
View-Consistent 3D Editing with Gaussian
Splatting

Yuxuan Wang1, Xuanyu Yi1,2, Zike Wu1, Na Zhao3, Long Chen5, and
Hanwang Zhang1,4

1Nanyang Technological University 2Institute for Infocomm Research, A*STAR
3Singapore University of Technology and Design 4Skywork AI

5Hong Kong University of Science and Technology

Appendix: Overview

In the supplementary material, we provide more details of our algorithm and
the implementation in Sec. 1. Additionally, further discussion regarding the two
Consistency Modules of VcEdit is available in Sec. 2. An extensive qualitative
evaluation, including comparisons with NeRF-based editing methods, is con-
ducted in Sec. 3. The settings of the user study are detailed in Sec. 4. Lastly,
more visual results, extending the qualitative analysis of VcEdit, are presented
in Sec. 5.

Algorithm 1 Detailed Pipeline of VcEdit in One Iteration
Input:

U-Net of Conditional Diffusion Model εθ(·)
Sequence of timesteps T = t1 > t2 > . . . > tN = 1
Source 3DGS Gsrc

Source/target prompts as conditions ysrc(e.g., “man”), ytgt (e.g., “clown”)
1: 3DGS → Images (Input: Gsrc → Output: Isrc)
2: Rendering 3DGS to images: Isrc = R(Gsrc)

3: Multi-view Images Editing (Input: Isrc → Output: Iedit)
4: Encoding images to latents: zsrc, zori = E(Isrc)
5: for t = t1, t2, . . . tN do
6: Sample noise: ε ∼ N (0, I)
7: Add noise: zt =

√
αtz

src +
√
1 − αtε

8: Add noise to original latents: zori
t =

√
αtz

ori +
√
1 − αtε

9: Noise prediction by CCM-applied U-Net: εθ, εoriθ = εθ(zt, y
tgt), εθ(z

ori
t , ysrc)

10: Compute a noise offset proposed in [5]: ∆ε = (zori
t − √

αtz
ori)/

√
1 − αt

11: Obtain the edited latents: zedit = (zsrc −
√
1 − αt(εθ − εoriθ + ∆ε))/

√
αt

12: Copy a 3DGS from source (ECM starts): Gft = copy(Gsrc)
13: Fine-tune the 3DGS: Gft = argmin

G

∑
v∈V Ledit(R(G, v), D(zedit

v ))

14: Render and encode to latents (ECM ends): zcon = E(R(Gft, v)), v ∈ V
15: Blend by the CCM’s consistent mask: zbld = Mcon ∗ zcon + (1 − Mcon) ∗ zsrc

16: Next timestep: zsrc = zbld

17: end for
18: Decoding latents to edited guidance images: Iedit = D(zbld)

19: Images → 3DGS (Input: Iedit → Output: Gedit )
20: Fine-tune the source 3DGS: Gedit = argmin

G

∑
v∈V L(R(G, v), Iedit)

Output: The final edited 3DGS Gedit.



2 Y. Wang et al.

1 More Details of our VcEdit

In the Our Method section of the main paper, we provide an overview of VcEdit
along with the introductions of our two Consistency Modules. In this section,
we provide more details in the algorithm and implementation of VcEdit with a
step-by-step demonstration in Algorithm 1, where our two consistency modules
are highlighted in BLUE color.

1.1 More Details in our Overall Pipeline

As outlined in the Preliminary and Our Method sections, VcEdit employs an it-
erative image-guided 3DGS editing pipeline that takes user-specified text prompt
as instruction. Initially, the source 3DGS (Gsrc) are rendered to images (Isrc)
from various views (line 1–2 in Algorithm 1). Subsequently, employing our spe-
cially designed multi-view image editing process based on InfEdit [5] (line 3–18
in Algorithm 1), a set of multi-view consistent edited images (Iedit) are generated
and employed as image guidance to fine-tune Gsrc (line 19–20 in Algorithm 1).

During fine-tuning, we adhere to the methodology proposed by the GSEd-
itor [1], incorporating both a MAE loss and a VGG-based LPIPS loss [1, 3].
Additionally, we employ the HGS regularization, as suggested by GSEditor [1],
which limits the positional shifts of the Gaussian induced by densification to
maintain the essential information in Gsrc. Consequently, the training objective
is defined as:

L = λLMAE(R(G, v), Iedit) + λLLPIPS(R(G, v), Iedit) +
∑

λj(Pj − P̂j) (1)

Here, Pj indicates the original position of the j-th Gaussian in G, while P̂j

denotes its shifted position during training. In VcEdit, we set the λ to 10 and
each λi to 50. After 400 steps of fine-tuning, Gsrc transforms into the edited
version, Gedit. In subsequent iterations, Gedit becomes the new Gsrc, and the
editing cycle continues.

1.2 More Details in our Multi-view Images Editing Process

In the main paper, we simplified the explanation of our image editing procedure
to enhance reader comprehension. This section elaborates on the process, inte-
grating it with our baseline image editing framework, InfEdit [5] (line 3–18 in
Algorithm 1).

Initially, in Our Method section, we introduce our image editing process as
a multi-timestep cycle, where each timestep’s process is represented by zsrc →
zedit → zcon → zbld. Following InfEdit [5], our detailed implementation intro-
duces an additional set of original latents, zori, extracted from the original
images (line 4 in Algorithm 1). These latents are utilized by InfEdit in the add-
noise and denoising process (line 8–11 in Algorithm 1) and does not participate
in any of our Consistency Module.



View-Consistent 3D Editing with Gaussian Splatting 3

3DGS (!!")

Fine-tuning Rendering

Minor Inconsistent Images

Severe Inconsistent Images

Well Calibrated Images

Images with Flickering Artifacts

Fig. 1: Calibration Capability of 3DGS: A set of multi-view inconsistent images (left)
serves as guidance for fine-tuning a 3DGS model, which is then re-rendered into images
(right). The 3DGS model has the capability to calibrate minor inconsistency (top) but
will exhibit flickering artifacts when trained with severe inconsistent images (bottom).

Moreover, InfEdit’s U-Net architecture [5] is partitioned into three branches:
the Source Branch, the Layout Branch, and the Target Branch. These branches
are interconnected by two sets of cross-attention maps, which are denoted as
M = {Msource-layout,Mtarget}. Within our Cross-attention Consistency Module
(CCM), we execute inverse rendering and subsequent re-rendering for both cross-
attention map sets, ensuring uniform editing outcomes across all branches.

Our Editing Consistency Module is activated for every 5 timesteps for a
more efficient forwarding. Since the zedit in low-resolution does not satisfy the
requirement of 3DGS fine-tuning, we initially decode them to images and use
the images to fine-tune the 3DGS Gft (line 13 in Algorithm 1). After a rapid
fine-tuning, we render the Gft back to images, and encode the rendered images
to obtain zcon (line 14 in Algorithm 1).

2 Further Discussion on Consistency Modules

2.1 Discussion on Editing Consistency Module

In VcEdit, we introduce an innovative Editing Consistency Module (ECM) that
leverages the subtle calibration potential of the 3DGS model to correct minor
inconsistencies arising at each timestep of the image editing process. This section
presents comparative experiments designed to further investigate the calibration
capabilities and elucidate the effectiveness of our ECM.

In Fig. 1, we employ two sets of images, each exhibiting different levels of
multi-view inconsistency, to guide the fine-tuning of a 3DGS. This model is then



4 Y. Wang et al.

Original Cross-attention Maps Consolidated Cross-attention Maps

Averaged
3D Map

In
v.

 R
en

de
r Render

Fig. 2: Consolidation Effect of Our CCM on the “man → clown” sample: Initially,
incoherent multi-view cross-attention maps (left) undergo an inverse rendering process
into 3D space, resulting in an averaged 3D map. This 3D map is subsequently rendered
back into the respective views, yielding consolidated cross-attention maps (right), which
provides unified attention weights across various views to each 3D region.

rendered back into images (right). The top row illustrates the model’s capability
to correct minor multi-view inconsistencies effectively, as shown by the absence
of mode collapse in the rendered images (top-right). In contrast, the bottom
row reveals the model’s limitations when confronted with severe inconsistencies,
which lead to poorly calibrated images marked by flickering artifacts (bottom-
right).

This observation elucidates the efficacy of our Editing Consistency Module in
addressing inconsistencies by continually calibrating minor discrepancies at each
image editing timestep, while directly employing original multi-view inconsistent
images as guidance results in mode collapse.

2.2 Discussion on Cross-attention Consistency Module

In the main paper, we introduce the Cross-attention Consistency Module (CCM)
as a novel approach to synchronize the attentive regions across all views within
the U-Net layers, thereby facilitating the U-Net to produce multi-view consistent
predictions. Specifically, the cross-attention maps from all views are consolidated
through a process of inverse-rendering (2D → 3D) and subsequent rendering (3D
→ 2D).

Fig. 2 showcases the impact of our CCM on the “man → clown” example,
comparing multi-view cross-attention maps towards the term “clown” before and
after the consolidation process. The comparison reveals that, unlike the original
cross-attention maps on the left, which are coarse and inconsistent across views,
the consolidated maps exhibit a refined, view-consistent attention on each 3D
region.



View-Consistent 3D Editing with Gaussian Splatting 5

Efficient-N2N
VcEdit

Instruct-N2N
Original View

"man" -> "clown" "stone bear" -> "brown bear" "bike" -> "blue bike"

Fig. 3: Qualitative Comparison with the Instruct-NeRF2NeRF [2] and the Efficient-
NeRF2NeRF [4]: Our VcEdit outperforms both the NeRF editing methods in terms
of achieving finer editing details. Conversely, the NeRF editing approaches produce
overly smooth outcomes along with unintended colorization in the background.

3 Qualitative Comparison with NeRF Editing Methods

In our main paper, we compare the editing quality of VcEdit with prevalent
3DGS editing methods, demonstrating that VcEdit significantly surpasses ex-
isting state-of-the-art methods in terms of editing quality. To expand our analy-
sis, this section introduces a comparison with NeRF editing approaches, with the
findings depicted in Fig. 3. Specifically, we contrast VcEdit with the widely rec-
ognized Instruct-NeRF2NeRF [2] and the innovative Efficient-NeRF2NeRF [4].

The comparative analysis depicted in Fig. 3 reveals that NeRF editing meth-
ods tend to yield overly smoothed outcomes, in contrast to VcEdit, which
delivers results rich in detail. Furthermore, the outcomes of both NeRF editing
methods exhibit unintended colorization across the scene, indicating a failure
to maintain the original background’s integrity. This limitation stems from a
fundamental challenge inherent to NeRF models: Compared with 3DGS model,
it is more difficult for NeRF to achieve precise local editing. Collectively, these
observations underscore VcEdit’s superior performance in 3D editing tasks.

4 Detailed Settings of User Study

In our user study, participants encountered a series of questions, each comprising
one original view and three corresponding rendered views from the 3DGS edited



6 Y. Wang et al.

via different comparative methods. An illustrative example of such a question is
presented in Fig. 4, where participants were tasked with selecting the editing they
considered to be of the highest quality. To promote impartiality in responses,
the sequence of the methods was randomized for each question, and all options
were presented anonymously.

Fig. 4: Question in our User Study: Participants were asked to select one editing they
deemed in the best quality.

5 More Editing Results of VcEdit

As the supplementary to our main paper, we present more editing result pro-
duced by VcEdit in Fig. 5. Further editing outcomes generated by VcEdit are



View-Consistent 3D Editing with Gaussian Splatting 7

displayed in Fig. 5, where our VcEdit produces high-quality editing result for
each sample. These results underscore the adaptability of VcEdit in managing
a diverse array of complex scenarios and prompts, ranging from detailed facial
and object modifications to broad-scale scene alterations. Further video results
are released at http://yuxuanw.me/vcedit/.

References

1. Chen, Y., Chen, Z., Zhang, C., Wang, F., Yang, X., Wang, Y., Cai, Z., Yang, L.,
Liu, H., Lin, G.: Gaussianeditor: Swift and controllable 3d editing with gaussian
splatting (2023) 2

2. Haque, A., Tancik, M., Efros, A.A., Holynski, A., Kanazawa, A.: Instruct-nerf2nerf:
Editing 3d scenes with instructions (2023) 5

3. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556 (2014) 2

4. Song, L., Cao, L., Gu, J., Jiang, Y., Yuan, J., Tang, H.: Efficient-nerf2nerf: Stream-
lining text-driven 3d editing with multiview correspondence-enhanced diffusion
models. arXiv preprint arXiv:2312.08563 (2023) 5

5. Xu, S., Huang, Y., Pan, J., Ma, Z., Chai, J.: Inversion-free image editing with natural
language (2023) 1, 2, 3

http://yuxuanw.me/vcedit/


8 Y. Wang et al.

"man" -> “vampire"

"man" -> “black man"

"whole scene" -> "Monet's painting"

"doll" -> ”grey mouse"

"bear" -> "jade"

"dog" -> "corgi"

"whole scene" -> "in rain"

Fig. 5: More Editing Results of VcEdit: Our method is capable of various editing
tasks, including face, object, and large-scale scene editing. The leftmost column demon-
strates the original view, while the right four columns show the rendered view of edited
3DGS.


	View-Consistent 3D Editing with Gaussian Splatting

