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Abstract. Accurately estimating energy expenditure (EE) is crucial for
optimizing athletic training, monitoring daily activity levels, and pre-
venting sports-related injuries. Estimating energy expenditure based on
video (E3V) is an appealing research direction. This paper introduces
E3V-K5, an authentic dataset of sports videos that significantly enhances
the accuracy of EE estimation. The dataset comprises 16,526 video clips
from various categories and intensity of sports with continuous calorie
readings obtained from the COSMED K5 indirect calorimeter, recog-
nized as the most reliable standard in sports research. Augmented with
the heart rate and physical attributes of each subject, the volume, diver-
sity, and authenticity of E3V-K5 surpass all previous video datasets in
E3V, making E3V-K5 a cornerstone in this field and facilitating future
research. Furthermore, we propose E3SFormer, a novel approach specifi-
cally designed for the E3V-K5 dataset, focusing on EE estimation using
human skeleton data. E3SFormer consists of two Transformer branches
for simultaneous action recognition and EE regression. The attention of
joints from the action recognition branch is utilized in assisting the EE
regression branch. Extensive experimentation validates E3SFormer’s ef-
fectiveness, demonstrating its superior performance to existing skeleton-
based action recognition models. Our dataset and code are publicly avail-
able at https://github.com/zsxm1998/E3V.

1 Introduction

Regular physical activity (PA), especially habitual aerobic exercise with appro-
priate intensity and frequency, is beneficial to human health [18]. Physical inac-
tivity may predispose to chronic diseases such as obesity, cardiovascular disease,
or diabetes [3,30,37,45], while prolonged exercise with high intensity often leads
to sports injuries [49]. As one of the important physiological changes caused by
exercise, energy expenditure (EE) can quantify the volume of exercise. Therefore,
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accurately estimating EE is crucial for monitoring and controlling daily activ-
ity levels and scientific sports training [31], which has always been a concern in
sports science [80].

Traditional methods for estimating actual EE include doubly labeled water
(DLW) method [81], indirect calorimetry (IC) [82], and the use of wearable sen-
sors such as heart rate monitors [35], accelerometers [11], etc. The reliability
and validity of the first two methods are high, making the DLW and IC the
“gold standard” for calorimetric measurements. However, the DLW method only
measures total EE over time, and IC, requiring a stationary metabolic cart and
mask, may interfere with natural behavior; both methods are expensive and lim-
ited in practicality [1,82]. Heart rate monitoring technology is relatively mature,
but ensuring its accuracy can be challenging during high or low-intensity ex-
ercise [57]. Accelerometers are widely used in various physical activity studies
due to their convenience and lower cost [11], but they usually need to be worn
for a long time, which limits application scenarios, and their accuracy can be
significantly influenced by the wearing positions and movement patterns [44].
With the rise of fitness tracking apps, many pioneering studies have focused on
multiple signals obtained from wearable devices that combine physiological and
biochemical indicators [10, 64, 70]. However, such sensors are not always readily
available or comfortable to wear, which restricts their overall practicality.

In contrast, sports videos can be easily accessed and can accurately capture
the movement of the entire body. From sports videos, we can obtain the kine-
matic parameters (such as velocity, acceleration, angle, etc.) to quantitatively
describe any bodily movement and PA levels and then estimate EE. Thanks to
the advancements in deep learning, there have been numerous remarkable vi-
sual works for predicting action types [6,13,21,22,24,28,41,54,60,65–68,74,75],
which has inspired us to estimate EE based on videos (E3V). Currently, there
is already some research delving into this. Some studies have demonstrated the
effectiveness of video-based methods. In their study, Tao et al . [63] collected
data in housework scenarios and employed an action-specific method to pre-
dict EE. Nakamura et al . [48] curated an egocentric video dataset along with
heart rate and acceleration signals, and introduced a multi-modal method for
predicting action categories and energy expenditure. Peng et al . [51] integrated
multiple action recognition datasets and annotated videos with calorie estimates
calculated by kinematic formulas.

However, contemporary studies in this field exhibit notable shortcomings.
First, in the field of action recognition, existing datasets have constraints, such
as deep learning models identifying actions from specific scenes in videos rather
than focusing on human motion patterns. For precise estimation of energy ex-
penditure, understanding the nuances of body movement patterns and their
intensity is paramount. Second, existing datasets for estimating EE based on
exercise videos either involve activities with limited intensity variation in re-
stricted settings [63], or their EE labels are inaccurate and overlook individual
differences due to their label generation methods [48,51].
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Fig. 1: Examples from E3V-K5 benchmark: sports videos with calorie readings from
COSMED K5 (kcal/min, blue curve), heart rate (bpm, orange curve) and physical
attributes of subjects in the box at the bottom left corner of each sample, including
gender, age, height (cm), and weight (kg).

In this paper, we curate an authentic dataset called E3V-K5, which con-
tains multiple sports videos with corresponding EE labels. For ground truth
measurement, we employ the COSMED K5 indirect calorimeter, which relies
on gas exchange. This method is widely recognized as the most reliable and
universal standard in sports research [82]. This represents the inaugural sports
video dataset with continuous calorie readings obtained from the K5, with the
goal of constructing an authentic, diverse, and large-scale vision-EE benchmark.
The dataset has been split into training, validation, and test sets based on the
subjects. This cross-subject split allows us to evaluate whether the model has
genuinely learned the relationship between motion and EE for various individu-
als. Some examples from our dataset are shown in the Figure 1.

In addition, we propose a method for estimating EE based on the human
skeleton for the E3V-K5 dataset called the Energy Expenditure Estimation
Skeleton Transformer (E3SFormer). First, we utilize an off-the-shelf pose es-
timation method [20] to extract the skeleton sequence of the exerciser from
videos. Then, we input this skeleton sequence into a Spatio-Temporal Fusion
Transformer backbone to extract features. These features are subsequently fed
into two Transformer network branches, which are used for predicting the ac-
tion category and energy expenditure, respectively. The features extracted by
the backbone contain information in two dimensions: temporal dimension and
spatial dimension (i.e. human joint dimension). Intuitively, we believe that the
movement features of certain specific joints on the human body are key to action
classification, and the motion intensity or characteristics of these joints over time
have a greater correlation with EE. For instance, regardless of how the hands
move, the running requires a rapid alternation of stepping forward and back-
ward with both legs, so the EE of running is more related to legs than hands.
Therefore, we transfer the attention of each joint from the action recognition
branch to the EE regression branch to enhance its performance. Extensive ex-
perimentation was conducted to compare E3SFormer with many skeleton-based
action recognition models, demonstrating the superiority of our method.
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In conclusion, the main contributions of our work are summarized as follows:

• We curate the E3V-K5 dataset, featuring 16,526 video clips, significantly
surpassing previous datasets in volume for EE estimation.

• E3V-K5 includes authentic EE measurements obtained from the COSMED
K5, alongside comprehensive labels like heart rate and subjects’ physical
attributes, enabling more precise and comprehensive analyses of EE.

• We propose the E3SFormer that uses human skeleton data from videos for
recognizing action categories and regressing EE. The importance of each
joint for a specific action category, extracted from the action recognition
branch, is utilized to boost the EE regression branch.

• Extensive experiments validate the challenging nature of E3V-K5 and the ef-
ficacy of E3SFormer, aiming to inspire further research based on this dataset.

2 Related Work

2.1 Deep Learning-Based Action Recognition

Video-Based Methods. In the domain of computer vision, action recognition
from videos has become a pivotal area of research due to its applications in var-
ious fields such as intelligent surveillance and health care [53]. The most natural
approach is to use video clips as input, training a neural network to predict the
categories of actions involved in the video. Many works extend the architectural
framework of 2D-CNNs to handle the comprehension of videos composed of time
series of images. These extensions include transforming 2D-CNNs into 3D-CNNs
in certain ways [6,22,33,41,66–68,76], using optical flow as an additional input
branch in dual-branch CNN networks and merging its features with RGB im-
age features [6, 25, 26, 60, 72, 73, 78, 85], as well as employing some aggregation
functions, such as averaging and RNNs, to fuse the sequences of features ex-
tracted from each frame using 2D-CNNs [13, 36, 85, 86]. In recent years, with
the rise in prevalence of the Transformer [69] architecture, a substantial body
of research [21, 24, 29, 40, 54, 55, 62, 65, 74, 75, 77, 79] has adopted self-supervised
approaches to pre-train Vision Transformers [14] on large-scale datasets and
fine-tune them on downstream tasks, achieving state-of-the-art results across
multiple action recognition datasets.

Skeleton-Based Methods. Besides video, dynamic human skeleton also
can be used for action recognition [84], which has demonstrated robustness and
effectiveness in action recognition [71]. The skeleton data is typically acquired
through the localization of 2D/3D body joints coordinates using depth sensors
or readily available pose estimation algorithms [5]. Human skeleton can be per-
ceived as a spatial-temporal graph of human body joints, thus, Yan et al . [84] pro-
posed a method called ST-GCN that first applied GNN to skeleton-based action
recognition. In the following years, numerous works were dedicated to enhancing
the ST-GCN framework to enable more efficient capture of action representa-
tions within spatial-temporal graphs [8,9,15,16,38,39,43,58,59]. PoseConv3D [17]
re-renders human pose sequences into videos, then utilizes these videos, which
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exclusively contain the human skeleton or joints, to train a 3D-CNN for action
recognition. MotionBERT [87] employs a unified pretraining framework to en-
hance skeleton-based action recognition and other human motion analysis tasks
by learning from a broad range of human motion data.

2.2 Energy Expenditure Estimation

The origin of EE estimation technology can be traced back to the 17th cen-
tury [47]. The early calorimetric methods dominated [34, 81, 82]. With the de-
velopment of theory and technology, there are gradually derived a variety of
non-calorimetric methods based on human physiological and biochemical sig-
nals [2,11,35,83]. The most reliable method is considered to be direct calorime-
try, but its use is limited by the high cost and inconvenient [34]. As a proxy,
indirect calorimetry is an accurate, noninvasive and portable method [82]. It
is the most widely used as a “gold standard” to assess the accuracy of other
non-calorimetric methods [44,64,70].

As for estimating EE based on video, there is relatively limited research
work in this area currently. Edgcomb and Vahid [19] used variations of bound-
ing boxes of people in videos to estimate EE compared with a body-worn device.
Tao et al . [63] curated an RGB-Depth video dataset called SPHERE-calorie in
a home environment with EE labels obtained from gas exchange measurements,
and proposed a method that first performs action recognition and then invokes
a specific model based on the identified action category to estimate EE. Masullo
et al . [46] proposed a dual-modal CNN to leverage human silhouette data and
accelerometer data to predict EE on SPHERE-calorie [63] dataset. Perrett et
al . [52] adopted a meta-learning method to achieve a more personalized estima-
tion of EE on the above dataset. Nakamura et al . [48] collected an egocentric
video dataset termed Stanford-ECM augmented with heart rate and acceleration
signals, and proposed a multi-modal multi-task method to jointly predict action
category and EE based on video and acceleration signals. Peng et al . [51] as-
sembled four widely used video action recognition datasets to acquire Vid2Burn
and assigned hourly EE labels through three predefined methods.

However, the datasets mentioned above all have certain shortcomings. The
ground truth EE labels in both Stanford-ECM [48] and Vid2Burn [51] are cal-
culated based on a predefined metabolic equivalent (MET) lookup table, which
offers a standardized method for quantifying the absolute intensity of various
physical activities [27]. However, the MET can only provide a rough estimation
of EE, and the impact of individual physical attributes was not considered in the
annotation construction process of these two datasets. Therefore, the label accu-
racy of these two datasets is clearly inadequate, which limits the development of
E3V. As for SPHERE-calorie [63], it used a calorimeter called COSMED K4b2
that relies on the same technique (gas exchange) as ours to obtain the EE ground
truth. But the calorimeter it used is not as advanced as ours. Moreover, it is lim-
ited to just 11 household activities with light to moderate intensity (MET≤5.0).
This dataset does not encompass the majority of daily exercise categories and
cannot meet the data requirements in the field of E3V.



6 S. Zhang et al.

Table 1: Comparison with existing vision-EE datasets. E3V-K5 is the only dataset
that contains heart rate signals, physical attributes (abbr. as “Attr” in the table), and
V̇ O2-based ground truth. ⋆Our dataset encompasses 6 categories of aerobic exercise,
with 4 of them featuring 3 distinct speed levels, resulting in a total of 14 classes.

Dataset Subject Num. Clip Num. Class Num. Resolution HR Attr V̇ O2-based GT Scenario

SPHERE-calorie 10 188 11 480p - ✓ ✓ Home
Stanford-ECM 10 113 24 720p ✓ - - Natural

Vid2Burn 4 9,789 72 variable - - - Natural

E3V-K5 (ours) 36 16,526 14⋆ 2.7k ✓ ✓ ✓ Gym

3 E3V-K5 Dataset

To construct a comprehensive and authentic benchmark for E3V, recruiting a
large number of subjects and collecting video samples of various types of physical
activities are indispensable. And the calorimeter based on oxygen consumption
(V̇ O2) is a more ideal manner than MET to measure EE labels. Additionally,
the heart rate (HR) and physical attributes of the subject are also correlated
with EE.

Therefore, we introduce an authentic dataset called E3V-K5 that contains
videos of common exercises and corresponding authentic EE labels, with addi-
tional information such as HR and subjects’ physical attributes. The EE labels
of our dataset are obtained from the most advanced indirect calorimeter based
on V̇ O2. Table 1 shows a comparison of existing vision-EE datasets, illustrating
that our E3V-K5 dataset has the largest number of subjects and video clips, the
highest video resolution, and the most comprehensive annotations.

3.1 Dataset Collection

The E3V-K5 dataset is derived from over 112 original videos captured from
different perspectives, with each original video having a duration of approxi-
mately thirty minutes. The recorded videos include 36 subjects with varying
anthropometric measurements, containing 6 exercise categories. The categories
are: running, skipping, riding, elliptical, aerobics, and HIIT, which are the most
popular types of daily fitness activities. For more refinement and variety, the
first 4 categories are further labeled with slow, medium, and fast speeds so that
the dataset is subdivided into 14 classes.

As the E3V-K5 dataset aims to establish an authentic vision-EE benchmark,
the EE was captured by the COSMED K5 portable metabolic system (K5), while
HR was real-time recorded by the Polar H10 heart rate band. The K5 is capable
of measuring respiratory gas exchange by the dynamic mixing chamber (DMC)
or breath-by-breath (B×B) technique, and then calculates EE based on indirect
calorimetry, which is the most effective and accurate way to estimate EE during
rest and aerobic exercise [12]. The Polar H10 is a chest belt for HR monitoring
synchronized with the K5. These ground truth sources are recognized as the
“gold standard” and have been widely used in sports research. Simultaneously,
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all RGB videos were captured by the EZVIZ S2 camera at 2.7k raw resolution
and 30 fps.

3.2 Data Processing

Given the high resolution of the original videos, we downsample them to an
856×480 resolution for the convenience of processing. Our samples have two
kinds of energy expenditure measurement techniques, namely DMC and B×B
mentioned in Section 3.1. The former records EE and HR every ten seconds,
while the latter records EE and HR with each breath. For the sake of uniformity
and ease of processing, we intend to cut the video into clips every 10 seconds and
label them with EE and HR. For the DMC video samples, the original record is
sufficient to assign the labels for the clips, while for the B×B samples, we average
the EE and HR records every ten seconds as the labels of the video clip. In this
manner, we obtained 17,260 video clips with EE and HR labels, and matched
them with the physical attributes of the subjects.

As described in [32], there is a delay between the time when the EE occurs
in the muscles and the time it is recorded by the metabolic system. This delay
varies for each individual. Therefore, we calculated the cross-correlation of EE
and HR to obtain a mean delay time for each subject to revise the EE label,
these manner is similar to [4]. We revised the EE label before cutting the videos.

In order to facilitate research on E3V-K5, we extract the human body skele-
ton sequence of subjects using the AlphaPose [20] framework. Concretely, we
use the AlphaPose pretrained on the COCO dataset [42] as the pose estimator,
and use the QDTrack [50] pretrained on the CrowdHuman dataset [56] as the
tracker. We write a script to automatically assign the skeletons with tracking
failures to the nearest sequence and extract the skeleton sequence of the subject
in the video based on the amount of skeletal movement. A ten-second video clip
contains 300 frames. We select video clips where the length of the detected pos-
ture sequences of the subject is greater than or equal to 290 as valid samples.
Along with some manually removed video clips, we finally obtained 16,526 video
clips as the release version of our dataset for training models.

Figure 2a illustrates the distribution of video clips across each class. Running
is the most frequent category, comprising a total of 7,096 clips, with 1,733 in
fast (_f), 2,676 in medium (_m), and 2,687 in slow (_s) speed variations. On
the other hand, Skipping is the category with the fewest clips, totaling 1,942,
which consist of 1,074 in fast, 692 in medium, and 176 in slow speed variations.
The average number of video clips per class is 1,232.9. Figure 2b illustrates the
distribution of energy expenditure measurements across exercise class, and Fig-
ure 2c depicts the distribution of heart rate measurements across exercise class.
Generally speaking, the higher the exercise intensity, the higher the energy ex-
penditure and heart rate. Among the categories, Running_f shows the highest
average EE and HR, while riding_s has the lowest average EE and HR. It is
evident that the heart rate signals between classes are generally close, indicat-
ing a limited discrimination ability for different exercises. Moreover, there is a
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Fig. 2: Statistics of E3V-K5 dataset. (a) The number of video clips. (b) Average energy
expenditure (EE) for each class. (c) Average heart rate (HR) for each class.

significant dispersion in heart rate within the same class, especially in ellipti-
cal_f, demonstrating that heart rate has obvious individual differences. Based
on the above findings, it is difficult to estimate EE accurately by heart rate
measurement alone.

3.3 Cross-Subject Data Split

The application of energy expenditure estimation based on video requires the
model to have a strong generalization on individuals not seen in the training
set. In order to evaluate the generalization of the model, we divided the E3V-K5
dataset into training, validation, and test sets according to the subjects. Specif-
ically, we randomly divide the 36 subjects in a roughly 6:2:2 ratio, assigning 22
subjects to the training set, with 7 subjects each in the validation and test sets.
Accordingly, the number of video clips in the training, validation, and test sets
are 10,049 and 3,234 and 3,243, respectively. This cross-subject data split en-
sures that the subjects used for evaluating the model’s performance are not seen
during the model training process, which allows for an effective assessment of
the model’s generalization ability. Besides, the original complete exercise videos
and their corresponding EE labels are still preserved in E3V-K5 dataset. Future
researchers can use these videos to investigate the relationship between EE and
accumulated training time.
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Fig. 3: Framework of E3SFormer. The human skeleton sequence x is extracted using
a pose estimator from the video and then fed into a backbone to obtain motion rep-
resentation F. It is then sent to an action recognition branch (upper) and an energy
estimation regression branch (lower). The category-related joint-specific attention Ac

from the action recognition branch is transferred to the energy estimation regression
branch to boost its performance. The multi-modal data z are used for more personal-
ized energy estimation estimation.

4 E3SFormer: Energy Expenditure Estimation Skeleton
Transformer

Accurately estimating energy expenditure requires fine-grained analysis of video,
which is a computationally intensive task. Traditional video understanding meth-
ods usually sample a small number of frames in each video [6, 23, 60, 66], which
is not adequate for predicting precise energy expenditure of human motion. If
we input all frames of a video clip into these methods, the GPU memory usage
and inference time will be excessive, making it unfavorable for practical appli-
cations. Furthermore, irrelevant stuff and background in the video may affect
the prediction of EE. Therefore, we adopt a human skeleton-based method to
accurately estimate EE on our E3V-K5 dataset and reduce computational cost
and inference time.

In this section, we introduce our proposed E3SFormer in detail. The overall
procedure is illustrated in Figure 3, including a backbone and two branches for
action recognition and EE regression, respectively. The entire network is based
on the Transformer architecture. The backbone uses a spatio-temporal fusion for
extracting spatial and temporal features of an inputted human skeleton sequence.
After that, the features will be fed into the two different branches for different
tasks simultaneously. The attention of each joint in the action recognition branch
is transferred to the EE regression branch to facilitate precise EE regression.

4.1 Spatio-Temporal Motion Feature Extraction

The key component of the backbone is a Dual-stream Spatio-temporal Trans-
former (DSTformer) block. One DSTformer block consists of two different branches.
The first branch initially performs a Transformer along the spatial (joint) dimen-
sion, followed by a Transformer on the temporal dimension. The second branch
switches the order of these two Transformers. The result of these two branches is
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fused through adaptive weights produced by an attention regressor. Each branch
of DSTformer has the capability of modeling comprehensive spatio-temporal in-
formation, and different branches are interested in different spatio-temporal as-
pects. The fusion operation can dynamically balance the results of these two
branches.

Specifically, we define the input skeleton sequence as x ∈ RT×J×Cin , where
T is the temporal sequence length, J is the number of body joints, and Cin is
the channel number of input. Specifically, Cin = 3 in here, the first and second
channels are the x-coordinate and y-coordinate of body joints respectively, and
the third channel is the visibility confidence of each joint offered by the pose esti-
mation method [20]. The skeleton sequence x is projected to a high-dimensional
feature F0 ∈ RT×J×C , and concatenated with a pretrained spatial position en-
coding PS ∈ R1×J×C and a temporal position encoding PT ∈ RT×1×C . Then
the input feature is fed into the backbone that contains N DSTformer blocks to
get the motion representation F ∈ RT×J×C . C denotes the channel of features
used in the backbone and thereafter branches. The obtained motion representa-
tion F is then fed into two transformer branches for both action recognition and
energy expenditure regression.

4.2 Spatial-based Action Recognition

For the action recognition branch, we first use a Self Attention Pooling (SAP)
layer to squeeze the temporal dimension T of F, which is defined as follows:

SAP(Fj) =

T∑
t=1

exp(FC(Ft
j))∑T

t′=1 exp(FC(Ft′
j ))

· Ft
j , (1)

where Fj is the slice of F along the joint dimension, FC is a Fully Connected
layer. The result of this SAP layer is denoted as Fs ∈ RJ×C , which is concate-
nated with a class token (CLS) and fed into a two Spatial Transformer (ST)
layer to model the relation shape among the joints. The ST aims to perform
Transformer operation along the joint dimension, the key component of which is
the Multi-Head Self-Attention (MHSA). First, the query Qi, key Ki, and value
Vi of head i ∈ [1, h] is calculated as follows:

Qi = FsW
i
Q, K

i = FsW
i
K , Vi = FsW

i
V , (2)

where Wi
Q, Wi

K , and Wi
V are projection layers of head i. Then, we calculate

the attention matrices as follows:

Ai = softmax(
Qi(Ki)⊤√

dK
), (3)

where dK is the feature dimension of Ki. After that, the output of the MHSA
is defined as:

MHSA(Fs) = [A1V1; . . . ;AhVh; . . .]WO, (4)
where WO is a output projection. Residual connection is used to the MHSA
result, which is fed into a multi-layer perceptron (MLP), and followed by a
residual connection. The Pre-LayerNorm trick is used for both MHSA and MLP.
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4.3 Joint-Specific Attention for Enhanced Energy Expenditure
Regression

Every token in the action recognition branch leverages its query to calculate
the similarity of all keys to form the attention matrix, representing which tokens
should be concerned. The CLS token is used to classify action, so in our intuition,
which joints are important for a certain action category can be represented by
the attention of the CLS token. Therefore, the average of multi-head attention
of CLS token in the second ST, which is termed as category-related joint-specific
attention Ac ∈ RJ , is used to signify the importance.

For the EE prediction branch, there are two Temporal Transformer (TT)
layers followed by a SAP layer. The only difference between ST and TT is that
TT is performed along the temporal dimension of each joint. The result can be
denoted as Ft ∈ RJ×C . To gain the enhanced representation for regression, we
use Ac as a weight to calculate a weighted sum of Ft along the joint dimension,
resulting in Fr ∈ RC . For the integration of multi-modal data z including heart
rate and physical attributes, an MLP is used to extract feature M of them.
Then, it is concatenated with the Ft and the result of action recognition branch
Fc ∈ RJ×C without CLS token and fed into a Transformer layer. The result as
well as Fr is used to regress EE.

We use the Cross-Entropy Loss Lc to train the action recognition branch,
together with L1 Loss Lr to train the EE regression branch. The overall loss
function is as follows:

L = Lr + αLc, (5)

where α is a hyperparameter.

5 Experiments

5.1 Experiment Setup

Comparison Methods. We compare the proposed E3SFormer with the fol-
lowing skeleton-based action recognition frameworks on the E3V-K5 dataset:
ST-GCN [84], AAGCN [59], MS-G3D [43], CTR-GCN [8], ST-GCN++ [16],
DG-STGCN [15], and PoseConv3D [17]. Among them, the last method is based
on CNN, while the other methods are based on GCN. We modify the output
channel of the last Linear layer originally for classification to 1 for EE regression.
Besides, We alter the input channel of PoseConv3D [17] from J to 3, and use the
sequence of RGB video frames as input to simply compare the performance of
the skeleton-based approach and video-based approach. The altered framework
is designated as RGBConv3D.

Training Details. We use the pretrained weight of MotionBERT [87] to
initialize the backbone. However, the length of pretrained temporal position
encoding PT is insufficient for our fine-grained task that has a quite long skeleton
sequence. Therefore, we perform linear interpolation on the T dimension of PT
from the original number to a longer number to accommodate longer input
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sequences. Our model and comparison models are implemented by PyTorch and
optimized by Lion [7] optimizer with a learning rate of 10−4, weight decay of
5× 10−4, and cosine annealing as the learning rate decay schedule. We train all
the settings for 50 epochs with a batch size of 16, except the two CNN-based
models, PoseConv3D and RGBConv3D. Considering the larger GPU memory
usage of these two models, we set the batch size of these two models to 8. For
all the skeleton-based models, the joint coordinates are normalized to the range
of [−1, 1]. The random horizontal flipping is applied as the data augmentation.

Evaluation Metrics. We adopt L1 Loss to train every model for EE regres-
sion, which is also known as Mean Absolute Error (MAE). In addition to MAE,
we also use Mean Relative Error (MRE), Pearson Correlation Coefficient (PCC),
and Coefficient of Determination (R2) as evaluation metrics for the model. The
MRE, PCC, and R2 are calculated as follows:

MRE =
1

N

N∑
i=1

|yi − ŷi|
yi

, (6)

PCC =

∑N
i=1(yi − y)(ŷi − ŷ)√∑N

i=1(yi − y)2
√∑N

i=1(ŷi − ŷ)2
, (7)

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − y)2
, (8)

where yi and ŷi denote the actual value and predicted value respectively, while y
and ŷ denote the mean of the actual values and the predicted values respectively,
and N denotes the number of samples.

5.2 Results of Energy Expenditure Estimation

Pure Skeleton Results. As shown in Table 2 (top), when we only leverage
the human skeleton sequence as input, our proposed E3SFormer surpasses all
comparison methods on most evaluation metrics, except for R2. But the R2 still
ranks second among all the methods, and very close to the first (0.5118 compared
to 0.5175). These results demonstrate the effectiveness of our method.

The PoseConv3D [17] ranks first on R2 and performs relatively better com-
pared to other GCN-based methods on other evaluation metrics, exhibiting the
superior capability to extract fine-grained features in our task. We conjecture
that this is because the issue of over-smoothing in GCNs results in a dimin-
ished ability to express fine-grained motion features in the deeper layers of the
network. Accurate estimation of EE, however, requires precise capture of the
displacement of each joint to measure muscle contractions, a capability where
CNNs excel.

Despite being a CNN, the RGBConv3D performs much worse compared to
PoseConv3D [17] and other GCN-based methods. The main reason, in our opin-
ion, is that the inputs of RGBConv3D are RGB video clips that contain irrel-
evant objects, other people, and various backgrounds, which may disturb the
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Table 2: Energy expenditure regression results on E3V-K5 dataset. The w/o MM
and w/ MM denote without and with heart rate and physical attributes as multi-
modal data, respectively. We use the percentage form of MRE for a clear presentation.
The ↓ indicates the lower the better, and the ↑ indicates the higher the better.

Metric\Method ST-GCN AAGCN MS-G3D CTR-GCN ST-GCN++ DG-STGCN PoseConv3D RGBConv3D E3SFormer (Ours)

w
/o

M
M MRE (%) ↓ 36.42 37.00 47.67 34.56 35.98 34.28 33.03 42.93 28.81

MAE ↓ 2.1939 2.2050 2.7804 2.3978 2.2023 2.0796 2.0670 2.5408 2.0304
PCC ↑ 0.6632 0.6686 0.5523 0.6798 0.6944 0.7397 0.7232 0.5186 0.7528
R2 ↑ 0.3722 0.4037 0.1325 0.3412 0.4317 0.5054 0.5175 0.2663 0.5118

w
/

M
M

MRE (%) ↓ 23.06 21.47 21.86 20.11 22.37 20.72 21.52 28.83 18.01
MAE ↓ 1.4895 1.4176 1.4862 1.3016 1.5122 1.3874 1.3939 1.7382 1.2490
PCC ↑ 0.8637 0.8701 0.8570 0.8967 0.8640 0.8667 0.8976 0.8988 0.9157
R2 ↑ 0.7169 0.7425 0.7257 0.7909 0.7265 0.7360 0.7861 0.7048 0.7953

prediction of EE. In contrast, PoseConv3D [17] renders the joint coordinates to
the video space as the input of CNN, focusing on human body movement while
disregarding the influence of background factors.

Multi-modal Input Results. Based on the fact that different individuals
will have varying energy expenditures when engaging in the same type and in-
tensity of exercise, using only video clips or skeleton sequences to accurately
predict EE is inadequate. More personalized data are required for this purpose.
Therefore, when augmented with heart rate and physical attributes, the model
performances are much better than without these multi-modal data, shown in
Table 2 (bottom).

For all the comparison methods, we leverage a three-layer MLP to extract a
feature of heart rate and physical attributes of each input sample. The hidden
layers and output layer of the MLP have the same number of channels as the
output channels of each backbone in these methods. The extracted attribute
feature is concatenated with the backbone feature, and fed into a fully connected
layer to predict EE.

With the help of multi-modal data, the performances of all methods improved
significantly. Our method ranks first on all of the evaluation metrics, owing to a
meticulously designed architecture. The gap between CNN-based methods and
GCN-based methods becomes less pronounced. The PoseConv3D [17] does not
stand out on the evaluation metrics representing prediction accuracy (MRE and
MAE), but performs well on the evaluation metrics related to correlation (PCC
and R2). The PCC of RGBConv3D is quite high while the R2 is relatively lower,
which is related to the worst performance on MRE and MAE, showing a high
correlation but low prediction accuracy. The incorporation of multi-modal data
boosts the prediction accuracy of all methods. However, according to the two
analyses above, due to the structural advantages of CNNs, CNN-based methods
exhibit better predictive correlation.

5.3 Ablation Study

Table 3 shows the ablation study that we conducted. The left half of the table is
experiments using only heart rate (HR) and physical attributes (Attr) to predict
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Table 3: Ablation study of our method. “Formula” denotes using a predefined set of
formulas to calculate Energy Expenditure based on heart rate and physical attributes.
“AR” is an abbreviation for Action Recognition.

Metric\Ablation Formula Only HR Only Attr HR+Attr w/o MM
w/o AR

w/o MM
w/ AR

w/ MM
w/o AR

w/ MM
w/ AR

MRE (%) ↓ 65.02 32.75 58.41 25.78 39.22 28.81 24.88 18.01
MAE ↓ 3.5047 2.7904 3.0140 1.5276 2.1071 2.0304 1.5105 1.2490
PCC ↑ 0.7767 0.7871 0.5812 0.8712 0.7155 0.7528 0.8560 0.9157
R2 ↑ -0.1493 0.0268 0.0416 0.7297 0.4704 0.5118 0.7035 0.7953

EE. The Formula [61] is given by the American College of Sports Medicine to
estimate EE based on these data. The parameters of the formula differ for males
and females. For males, the formula is as follows:

EE =
(0.6309×HR+ 0.1988×W + 0.2017×A− 55.0969)

4.184
,

while for females, the formula is:

EE =
(0.4472×HR+ 0.1263×W + 0.074×A− 20.4022)

4.184
,

where EE denotes the energy expenditure (kcal/min), HR, W , and A denote
heart rate, weight, and age, respectively. The rest three columns are the exper-
iments using a three-layer MLP to predict EE according to the specified data.
The channel number of the hidden layers is 512. It is shown that the neural net-
works are more appropriate than the predefined formula for this task. Both using
only heart rate and using only physical attributes are not sufficient to produce
an acceptable result, indicating that EE is related to a combination of both,
rather than either one alone. The right half of Table 3 is the ablation study of
E3SFormer’s action recognition branch with the category-related joint-specific
attention. The “w/o AR” refers to replacing the joint-specific attention with av-
erage pooling for averaging regression outputs. The results show that without
the joint-specific attention, the performance will degenerate, demonstrating the
importance of it.

6 Conclusion

We curate E3V-K5, an authentic benchmark for energy expenditure estimation
based on video. A total of 16,526 videos are included in this dataset, labeled
with the COSMED K5 calorimeter to gain the authentic energy expenditure of
people. Additionally, it includes the heart rate and physical attributes of each
subject. The data volume, label diversity, and authenticity of E3V-K5 surpass all
previous video datasets for energy expenditure estimation. Moreover, we propose
the E3SFormer that utilizes human skeleton data from videos to regress energy
expenditure. Comprehensive experiments exhibit the challenging nature of E3V-
K5 and the effectiveness of E3SFormer, aiming to inspire further research based
on this benchmark.
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