adopted the ResNet101-DCN [5, 9] with pretrained
checkpoint from FCOS3D [48] as image backbone to process the images with the
resolution of 1600 × 900. Similarly, BEV queries are initialized with the size of
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Method Backbone NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
BEVDet4D [10] Swin-B [34] 51.5 39.6 61.9 26.0 36.1 39.9 18.9
PETRv2 [33] V2-99 [18] 50.3 41.0 72.3 26.9 45.3 38.9 19.3
SA-BEV† [54] ConvNeXt-B [36] 57.9 47.9 - - - - -
StreamPETR [46] V2-99 [18] 57.1 48.2 61.0 25.6 37.5 26.3 19.4
SparseBEV⋆ [31] V2-99 [18] 57.9 49.4 - - - - -
VectorFormer V2-99 [18] 60.5 51.7 57.0 26.6 22.8 28.7 18.7

Table 3: Comparison of recent works trained with no more than 24 epochs
on nuScenes detection [1] validation set using large backbone. † indicates
methods trained with CBGS [57]. ⋆ indicates a method with dual branches design. The
best results among methods are in bold.

Method BEV Dim. x- and y-axis Vector Dim. NDS ↑ mAP ↑ FPS Mem. (GB)
BEVFormer [25] 200× 200 - 51.7 41.6 3.9 4.70
Ours 150× 150 1× 200 & 200× 1 52.8 41.8 3.9 4.78
BEVFormer [25] 300× 300 - 51.9 41.4 3.2 5.58
Ours 200× 200 1× 300 & 300× 1 53.0 42.1 3.5 4.83
BEVFormer [25] 450× 450 - - - 2.3 11.21
Ours 200× 200 1× 450 & 450× 1 53.2 42.5 3.4 4.85

Table 4: Effectiveness and efficiency comparisons between BEVFormer [25]
and our proposed VectorFormer. BEVFormer with a BEV dimension of 450×450
could not be trained with NVIDIA A100 40G GPUs because of the expensive memory
consumption. Frames-per-second (FPS) are tested with NVIDIA RTX4090 GPU.

200 × 200 for the base setting and 150 × 150 for the small setting. The vector
queries are initialized with a length of 450. The numbers of encoding/decoding
layers and used history frames are maintained the same as BEVFormer [25] un-
der similar model settings. To scale up our method, we experiment with the large
image backbone of V2-99 [18] with the pretrained DD3D [39] checkpoint. On the
Waymo dataset [44], we followed the practice as [20, 25] to make a fair compar-
ison. All models are trained with 24 epochs with a learning rate of 2× 10−4 as
the baseline [25].

4.2 Main Results

We demonstrate the 3D detection results of our proposed VectorFormer on the
nuScenes [1] test set in Tab. 1 and validation set in Tab. 2 and Tab. 3. We also
evaluate our method on the Waymo dataset [44] in Tab. 5.
nuScenes Dataset Without using any bells and whistles, we achieve the best
performance and present with remarkable improvements against BEVFormer [25],
with 1.4 points higher on NDS (58.3% vs. 56.9%) and 1.1 points higher on mAP
(49.2% vs. 48.1%) on nuScenes [1] test set, as shown in Tab. 1.

We also compare our small and base settings with previous state-of-the-art
methods on the nuScenes [1] validation set in Tab. 2. Besides, we extend our
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Fig. 4: Visualization results of VectorFormer on nuScenes [1] validation set.
Detection predictions with ground truth in multi-view camera images are shown on the
left and in bird’s-eye-view is shown on the right.

Methods LET-mAPL↑ LET-mAPH↑ LET-mAP↑
MV-FCOS3D++ [47] 37.9 48.8 52.2
BEVFormer [25] 35.0 47.1 51.0
VectorFormer 36.8 49.1 53.2

Table 5: Comparison on Waymo validation set.

proposed vector representation to a recent work of DFA3D [21]. Concretely,
VectorFormer-S outperforms the baseline BEVFormer-S [25] with 3.1 points in
NDS and 3.5 points in mAP. When extending our method to DFA3D [21], our
VectorFormer-DFA3D-S consistently achieves a leap upon DFA3D-S [21] with
1.3 points in NDS and 0.3 points in mAP. Regarding the base setting, our
VectorFormer-B presents improvements of 1.5 points in NDS and 0.9 points
in mAP compared to the BEVFormer-B [25]. When extended to the DFA3D-B,
we fine-tuned from the DFA3D’s [21] pretrained checkpoint by freezing the im-
age backbone to save the GPU memory cost. It is observed that we can further
boost the performance by achieving a higher NDS of 54.0%. It is worth men-
tioning that our proposed VectorFormer-S and VectorFormer-B, which do not
utilize depth information, still present a superior NDS against DFA3D-S [21]
(51.0% vs. 50.1%) and a comparable NDS to DFA3D-B [21] (53.2% vs. 53.1%).
When scaling up the method with a larger image backbone, we also demonstrate
superior results upon the recent SOTAs, as shown in Tab. 3.

Overall, we achieve state-of-the-art performance, and our proposed vector
query representation can significantly improve query-BEV-based methods.
Representation Dimension and Computation Overhead In Tab. 4, we
illustrate the performance and computation overhead details of Fig. 1. When
growing the BEV resolution, the traditional framework shows performance van-
ishing and leads to computational cost explosions, failing to take advantage of
the increases in the representation dimension. In comparison, our method with
the vector representation enjoys finer BEV granularity construction with O(N)
complexity. Comparing under a similar level of BEV resolution, we can speed
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Heatmap Spatial Temporal NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
- - - 48.4 38.1 72.8 27.8 39.9 46.2 19.7
✓ - - 48.9 38.8 72.1 27.8 41.3 43.5 20.0
✓ ✓ - 49.5 39.3 69.6 27.6 41.4 42.6 20.6
✓ ✓ ✓ 49.7 39.8 70.9 27.4 38.8 44.5 20.0

Table 6: The ablation studies of different components in our proposed Vec-
torFormer. Heatmap indicates using heatmap supervision for the BEV features map,
Spatial indicates incorporating our proposed vector representations for spatial model-
ing, and Temporal indicates conducting temporal modeling for the vector representa-
tion.

Vector Combin. NDS mAP mATE mASE mAOE
Mult. 49.4 39.4 70.2 27.6 42.3
Add. 49.7 39.8 70.9 27.4 38.8

Table 7: The ablation study on the com-
bination of vector query.

Top-k Proposals NDS mAP mATE mASE mAOE
2 49.5 39.6 69.6 27.9 41.7
3 49.7 39.8 70.9 27.4 38.8
4 50.0 40.0 69.0 27.3 40.2

Table 8: The ablation study on the
number of proposal positions.

up the FPS by up to 47.8% and save the GPU memory consumption by up to
56.7% while achieving better performance.
Qualitative Results As shown in Fig. 4, our proposed VectorFormer presents
a conspicuous detection performance. Even for objects with severe occlusion or
located further apart, the model can still produce satisfactory bounding boxes.
Waymo Dataset In Tab 5, we further evaluate our method on the dataset
of Waymo [44]. Our proposed VectorFormer consistently achieves better results
towards the baselines.

4.3 Ablation Study

All the experiments in this section are conducted with VectorFormer-S by default
with 12 training epochs.
Effect of Model Components As illustrated in Tab. 6, we present the abla-
tion studies on the effect of different component designs in VectorFormer. It is
demonstrated that our proposed framework design for learning high-resolution
vector representation is effective, and its components work in synergy to uplift
the detection performance with 1.3 points in NDS and 1.7 points in mAP.
Effect of Vector Query Combination We factorize the high-resolution (HR)
BEV features into x and y vector features. We conduct ablation studies on the
operators of multiply and addition for combining these factorized vectors to
build HR BEV features, as illustrated in Tab. 7. It is shown that combining the
vectors to build HR BEV features by addition leads to better performance.
Effect of Foreground Proposal Number As shown in Tab. 8, we conduct
ablation studies on the number of foreground proposal positions along the x and
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Offset Pred. LR-HR Fusion Pos. Emb. NDS mAP mATE mASE mAOE
- ✓ ✓ 49.7 39.2 70.0 27.7 39.7
✓ - ✓ 49.6 39.3 69.0 27.4 41.3
✓ ✓ - 49.3 39.1 70.6 27.7 41.6
✓ ✓ ✓ 49.7 39.8 70.9 27.4 38.8

Table 9: The ablation study on offsetting the proposal positions, conducting fusion
on sparse HR BEV queries with the LR BEV queries, and using positional embeddings
in the Vector query gathering module.

y directions. Overall, the performance will improve as we increase the number
of proposals, and we choose to use three proposals in each direction in practice.
Effect of Offset Prediction We represent the foreground proposal position
with HR BEV queries and further adaptively deform the positions with predicted
offsets. This practice improves the mAP with 0.4 points, as illustrated in the first
and the fourth rows of Tab. 9.
Effect of LR-HR Fusion The evenly sampled LR BEV features and sparse
HR BEV features independently interact with the image features. Therefore, we
apply fusion between LR and HR features before (Eqn. 6) and after (Eqn. 8)
passing the SCA module, and it results in improvements in overall performance,
as shown in the second and the fourth rows of Tab. 9.
Effect of Positional Embeddings The sparse HR query located at (x, y) is
composited according to the Eqn. 1. When aggregating the sparse HR query
at (x, y) to VX or VY, we use their positional embeddings PEY or PEX that
correspond to the dimension about to collapse to remedy the information loss
(Eqn. 9). Comparing the third and the fourth rows In Tab. 9, it is shown that the
usage of positional embeddings as the attention keys contributes to the overall
performance improvements.

5 Conclusion

In this paper, we have presented a camera-based 3D object detector, Vector-
Former, accompanied by a novel representation of Vector query. Addressing the
limitations of traditional BEV queries, which incur substantial computational
costs and memory usage as spatial resolution increases, we propose to utilize
a more lightweight representation of vector query, focusing on learning finer-
grained representations for the crucial regions through our designed vector query
scattering and gathering modules. The vector queries compact richer spatial and
temporal priors with low complexity of time and memory, which are further used
to enhance the decoder to produce more accurate predictions. The extensive ex-
periments demonstrate that our proposed VectorFormer achieves state-of-the-art
performance, and the designed framework is generalizable, which can consistently
leap the performance of the query-BEV methods.
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