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A Implementation and Training Details

We implement our method in PyTorch, running a total of 25K steps on a com-
puter with Intel i7-9750H@2.6GHz CPU and NVIDIA RTX 4090 GPU. The
coarse stage comprises 10K iterations, followed by the fine stage with 15K iter-
ations. The Adam optimizer [2] is used to estimate the weights of the network,
embedding pose parameters, and velocity parameters. For Tri-Mip M, the learn-
ing rate is set to 2× 10−3, while it is 2× 10−2 for encoding params. We follow a
learning rate reduction schedule, decreasing it by 0.6× at 1

2 , 3
4 , 5

6 , and 9
10 of the

total steps, consistent with [4]. The learning rates for camera pose and velocity
are set to 2 × 10−3 and 2 × 10−4, respectively. We reduce the learning rates
by 0.6× at 1

12 , 1
6 , 1

4 , and 1
3 of the total steps. The total training iterations for

NeRF [8] and BARF [7] are 200K. The pose corresponding to the first row of
each image is assumed as the pose of the frame. The pose accuracy is evaluated
by the tool evo [3]. Since DiffSfM [9] cannot synthesize novel images, we first
apply the method to restore global shutter images and then use them as input
to train Tri-Mip-BA.

B Details on Selected datasets

We use the synthetic datasets WHU-RS [1], and real datasets ZJU-RS [5] to ver-
ify the effectiveness of our method. We conduct experiments using 6 sequences
from the WHU-RS dataset, comprising two scenarios with each scenario in-
cluding fast, medium, and slow sequences. To analyze the performance of our
method under different camera motion speeds, we select similar scenes and train
the model using approximately 100 images for each sequence. For the ZJU-RS
dataset, we select 6 sequences (D0, D2, D3, D8, C5, C11) out of the 23 available
for reconstruction, all of which are captured using smartphones equipped with
rolling shutter cameras. For each sequence, we select 70-100 images for recon-
struction. In the main paper, we analyze the performance of different methods
on D0 and D2 sequences. In the supplementary materials, more experimental
results are reported.
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Table S1: Average training and querying time consumption of Traj1-fast scene of
WHU-RS dataset in seconds.

NeRF BARF DiffSfM Tri-MipRF Tri-MipRF-BA USB-NeRF-RE URS-NeRF

Training Time 32314.32 43174.51 1014.29 (+22859.34) 543.29 1010.88 2092.35 1407.25

Querying Time 9.25 9.31 1.04 0.99 0.98 1.30 0.98

Table S2: Quantitative comparisons on the synthetic datasets for novel view synthesis
on the WHU-RS dataset. For the fast, medium, and slow modes of the WHU-RS
dataset, the average values of each metric are computed from two scenes. For each
metric, the best is in bold for the unordered datasets and blue for the sequence video
datasets.

WHU-RS-Fast WHU-RS-Medium WHU-RS-Slow
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Un-view

NeRF 18.13 0.46 0.72 18.57 0.48 0.72 18.54 0.48 0.71
BARF 16.37 0.49 0.64 17.54 0.49 0.59 15.34 0.46 0.64
DiffSfM 25.07 0.80 0.19 27.08 0.85 0.12 27.78 0.87 0.11

Tri-MipRF 16.35 0.47 0.61 16.80 0.49 0.57 16.94 0.50 0.58
Tri-MipRF-BA 24.09 0.78 0.19 24.24 0.77 0.15 26.10 0.84 0.10
USB-NeRF-RE 16.64 0.49 0.61 18.76 0.58 0.51 20.56 0.64 0.43

URS-NeRF 27.27 0.84 0.11 28.48 0.87 0.09 29.02 0.88 0.09

Seq-view
USB-NeRF-RE 28.93 0.86 0.13 29.61 0.88 0.10 29.85 0.89 0.10

URS-NeRF 27.56 0.85 0.15 28.82 0.87 0.11 29.21 0.87 0.11

C Supplementary Analysis

C.1 Training Time Analysis

As described in the main paper, since USB-NeRF [6] is based on BARF [7], we re-
implement the interpolation method used in USB-NeRF based on Tri-MipRF [4]
to maintain consistency of the backbone. We test the training time and query-
ing time of the methods used in the main paper, especially comparing the time
consumption between the interpolation method and our method with the same
backbone. From Tab. S1, we can observe that the training and querying progress
of NeRF and BARF is particularly slow due to the adoption of the coordinate-
based MLPs in the network. Due to the Tri-Mip representation in Tri-MipRF [4],
Tri-MipRF and its extensions can achieve both high-fidelity anti-aliased render-
ings and efficient reconstruction. The training and querying speeds have been
significantly improved. Specifically, by comparing Tri-MipRF and Tri-MipRF-
BA, it can be observed that the training time doubles nearly after introducing
bundle adjustment. Subsequently, the computation time of URS-NeRF is longer
than Tri-MipRF-BA when estimating additional velocities. Finally, the training
and querying time of USB-NeRF-RE is the longest, mainly due to the complex
cubic interpolation calculation and the differentiation in the backpropagation
process. It is worth noting that the training time of the DiffSfM is similar to
Tri-MipRF-BA. However, DiffSfM requires an additional 22,859.34s to eliminate
the rolling shutter effect in the images.
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C.2 Generality Analysis

We conduct further analysis of the generality of our method. As shown in Fig.
S1, our method can reconstruct the scene with only GS images, only RS images,
and mixed RS+GS images due to introducing the estimated parameters v and
ω which are independent of the camera poses. This indicates that our method
is unaffected by the order of input images and does not require restricting the
types of images, which conforms to the generality of utilizing multi-source data
for reconstruction in SfM.

C.3 Additional Experimental Results

We note that we have reported the quantitative comparisons on the training view
on WHU-RS dataset in Tab.2 (cf . main paper), which indicates the effectiveness

URS-NeRF (GS) URS-NeRF (RS) URS-NeRF (GS+RS) USB-NeRF (GS+RS)

global shutter 
camera poses translational errorrolling shutter 

camera poses
ground-truth 
camera poses

Fig. S1: Given a set of unordered GS/RS images, our model can simultaneously learn
the undisturbed 3D scene representation and recover the unordered camera poses with
only GS images (1th col), only RS images (2th col) and mixed RS, GS images (3th

col). However, USB-NeRF can only take sequential images as input and cannot pro-
cess hybrid images of RS and GS simultaneously. This limits its practical applications
(e.g . reconstruction using different types of cameras or utilizing crowdsourced data for
reconstruction). The second row presents residual images (the darker the better) that
are defined as the absolute difference between the rendered undisturbed images (first
row) and ground truth global shutter images.
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Fig. S2: Qualitative comparisons on ZJU-RS datasets. The detailed and overall images
demonstrate that our method achieves better performance compared to other works
on unordered images.

of removing the rolling shutter effect on the training view. In tab. S2, we also
evaluate the performance of our method against the state-of-the-art methods in
terms of novel view synthesis. Some conclusions consistent with the main paper
can be obtained. URS-NeRF still outperforms other methods on the unordered
datasets. However, USB-NeRF-RE cannot handle unordered input images due
to the sequential constraints used in USB-NeRF-RE.

We also conduct additional quantitative and qualitative experimental analy-
ses on the unordered view of real ZJU-RS datasets. Tab. S3 presents the accuracy
of trajectory estimation using different methods. Fig. S2 depicts the quality of
rendering, while Fig. S3 shows the recovered trajectories compared with the
ground truth. These results demonstrate that our method effectively improves
the performance of the reconstruction with the images captured by the smart-
phones.

D Limitation Discussion

As mentioned in the main paper, introducing the estimated parameters v and
ω which are independent of the camera poses increases the degree-of-freedom of
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Fig. S3: Comparisons of estimated trajectories of real ZJU-RS datasets. The exper-
imental results demonstrate that our method can recover the motion trajectories of
unordered images.

Table S3: Camera pose estimation on the unordered view of ZJU-RS dataset. We
evaluate the translation error (m) and rotation error (◦). For each metric, the best in
bold.

BARF DiffSfM Tri-MipRF-BA USB-NeRF-RE URS-NeRF
Trans Rot Trans Rot Trans Rot Trans Rot Trans Rot

D0 0.047 8.307 0.010 1.393 0.012 2.104 0.147 20.80 0.008 2.663
D2 0.064 2.999 0.015 1.075 0.010 1.916 0.101 10.99 0.007 3.081
D3 0.045 11.258 0.007 1.398 0.009 3.131 0.195 28.91 0.007 1.334
D8 0.021 5.058 0.027 2.274 0.033 2.264 0.112 7.709 0.014 2.668
C5 0.023 5.286 0.010 1.787 0.013 5.866 0.079 11.134 0.007 1.694
C11 0.033 4.047 0.010 2.032 0.009 1.987 0.081 5.725 0.007 1.000

the model compared to the interpolation methods. Consequently, the accuracy
of our method on sequential data, particularly for intense camera motion, is in-
ferior to the interpolation method used in USB-NeRF. However, the flexibility
and generalizability of our method are significant advantages in practical appli-
cations. Depending on the specific application scenarios, we can flexibly choose
between these two methods.

E Video Comparison

To further demonstrate the advantage of our method, we also present more
videos on the web page that demonstrate the ability of our method to recover
high-quality global shutter images from the rolling shutter training images and
generate images with different degrees of RS effects using the estimated velocity
and angular velocity.
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