
Asynchronous Large Language Model Enhanced
Planner for Autonomous Driving

Yuan Chen1,2⋆, Zi-han Ding1⋆, Ziqin Wang1⋆, Yan Wang2†, Lijun Zhang1, and
Si Liu1†

1 Beihang University
2 AIR, Tsinghua University

{chenyuan1, wzqin, ljzhang, liusi}@buaa.edu.cn
zihanding819@gmail.com

wangyan@air.tsinghua.edu.cn

Abstract. Despite real-time planners exhibiting remarkable performance
in autonomous driving, the growing exploration of Large Language Mod-
els (LLMs) has opened avenues for enhancing the interpretability and
controllability of motion planning. Nevertheless, LLM-based planners
continue to encounter significant challenges, including elevated resource
consumption and extended inference times, which pose substantial ob-
stacles to practical deployment. In light of these challenges, we introduce
AsyncDriver, a new asynchronous LLM-enhanced closed-loop framework
designed to leverage scene-associated instruction features produced by
LLM to guide real-time planners in making precise and controllable tra-
jectory predictions. On one hand, our method highlights the prowess of
LLMs in comprehending and reasoning with vectorized scene data and
a series of routing instructions, demonstrating its effective assistance to
real-time planners. On the other hand, the proposed framework decou-
ples the inference processes of the LLM and real-time planners. By cap-
italizing on the asynchronous nature of their inference frequencies, our
approach have successfully reduced the computational cost introduced
by LLM, while maintaining comparable performance. Experiments show
that our approach achieves superior closed-loop evaluation performance
on nuPlan’s challenging scenarios. The code and dataset are available at
https://github.com/memberRE/AsyncDriver.

Keywords: Autonomous Driving · Large Language Models · Motion
Planning

1 Introduction

Motion planning plays a pivotal role in autonomous driving, garnering signif-
icant interest due to its direct impact on vehicle navigation and safety. One
particularly noteworthy evaluation approach is the employment of closed-loop
simulation, which involves the dynamic development of driving scenarios that
⋆ Equal contribution. † Corresponding author.

https://github.com/memberRE/AsyncDriver


2 Y. Chen et al. Model

VectorMap 
Encoder

Trajectory 
Decoder

X

Y

VectorMap 
Encoder

Trajectory 
Decoder

X

Y

{ Turn right in 29.7 meters. } LLM

LLM

(a)
Real-time 
planner

(b)
LLM-based 

planner

(c)
AsyncDriver

{ Trajectory:
[(0.12,1.14), (0.43,2.18), 
(1.11,3.37), (2.08,4.54), 
(3.54,5.29), (5.49,6.58)] }

{ Role: You are driver of an 
autonomous vehicle…
Perception: car at (-0.62,0.13) …
Task: Develop a 3-second route 
represented by 6 waypoints. }

Async Controller

Fig. 1: Comparative Overview of Learning-based Autonomous Driving Plan-
ning Frameworks. (a) Real-time planner: Offers quick inference but has limited con-
trollability. (b) LLM-based planner: Produces linguistic descriptions and controls, of-
fering high interactivity and interpretability at the expense of inference speed. (c)
AsyncDriver: While leveraging the reasoning capabilities of LLM, a balance between
performance and inference speed is achieved through asynchronous control.

adapt to the planner’s predicted trajectories, thus necessitating that the model
exhibits stronger predictive accuracy and bias correction capabilities.

As illustrated in Fig.1(a), current learning-based real-time motion planning
frameworks [13, 18, 20, 24, 32, 33] typically utilize vectorized map information
as input and employ a decoder to predict trajectories. As purely data-driven
methods, they are particularly vulnerable to long-tail phenomena, where their
performance can significantly degrade in rare or unseen scenarios [6]. Moreover,
while some rule-based strategies exist, their manual crafting of rules are found
to be inadequate for capturing the entirety of potential complex scenarios, re-
sulting in driving strategies that tend towards extremes either excessive caution
or aggression. Furthermore, both learning-based and rule-based planning frame-
works suffer from low controllability, which raises concerns regarding the safety
and reliability of such systems in dynamic environments.

Recently, the considerable potential of Large Language Models (LLMs), in-
cluding GPT-4 [1] and Llama2 [38], has been extensively explored within the
realm of autonomous driving. Their extensive pre-training on large-scale datasets
has established a robust foundation for comprehending traffic rules and scenar-
ios. Consequently, LLM-based planners have demonstrated superior performance
in scene analysis, reasoning, and human interaction, heralding new prospects for
enhancing the interpretability and controllability of motion planning [9, 46, 48].
Nonetheless, as shown in Fig.1(b), these models frequently encounter several
of these specific challenges: 1) The scene information is described through lan-
guage, which could be constrained by the permissible input token length, making



Asynchronous LLM Enhanced Planner for Autonomous Driving 3

it challenging to encapsulate complex scene details comprehensively and accu-
rately [28, 29, 34, 44]. 2) Prediction via linguistic outputs entails either directly
issuing high-level commands that are then translated into control signals, poten-
tially leading to inaccuracies, or outputting trajectory points as floating-point
numbers through language, a task at which LLMs are not adept [22, 29, 45]. 3)
Prevalent frameworks primarily utilize LLMs as the core decision-making entity.
While this strategy offers advantages in performance, the inherently large num-
ber of parameters in LLMs results in a noticeable decrease in inference speed
relative to real-time planners, presenting substantial obstacles to their real-world
implementation.

In this work, we introduce AsyncDriver, a novel asynchronous LLM-enhanced
framework for closed-loop motion planning. As depicted in Fig.1(c), this method
aligns the modalities of vectorized scene information and series of routing instruc-
tions, fully leveraging the considerable capabilities of LLM for interpreting in-
structions and understanding complex scenarios. The Scene-Associated Instruc-
tion Feature Extraction Module extracts high-level instruction features, which
are then integrated into the real-time planner through the proposed Adaptive
Injection Block, significantly boosting prediction accuracy and ensuring finer
trajectory control. Moreover, our approach preserves the architecture of the
real-time planner, allowing for the decoupling of inference frequency between
LLM and the real-time planner. By controlling the asynchronous intervals of
inference, it significantly enhances computational efficiency and alleviates the
additional computational cost introduced by LLM. Furthermore, the wide ap-
plicability of our proposed Adaptive Injection Block ensures that our framework
can be seamlessly extended to any transformer-based real-time planner, under-
scoring its versatility and potential for broader application.

To summarize, our paper makes the following contributions:

– We propose AsyncDriver, a novel asynchronous LLM-enhanced framework,
in which the inference frequency of LLM is controllable and can be decoupled
from that of the real-time planner. While maintaining high performance, it
significantly reduces the computational cost.

– We introduce the Adaptive Injection Block, which is model-agnostic and can
easily integrate scene-associated instruction features into any transformer-
based real-time planner, enhancing its ability in comprehending and follow-
ing series of language-based routing instructions.

– Compared with existing methods, our approach demonstrates superior closed-
loop evaluation performance in nuPlan’s challenging scenarios.

2 Related Work

2.1 Motion Planning For Autonomous Driving

The classic modular pipeline for autonomous driving includes perception, pre-
diction, and planning. In this framework, the planning stage predict a future



4 Y. Chen et al.

trajectory based on the perception outputs, then executed by the control sys-
tem. This architecture, widely adopted in industry frameworks like Apollo [3],
contrasts with end-to-end approaches [16, 17] by enabling focused research on
individual tasks through well-defined data interfaces between modules.

Autonomous driving planners can be mainly categorized into rule-based and
learning-based types. Rule-based planners [2, 10, 11, 21, 23, 39, 40] rely on prede-
fined rules for determining the vehicle’s trajectory, such as maintaining a safe
following distance and obeying traffic signals. For instance, IDM [39] ensures a
safe distance from the leading vehicle by calculating an appropriate speed based
on braking and stopping distances. PDM [10] builds on IDM by selecting the
highest-scoring IDM proposal as the final trajectory, achieving state-of-the-art
performance in the nuPlan Challenge 2023 [4]. However, rule-based planners
often struggle with complex driving scenarios beyond their predefined rules.

Learning-based planners [13,18, 20,24,32, 33] aim to replicate human expert
driving trajectories using imitation learning or offline reinforcement learning
from large-scale datasets. However, they face limitations due to the scope of
the datasets and model complexity, leaving substantial room for improvement
in areas like routing information comprehension and environmental awareness.

2.2 LLM For Autonomous Driving

The rapid advancement of Large Language Models has been noteworthy. These
models, including GPT-4 [1] and Llama2 [38], have been trained on extensive
textual datasets and exhibit exceptional generalization and reasoning abilities. A
growing body of research has explored the application of LLMs’ decision-making
capacities to the domain of autonomous driving planning [5, 7, 8, 12, 14, 19, 25–
29,31,34–37,41–45,47].

Some efforts [12, 28, 29, 44] have explored integrating scene information, in-
cluding the ego vehicle’s status and information about obstacles, pedestrians,
and other vehicles into LLMs using linguistic modalities for decision-making
and explanations. These approaches face limitations due to finite context length,
making it challenging to encode precise information for effective decision-making
and reasoning. To overcome these constraints, multi-modal strategies such as
DrivingWithLLM [7], DriveGPT4 [45], and RAGDriver [47] have been devel-
oped. These methods align vectorized or image/video modalities with linguis-
tic instructions for a more comprehensive interpretation of driving scenarios.
However, using language to express control signals has its limitations. Driving-
WithLLM outputs high-level commands in linguistic expressions, improving QA
interaction but reducing the fidelity of translating complex reasoning into pre-
cise vehicle control. DriveGPT4 expresses waypoints through language, showing
strong open-loop performance but lacking closed-loop simulation evaluation.

Furthermore, some efforts [34,35] focus on closed-loop evaluation by connect-
ing low-level controllers or regressors behind large language models for precise
vehicle control. LMDrive [35] uses continuous image frames and navigation in-
structions for closed-loop driving but requires complete LLM inference at each
planning step. LanguageMPC [34] employs LLMs to obtain Model Predictive



Asynchronous LLM Enhanced Planner for Autonomous Driving 5

Control parameters, achieving control without training. However, these meth-
ods necessitate serial language decoding or full LLM inference at each planning
step, challenging real-time responsiveness and limiting practical deployment.

In our approach, we shift from using LLMs for direct language output to
enhancing real-time learning-based planners. This strategy improves environ-
mental comprehension and allows LLMs and real-time planners to operate in-
dependently at different inference rates. This decoupling reduces LLM inference
latency, facilitating real-world deployment.

3 Data Generation

The nuPlan [4] dataset is the first large-scale benchmark for autonomous driving
planning, comprising 1, 200 hours of real-world human driving data from Boston,
Pittsburgh, Las Vegas, and Singapore. To support various training stages, we
developed pre-training and fine-tuning datasets from the nuPlan Train and Val
sets, focusing on 14 official [30] challenging scenario types.

3.1 Pre-training Data Generation

To enhance LLM’s understanding of instructions in autonomous driving, we cre-
ated a dataset of language-based QAs, aligning with LLM’s native modality to
better grasp instruction semantics, which includes Planning-QA and Reason-
ing1K, with sample datasets provided in the supplementary material.

Planning-QA is created using a rule-based approach for scalability. It is de-
signed to enhance the LLM’s understanding of the relationships among way-
points, high-level instructions, and control. In this context, waypoints are arrays
of points, high-level instructions are composed of velocity commands (stop, accel-
erate, decelerate, maintain speed) and routing commands (turn left, turn right,
go straight), and control involves velocity and acceleration values. Planning-QA
includes six types of questions, each focusing on the conversion between way-
points, high-level instructions, and control.

Reasoning1K includes 1, 000 pieces of data generated by GPT-4, beyond
merely providing answers, it further supplements the reasoning and explanation
based on the scene description and is used for mixed training with Planning-QA.

3.2 Fine-tuning Data Generation

To further achieve multimodal understanding and alignment, we constructed a
fine-tuning dataset based on 10, 000 scenarios, capturing one frame every 8 sec-
onds, resulted in a training set of 180, 000 frames and a validation set of 20, 000
frames, each incorporating both vectorized map data and linguistic prompts. Im-
portantly, the scenario type distribution in both training and validation datasets
matches the distribution of the entire nuPlan trainval dataset.



6 Y. Chen et al.

For the extracted vectorized scene information, similar to [18], ego informa-
tion and 20 surrounding agent information over 20 historical frames, in addition
to global map data centered around the ego are involved.

LLM’s prompt is comprised of two parts: system prompt and series of routing
instructions. Concerning routing instructions, a rule-based approach is employed
to transform the pathway into a series of instructions enhanced with distance
information. Regarding training dataset preparation, the ego vehicle’s ground
truth trajectory over the ensuing 8 seconds is harnessed as the pathway for
routing instruction generation. During simulation, based on the observation of
the current scene, a pathway that adheres to a specified maximum length is found
through a hand-crafted method as a reference path for instruction generation.

4 Methodology

As illustrated in Fig. 2, we introduce the asynchronous LLM-enhanced closed-
loop framework, AsyncDriver, which mainly includes two components: 1) The
Scene-Associated Instruction Feature Extraction Module; 2) The Adaptive Injec-
tion Block. Additionally, due to our framework’s design, the inference frequency
between the LLM and the real-time planner could be decoupled and regulating
by asynchronous interval, which markedly enhancing inference efficiency.

Within this section, we present the Scene-Associated Instruction Feature
Extraction Module (Section 4.1), detail the design of Adaptive Injection Block
(Section 4.2), discuss the concept of Asynchronous Inference (Section 4.3) and
outline the training details employed (Section 4.4).

4.1 Scene-Associated Instruction Feature Extraction Module

Multi-modal Input In each planning iteration, the vectorized scene informa-
tion is acquired from the simulation environment. Analogous to the approach
employed by GameFormer [18], historical trajectory and state information of
both the ego and other agents are extracted, alongside global map data. Vec-
torized scene information for the real-time planner is provided in the same
manner. All vector data are relative to the position of the ego. Subsequently,
through the processing by the Vector Map Encoder and Map Adapter, we de-
rive map embeddings. These map embeddings, along with language embeddings,
are then fed into the Llama2-13B backbone to obtain the final hidden features
h = {h0, h1, ..., h−1} ∈ RNh×Dllm .

Alignment Assistance Module To grasp the essence of routing instructions
while maintaining a fine-grained comprehension of vectorized scene information
for enhanced extraction of scene-associated high-level instruction features, we
employ the Alignment Assistance Module to facilitate the alignment of multi-
modal input. Concretely, we have pinpointed five critical scene elements essential
to the autonomous driving process for multi-task prediction, which is imple-
mented by five separate 2-layer MLP prediction heads. About the current states



Asynchronous LLM Enhanced Planner for Autonomous Driving 7

<System Prompt>

Role: You are an autonomous driver … 
Please predict the future waypoints 
based on the given environmental 
information and routing instrucions.

VectorMap 
Encoder

Ego Info

Agents Info

Map Info

. . .. . .

Multi-Modal Input

<Routing Instructions>

“Go straight in 9.01 m. 
Turn right in 110.99 m. ”

Map Adapter

Large Language Model

LoRA

Decoder
Layer

Cross-Attention

MLP Ego States

MLP Adjacent Lane

MLP Traffic Light

MLP Lane Change

MLP Velocity Decision

Scene-Associated Instruction Feature Extraction Module

Adaptive Injection Block ×"

Real-time planner

Alignment Assistance Module

Feature Adapter

Asynchronous Inference Controller

. . .

Adaptive Gate

' (!" &!"

(#!

&#!

Loss
Frozen

Fig. 2: Overview of our proposed AsyncDriver framework. Scene information,
together with routing instructions, is encoded through the Scene-Associated Instruction
Feature Extraction Module. Subsequently, the Adaptive Injection Block asynchronously
enhances the features of the real-time planner, facilitating closed-loop control for au-
tonomous vehicles. The Alignment Assistance Module is exclusively employed for multi-
modality alignment during training.

of the ego vehicle, we perform regression to estimate the vehicle’s velocity and
acceleration along the X and Y axes. For map information, we undertake clas-
sification tasks to identify the existence of adjacent lanes on both the left and
right sides and to assess the status of traffic lights relevant to the current lane.
Additionally, with a view towards future navigation strategies, we classify the re-
quirement for lane changes in upcoming trajectories and identify future velocity
decision, which includes options acceleration, deceleration, and maintaining cur-
rent speed. It is worth noting that the Alignment Assistance Module is only used
to assist multi-modal alignment in the training phase and does not participate
in the inference stage.

4.2 Adaptive Injection Block

We adopt the decoder structure of [18] as our basic decoder layer, facilitating
the adaptive integration of scene-associated instruction features by evolving the
conventional transformer-based decoder layer into an Adaptive Injection Block.

Specifically, the hidden feature of the last token h−1 is projected via the
feature adapter and subsequently fed into Adaptive Injection Block.

ĥ = Linear(h−1) (1)



8 Y. Chen et al.

Within the Adaptive Decoder Block, the foundational decoder architecture
of the real-time planner is elegantly extended to ensure that the query in each
layer not only preserves the attention operation intrinsic to the original scene
information but also engages in cross-attention with scene-associated instruction
features, thereby incorporating instructional guidance into the prediction pro-
cess. Afterwards, the updated instruction-enhanced query feature is modulated
by the learnable adaptive gate, which is initialized by zero and reintegrated into
the original attention output of the decoder layer. The adaptive injection process
of the l-th decoder block can be formulated as follows:

sl+1 = g · softmax(
QKĥ

T

√
C

)Vĥ + softmax(
QKsl

T

√
C

)Vsl (2)

where g is the value of adaptive gate, Q denotes query in original decoder layer,
Ki and Vi represent key and value respectively of feature i, and sl notes the
scene feature of the l-th decoder layer.

The proposed adaptive injection method not only maintains the original de-
coder layer’s ability to process complete scene information within the real-time
planner but also enhances the planner’s understanding and compliance with a
series of flexible linguistic instructions. This advancement allows for the produc-
tion of more refined and controllable predictions. It is worth noting that due to
the simple yet effective design of our Adaptive Injection Block, it can be seam-
lessly integrated into any transformer-based architecture, thereby affording our
approach the flexibility to be adapted to other real-time planner frameworks.

4.3 Asynchronous Inference

Our design leverages LLM to guide the real-time planner, significantly enhanc-
ing its performance through series of flexibly combined linguistic instructions
without compromising its structural integrity. This method facilitates controlled
asynchronous inference, effectively decoupling the inference frequencies of the
LLM and the real-time planner, thereby LLM is not required to process every
frame. During asynchronous intervals, the previously derived high-level instruc-
tion features continue to guide the prediction process of the real-time planner,
which significantly boosts the inference efficiency and reduces the computational
cost introduced by LLM. Notably, our framework accommodates a series of flex-
ibly combined routing instructions, capable of delivering long-term, high-level
routing insights. Therefore, even amidst asynchronous intervals, prior high-level
features could still offer effective guidance, reinforcing the performance robust-
ness throughout LLM inference intervals.

Experimental results reveal that our architecture maintains near-robust per-
formance when the asynchronous inference interval of LLM is extended. By con-
trolling the LLM to perform inference every 3 frames can achieve a reduction in
inference time of nearly 40%, with only a minimal accuracy loss of about 1%,
which demonstrates the efficacy of our approach in striking an optimal balance
between accuracy and inference speed. For a more comprehensive exploration of
experimental results and their analysis, please refer to Section 5.2.



Asynchronous LLM Enhanced Planner for Autonomous Driving 9

4.4 Training Details

During the pre-training stage, the entirety of Reasoning1K, augmented with
1, 500 samples randomly selected from Planning-QA, was utilized to train LoRA.
This process enabled the LLM to evolve from a general-purpose large language
model into one specifically optimized for autonomous driving. As a direct out-
come of this focused adaptation, the LLM has become adept at understanding
instructions more accurately within the context of motion planning.

During the fine-tuning stage, since the architectures of VectorMap Encoder
and Decoder are preserved, we load weights of the real-time planner pre-trained
on the same dataset to enhance training stability. The total loss of the fine-tuning
stage is comprised of Alignment Assistance Loss and Planning Loss. The former
is partitioned into five components: l1 loss for 1) ego velocity and acceleration
prediction x̃va ∈ R4, cross-entropy loss for 2) velocity decision prediction x̃dec ∈
R3 and 3) traffic light state prediction x̃traf ∈ R4, binary cross-entropy loss for
4) adjacent lane presence prediction x̃adj ∈ R2 and 5) lane change prediction
x̃chg ∈ R. The complete Alignment Assistance Loss can be expressed as follows,
where x̃ and x represent prediction and ground truth respectively:

Lalign = L1(x̃va, xva) + CE(x̃dec, xdec) + CE(x̃traf , xtraf )

+BCE(x̃adj , xadj) +BCE(x̃chg, xchg) (3)

Following [18], the planning loss comprises two parts: 1) Mode prediction
loss. m different modes of trajectories of neighbor agents are represented by
Gaussian mixture model (GMM). For each mode, at any given timestamp t,
its characteristics are delineated by a mean µt and covariance σt forming a
Gaussian distribution. The best mode m∗ is identified through alignment with
the ground truth and refined via the minimization of negative log-likelihood.
2) Ego Trajectory Prediction loss. Future trajectory points of ego vehicle are
predicted and are refined by l1 loss. Consequently, the planning loss is as follows:

Lplan =
∑
t

LNLL(µ̃
t
m∗ , σ̃t

m∗ , p̃m∗ , s̃t) +
∑
t

L1(s̃t − st) (4)

where µ̃t
m∗ , σ̃t

m∗ , p̃m∗ , s̃t represents the predicted mean, covariance, probabil-
ity, and position respectively, corresponding to the best mode m∗ at timestamp
t, and st indicates the ground truth position at timestamp t.

In summary, the complete loss of fine-tuning stage is formulated as:

L = Lalign + Lplan (5)

5 Experiments

5.1 Experimental Setup

Evaluation Settings In accordance with the nuPlan challenge 2023 [30] set-
tings, we selected 14 official challenging scenario types for training and eval-



10 Y. Chen et al.

Table 1: Evaluation on nuPlan Closed-Loop Reactive Challenges on Hard20
split. The best results are highlighted in bold , while the second-best results are un-
derscored with an underline for clear distinction. Score: final score in average. Drivable:
drivable area compliance. Direct.: driving direction compliance. Comf.: ego is comfort-
able. Prog.: ego progress along expert route. Coll.: no ego at-fault collisions. Lim.: speed
limit compliance. TTC : time to collision within bound.

Method Score Drivable Direct. Comf. Prog. Coll. Lim. TTC

UrbanDriver [33] 35.35 75.53 97.12 98.56 85.23 55.21 81.62 47.84
GCPGP [13] 36.85 81.29 98.20 77.33 46.96 72.30 97.92 68.34

IDM [39] 53.07 84.94 98.02 83.15 64.79 74.01 96.38 60.57
GameFormer [18] 62.05 93.54 98.74 83.15 66.27 86.02 98.19 74.55
PDM-Hybird [10] 64.05 95.34 99.10 75.98 67.93 87.81 99.57 72.75
PDM-Closed [10] 64.18 95.69 99.10 77.06 68.20 87.81 99.57 73.47

AsyncDriver 65.00 94.62 98.75 83.15 67.13 85.13 98.15 73.48
AsyncDriver* 67.48 96.77 99.10 83.87 66.30 87.63 98.24 76.70

Table 2: Scores per scenario types in evaluation on nuPlan Closed-Loop
Reactive Challenges on Hard20 split. The best results are highlighted in bold ,
while the second-best results are underscored with an underline for clear distinction.
Types 0-13 represent the 14 official scenario types of the nuPlan challenge 2023 [30],
with specific details provided in the supplementary materials.

Methods type0 type1 type2 type3 type4 type5 type6 type7 type8 type9 type10 type11 type12 type13

UrbanDriver [33] 69.39 15.78 44.59 7.42 13.7 27.14 0.00 19.44 20.8 23.61 68.33 93.16 33.78 56.39
GCPGP [13] 59.50 35.91 33.6 29.33 42.84 17.24 4.86 32.33 8.22 36.23 71.32 80.46 36.19 23.61

IDM [39] 70.69 44.84 91.54 54.08 50.22 41.71 4.76 53.97 37.53 60.33 83.97 93.03 45.77 12.44
GameFormer [18] 84.32 65.78 83.62 49.03 71.79 36.8 0.00 51.76 55.03 77.24 82.83 98.24 49.41 56.16
PDM-Hybird [10] 87.68 69.61 87.20 49.95 82.80 41.32 4.23 54.98 51.72 82.95 80.37 98.40 37.77 71.99
PDM-Closed [10] 87.67 70.93 87.20 49.95 82.80 41.25 4.22 53.53 51.57 82.96 80.37 98.40 39.95 72.04

AsyncDriver 83.53 67.24 83.14 62.89 83.28 49.26 5.94 62.53 65.96 64.86 84.88 96.62 49.60 54.35
AsyncDriver* 83.12 74.04 91.82 62.42 85.26 53.51 6.01 65.26 57.31 77.16 84.02 97.56 62.18 49.32

uation. While nuPlan [4] includes 757, 844 scenarios, most simple scenarios are
insufficient for critical planner performance assessment, and the vast data volume
extends evaluation times. We chose the Hard20 dataset by randomly selecting
100 scenarios per type from the test set, then using the PDM [10] planner (nu-
Plan 2023 champion) to retain the 20 lowest-scoring scenarios per type, resulting
in a test set of 279 scenarios.

Implementation Details Regarding implementation details, all experiments
were conducted in the closed-loop reactive setting, where agents in scenarios
could be equipped with an IDM [39] Planner, enabling them to react to ego
vehicle’s maneuvers. The simulation frequency is 10Hz, at each iteration, the
predicted trajectory has a time horizon of 8s. We follow the closed-loop metrics
proposed in nuPlan challenge, which is detailed in the supplementary material.
For model settings, our AsyncDriver is built based on Llama2-13B [38], LoRA



Asynchronous LLM Enhanced Planner for Autonomous Driving 11

[15] was configured with R = 8 and α = 32. We use the AdamW optimizer and
warm-up with decay scheduler with learning rate 0.0001.

63.50

63.75

64.00

64.25

64.50

64.75

65.00

65.25 AsyncDriver
GameFormer

0 20 40 60 80 100 120 140
Interval (frames)

62.05

Sc
or

e

(a) score variation with intervals

0 20 40 60 80 100 120 140
Interval (frames)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

In
fe

re
nc

e 
Ti

m
e 

(s
)

AsyncDriver
GameFormer

(b) average inference time variation with intervals

Fig. 3: Asynchronous Inference. Evaluation of expanding the inference interval to
[1, 9, 17, 29, 49, 79, 149] between the LLM and the real-time planner, executing asyn-
chronous inference. Inference time measured on GPU Tesla A30.

5.2 Main Results

Hard20 Evaluation As illustrated in Tab. 1, our approach AsyncDriver achieved
the highest performance on Hard20 compared with existing planners, leading to
an improvement of 4.6% over GameFormer [18] about 2.95 in score, even sur-
passing the current SOTA rule-based planners. For fair comparison, given the
significant impact of trajectory refinement and alignment in closed-loop evalu-
ations, we adapt the PDM [10] scorer to our AsyncDriver (denoted as Async-
Driver*), which lead to an improvement of 5.3% and 5.1% over PDM-Hybrid [10]
and PDM-Closed [10] respectively, equivalent to approximately 3.43 and 3.30 in
score, and an 8.7% increase (approximately 5.43 in score) over the learning-based
planner GameFormer. From a different perspective, Tab. 2 illustrates the scores
of each individual scenario type on the hard20 split, as well as a comparison
with existing planners. It is evident that our solution has delivered exceptional
results in the majority of scenario types.

Quantitative results show that the high-level features extracted by our Scene-
Associated Instruction Feature Extraction Module significantly enhance real-
time planners’ performance in closed-loop evaluation. Detailed metrics reveal
that our approach improves drivable area performance by 3.23 points compared
to GameFormer, demonstrating superior capability in identifying and navigat-
ing viable driving spaces due to advanced scene contextual understanding. Ad-
ditionally, AsyncDriver* outperforms PDM in Time to Collision (TTC) metrics
by 4.39%, approximately 3.23 points, indicating enhanced predictive accuracy,



12 Y. Chen et al.

which is crucial for ensuring safer driving by effectively forecasting and reducing
the potential collision scenarios.

Asynchronous Inference We contend that, particularly for generalized high-
level instructions, there exhibits a notable similarity within frames of short in-
tervals. Consequently, given its role in extracting these high-level features, the
LLM does not require involvement in the inference process for each frame, which
could markedly enhance the inference speed. To explore this, experiments were
designed to differentiate the inference frequency of the LLM and real-time plan-
ners, and during each LLM inference interval, the previous instruction features
are employed to guide the predicted process of the real-time planner. As depicted
in Fig. 3, the performance of our approach demonstrates remarkable robustness
as the planning interval of the LLM increases, which suggests that LLM is capa-
ble of providing a long-term high-level instructions. We observed that even with
an interval of 149 frames, meaning only one inference is made within a scenario,
it still surpasses GameFormer by more than 1.0 point, while the inference time
is nearly at the real-time level. As the inference interval increases, the required
inference time drops dramatically, while accuracy remains almost stable. There-
fore, by employing a strategy of dense training with asynchronous inference, our
method achieves an optimal balance between accuracy and inference speed.

Instruction Following Fig. 4 shows the reactions of our method to different
routing instructions, demonstrating its capability in instruction following. Fig. 4a
illustrates the outcomes predicted when the scene employs conventional routing
instructions. We note that the ego vehicle decelerates slightly, a maneuver that
reflects the common sense of slowing down for curves. Nonetheless, given the
open road conditions, the ego vehicle sustains a comparatively high velocity. In
contrast, Fig. 4b depicts the scenario where stop serves as the routing instruction.
Remarkably, even without the presence of external obstacles, the ego vehicle
promptly executes a braking response to the command, reducing its speed from
10.65m/s to 1.06m/s within a mere 6 seconds. Consequently, it is evident that
our AsyncDriver can function as a linguistic interaction interface, providing the
ability of precisely interpreting and following human instructions to circumvent
anomalous conditions.

5.3 Ablation Study

In this section, we explore the necessity of LLM and investigate the effectiveness
of individual components in AsyncDriver.

Necessity of LLM We conducted experiments by replacing the LLM with
transformer blocks of different dimensions (256 and 5120), incorporating learn-
able routing instruction embeddings. Meanwhile, the Alignment Assistance Mod-
ule and Adaptive Injection Block remained unchanged. The results, shown in



Asynchronous LLM Enhanced Planner for Autonomous Driving 13
! = 0$, & = 10.65+/$ ! = 2$, & = 7.9+/$ ! = 4$, & = 2.75+/$

! = 0$, & = 10.65+/$ ! = 2$, & = 9.14+/$ ! = 4$, & = 8.00+/$ ! = 6$, & = 6.88+/$

! = 6$, & = 1.06+/$

(a) receiving conventional routing instructions

! = 0$, & = 10.65+/$ ! = 2$, & = 7.9+/$ ! = 4$, & = 2.75+/$

! = 0$, & = 10.65+/$ ! = 2$, & = 9.14+/$ ! = 4$, & = 8.00+/$ ! = 6$, & = 6.88+/$

! = 6$, & = 1.06+/$
(b) receiving stop instruction

Fig. 4: Visualization of AsyncDriver following human instruction. The light
blue line represents ego’s trajectory for the next 8 seconds. It contrasts the planning
trajectories of the ego receiving conventional routing instructions against a forced stop
instruction.

Tab. 3, indicate that despite a 20-fold increase in the number of transformer
parameters, the performance only marginally improved from 63.27 to 63.59. In
contrast, our AsyncDriver achieved a performance of 65.00, highlighting the sig-
nificant impact of pretrained knowledge from LLM.

Ablation of Components Integrating a simple MLP as a prediction head after
the LLM for planning significantly degraded the performance, indicating that
simple trajectory regression cannot effectively align multi-modal information,
thus failing to leverage the LLM’s knowledge for scene reasoning. We replaced
the MLP with a real-time planner and progressively added four structures: (i)
Adaptive Injection Block, (ii) Alignment Assistance Module, (iii) LoRA, and (iv)
pre-trained LoRA. As shown in Tab. 4, each module improved performance, with
the Alignment Assistance Module and pre-trained LoRA weights contributing
the most, yielding score increases of 0.94 and 0.97, respectively.

6 Conclusions

In this paper, we introduce AsyncDriver, a new asynchronous LLM-enhanced,
closed-loop framework for autonomous driving. By aligning vectorized scene in-
formation with a series of routing instructions to form multi-modal features, we
fully leverage LLM’s capability for scene reasoning, extracting scene-associated
instruction features as guidance. Through the proposed Adaptive Injection Block,



14 Y. Chen et al.

Table 3: Replacing LLM with non-pretrained cross attention. Utilize map
information and learnable instruction embeddings to perform cross-attention, replac-
ing the features generated by the LLM in the Scene-Associated Instruction Feature
Extraction Module.

Hidden Feature
Dimensions

Instruction
Embedding LLM Score

256 ✓ 63.27
5120 ✓ 63.59
5120 ✓ 65.00

Table 4: Component ablation study. MLP, RT-Planner, Ada, Align, LoRA, and
LoRAPre represent i) direct regression of waypoints using MLP, ii) integration of a
real-time planner, iii) Adaptive Injection Block, iv) Alignment Assistance Module, v)
incorporation of LoRA, and vi) pre-trained LoRA with Reasoning1K, respectively.

MLP RT-Planner Ada Align LoRA LoRAPre Score

✓ 33.91
✓ 62.01
✓ ✓ 62.84
✓ ✓ ✓ 63.78
✓ ✓ ✓ ✓ 64.03
✓ ✓ ✓ ✓ ✓ 65.00

we achieve the integration of series of routing information into any transformer-
based real-time planner, enhancing its ability to understand and follow language
instructions, and achieving outstanding closed-loop performance in nuPlan’s
challenging scenarios. Notably, owing to the structural design of our method,
it supports asynchronous inference between the LLM and the real-time planner.
Experiments show that our approach significantly increases inference speed with
minimal loss in accuracy, reducing the computational costs introduced by LLM.

Broader Impacts And Limitations. Should the method prove successful,
the proposed asynchronous inference scheme could significantly enhance the
prospects for integrating LLMs into the practical application within the au-
tonomous driving sector. Nevertheless, while this research has employed LLMs,
it falls short of substantiating their generalization properties for the planning
task. Future endeavors aim to rigorously assess the generalization and transfer
potential of LLMs in in vectorized scenarios.



Asynchronous LLM Enhanced Planner for Autonomous Driving 15

Acknowledgements

This research is supported in part by the National Science and Technology Ma-
jor Project (No. 2022ZD0115502), the National Natural Science Foundation of
China (No. 62122010, U23B2010), Zhejiang Provincial Natural Science Founda-
tion of China (No. LDT23F02022F02), Beijing Natural Science Foundation (No.
L231011), Beihang World TOP University Cooperation Program, and Lenovo
Research.

References

1. Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F.L., Almeida,
D., Altenschmidt, J., Altman, S., Anadkat, S., et al.: Gpt-4 technical report. arXiv
preprint arXiv:2303.08774 (2023)

2. Bacha, A., Bauman, C., Faruque, R., Fleming, M., Terwelp, C., Reinholtz, C.,
Hong, D., Wicks, A., Alberi, T., Anderson, D., et al.: Odin: Team victortango’s
entry in the darpa urban challenge. Journal of field Robotics 25(8), 467–492 (2008)

3. Baidu: Apollo auto. https://github.com/ApolloAuto/apollo (July 2019)
4. Caesar, H., Kabzan, J., Tan, K.S., Fong, W.K., Wolff, E., Lang, A., Fletcher, L.,

Beijbom, O., Omari, S.: nuplan: A closed-loop ml-based planning benchmark for
autonomous vehicles. arXiv preprint arXiv:2106.11810 (2021)

5. Chen, L., Zhang, Y., Ren, S., Zhao, H., Cai, Z., Wang, Y., Wang, P., Liu, T., Chang,
B.: Towards end-to-end embodied decision making via multi-modal large language
model: Explorations with gpt4-vision and beyond. arXiv preprint arXiv:2310.02071
(2023)

6. Chen, L., Li, Y., Huang, C., Li, B., Xing, Y., Tian, D., Li, L., Hu, Z., Na, X.,
Li, Z., et al.: Milestones in autonomous driving and intelligent vehicles: Survey of
surveys. IEEE Transactions on Intelligent Vehicles 8(2), 1046–1056 (2022)

7. Chen, L., Sinavski, O., Hünermann, J., Karnsund, A., Willmott, A.J., Birch, D.,
Maund, D., Shotton, J.: Driving with llms: Fusing object-level vector modality for
explainable autonomous driving. arXiv preprint arXiv:2310.01957 (2023)

8. Cui, C., Ma, Y., Cao, X., Ye, W., Wang, Z.: Receive, reason, and react: Drive
as you say with large language models in autonomous vehicles. arXiv preprint
arXiv:2310.08034 (2023)

9. Cui, C., Ma, Y., Cao, X., Ye, W., Zhou, Y., Liang, K., Chen, J., Lu, J., Yang, Z.,
Liao, K.D., et al.: A survey on multimodal large language models for autonomous
driving. In: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision. pp. 958–979 (2024)

10. Dauner, D., Hallgarten, M., Geiger, A., Chitta, K.: Parting with misconceptions
about learning-based vehicle motion planning. arXiv preprint arXiv:2306.07962
(2023)

11. Fan, H., Zhu, F., Liu, C., Zhang, L., Zhuang, L., Li, D., Zhu, W., Hu, J., Li, H.,
Kong, Q.: Baidu apollo em motion planner. arXiv preprint arXiv:1807.08048 (2018)

12. Fu, D., Li, X., Wen, L., Dou, M., Cai, P., Shi, B., Qiao, Y.: Drive like a human:
Rethinking autonomous driving with large language models. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 910–919
(2024)

13. Hallgarten, M., Stoll, M., Zell, A.: From prediction to planning with goal condi-
tioned lane graph traversals. arXiv preprint arXiv:2302.07753 (2023)

https://github.com/ApolloAuto/apollo


16 Y. Chen et al.

14. Han, W., Guo, D., Xu, C.Z., Shen, J.: Dme-driver: Integrating human decision logic
and 3d scene perception in autonomous driving. arXiv preprint arXiv:2401.03641
(2024)

15. Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L.,
Chen, W.: Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685 (2021)

16. Hu, S., Chen, L., Wu, P., Li, H., Yan, J., Tao, D.: St-p3: End-to-end vision-based
autonomous driving via spatial-temporal feature learning. In: European Conference
on Computer Vision. pp. 533–549. Springer (2022)

17. Hu, Y., Yang, J., Chen, L., Li, K., Sima, C., Zhu, X., Chai, S., Du, S., Lin, T.,
Wang, W., et al.: Planning-oriented autonomous driving. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 17853–
17862 (2023)

18. Huang, Z., Liu, H., Lv, C.: Gameformer: Game-theoretic modeling and learning
of transformer-based interactive prediction and planning for autonomous driving.
arXiv preprint arXiv:2303.05760 (2023)

19. Jin, Y., Shen, X., Peng, H., Liu, X., Qin, J., Li, J., Xie, J., Gao, P., Zhou, G.,
Gong, J.: Surrealdriver: Designing generative driver agent simulation framework
in urban contexts based on large language model. arXiv preprint arXiv:2309.13193
(2023)

20. Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D., Allen, J.M., Lam, V.D.,
Bewley, A., Shah, A.: Learning to drive in a day. In: 2019 International Conference
on Robotics and Automation (ICRA). pp. 8248–8254. IEEE (2019)

21. Kesting, A., Treiber, M., Helbing, D.: General lane-changing model mobil for car-
following models. Transportation Research Record: Journal of the Transportation
Research Board p. 86–94 (Jan 2007). https://doi.org/10.3141/1999-10, http:
//dx.doi.org/10.3141/1999-10

22. Keysan, A., Look, A., Kosman, E., Gürsun, G., Wagner, J., Yu, Y., Rak-
itsch, B.: Can you text what is happening? integrating pre-trained language en-
coders into trajectory prediction models for autonomous driving. arXiv preprint
arXiv:2309.05282 (2023)

23. Leonard, J., How, J., Teller, S., Berger, M., Campbell, S., Fiore, G., Fletcher,
L., Frazzoli, E., Huang, A., Karaman, S., et al.: A perception-driven autonomous
urban vehicle. Journal of Field Robotics 25(10), 727–774 (2008)

24. Li, Z., Nie, F., Sun, Q., Da, F., Zhao, H.: Boosting offline reinforcement learning for
autonomous driving with hierarchical latent skills. arXiv preprint arXiv:2309.13614
(2023)

25. Liu, J., Hang, P., Qi, X., Wang, J., Sun, J.: Mtd-gpt: A multi-task decision-making
gpt model for autonomous driving at unsignalized intersections. In: 2023 IEEE
26th International Conference on Intelligent Transportation Systems (ITSC). pp.
5154–5161. IEEE (2023)

26. Ma, Y., Cao, Y., Sun, J., Pavone, M., Xiao, C.: Dolphins: Multimodal language
model for driving. arXiv preprint arXiv:2312.00438 (2023)

27. Ma, Y., Cui, C., Cao, X., Ye, W., Liu, P., Lu, J., Abdelraouf, A., Gupta, R., Han,
K., Bera, A., et al.: Lampilot: An open benchmark dataset for autonomous driving
with language model programs. arXiv preprint arXiv:2312.04372 (2023)

28. Mao, J., Qian, Y., Zhao, H., Wang, Y.: Gpt-driver: Learning to drive with gpt.
arXiv preprint arXiv:2310.01415 (2023)

29. Mao, J., Ye, J., Qian, Y., Pavone, M., Wang, Y.: A language agent for autonomous
driving. arXiv preprint arXiv:2311.10813 (2023)

https://doi.org/10.3141/1999-10
https://doi.org/10.3141/1999-10
http://dx.doi.org/10.3141/1999-10
http://dx.doi.org/10.3141/1999-10


Asynchronous LLM Enhanced Planner for Autonomous Driving 17

30. Motional: nuplan challange. https://github.com/motional/nuplan- devkit
(2023)

31. Nie, M., Peng, R., Wang, C., Cai, X., Han, J., Xu, H., Zhang, L.: Reason2drive:
Towards interpretable and chain-based reasoning for autonomous driving. arXiv
preprint arXiv:2312.03661 (2023)

32. Renz, K., Chitta, K., Mercea, O.B., Koepke, A., Akata, Z., Geiger, A.: Plant:
Explainable planning transformers via object-level representations. arXiv preprint
arXiv:2210.14222 (2022)

33. Scheel, O., Bergamini, L., Wolczyk, M., Osiński, B., Ondruska, P.: Urban driver:
Learning to drive from real-world demonstrations using policy gradients. In: Con-
ference on Robot Learning. pp. 718–728. PMLR (2022)

34. Sha, H., Mu, Y., Jiang, Y., Chen, L., Xu, C., Luo, P., Li, S.E., Tomizuka, M.,
Zhan, W., Ding, M.: Languagempc: Large language models as decision makers for
autonomous driving. arXiv preprint arXiv:2310.03026 (2023)

35. Shao, H., Hu, Y., Wang, L., Waslander, S.L., Liu, Y., Li, H.: Lmdrive: Closed-loop
end-to-end driving with large language models. arXiv preprint arXiv:2312.07488
(2023)

36. Sharan, S., Pittaluga, F., Chandraker, M., et al.: Llm-assist: Enhancing closed-loop
planning with language-based reasoning. arXiv preprint arXiv:2401.00125 (2023)

37. Sima, C., Renz, K., Chitta, K., Chen, L., Zhang, H., Xie, C., Luo, P., Geiger,
A., Li, H.: Drivelm: Driving with graph visual question answering. arXiv preprint
arXiv:2312.14150 (2023)

38. Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bash-
lykov, N., Batra, S., Bhargava, P., Bhosale, S., et al.: Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023)

39. Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical obser-
vations and microscopic simulations. Physical Review E p. 1805–1824 (Jul 2002).
https://doi.org/10.1103/physreve.62.1805, http://dx.doi.org/10.1103/
physreve.62.1805

40. Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M., Dolan, J.,
Duggins, D., Galatali, T., Geyer, C., et al.: Autonomous driving in urban envi-
ronments: Boss and the urban challenge. Journal of field Robotics 25(8), 425–466
(2008)

41. Wang, S., Zhu, Y., Li, Z., Wang, Y., Li, L., He, Z.: Chatgpt as your vehicle co-pilot:
An initial attempt. IEEE Transactions on Intelligent Vehicles (2023)

42. Wang, W., Xie, J., Hu, C., Zou, H., Fan, J., Tong, W., Wen, Y., Wu, S., Deng,
H., Li, Z., et al.: Drivemlm: Aligning multi-modal large language models with be-
havioral planning states for autonomous driving. arXiv preprint arXiv:2312.09245
(2023)

43. Wang, Y., Jiao, R., Lang, C., Zhan, S.S., Huang, C., Wang, Z., Yang, Z., Zhu, Q.:
Empowering autonomous driving with large language models: A safety perspective.
arXiv preprint arXiv:2312.00812 (2023)

44. Wen, L., Fu, D., Li, X., Cai, X., Ma, T., Cai, P., Dou, M., Shi, B., He, L., Qiao,
Y.: Dilu: A knowledge-driven approach to autonomous driving with large language
models. arXiv preprint arXiv:2309.16292 (2023)

45. Xu, Z., Zhang, Y., Xie, E., Zhao, Z., Guo, Y., Wong, K.K., Li, Z., Zhao, H.:
Drivegpt4: Interpretable end-to-end autonomous driving via large language model.
arXiv preprint arXiv:2310.01412 (2023)

46. Yang, Z., Jia, X., Li, H., Yan, J.: A survey of large language models for autonomous
driving. arXiv preprint arXiv:2311.01043 (2023)

https://github.com/motional/nuplan-devkit
https://doi.org/10.1103/physreve.62.1805
https://doi.org/10.1103/physreve.62.1805
http://dx.doi.org/10.1103/physreve.62.1805
http://dx.doi.org/10.1103/physreve.62.1805


18 Y. Chen et al.

47. Yuan, J., Sun, S., Omeiza, D., Zhao, B., Newman, P., Kunze, L., Gadd, M.:
Rag-driver: Generalisable driving explanations with retrieval-augmented in-context
learning in multi-modal large language model. arXiv preprint arXiv:2402.10828
(2024)

48. Zhou, X., Liu, M., Zagar, B.L., Yurtsever, E., Knoll, A.C.: Vision language mod-
els in autonomous driving and intelligent transportation systems. arXiv preprint
arXiv:2310.14414 (2023)


	Asynchronous Large Language Model Enhanced Planner for Autonomous Driving

