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Abstract. Finding a suitable layout represents a crucial task for di-
verse applications in graphic design. Motivated by simpler and smoother
sampling trajectories, we explore the use of Flow Matching as an alterna-
tive to current diffusion-based layout generation models. Specifically, we
propose LayoutFlow, an efficient flow-based model capable of generating
high-quality layouts. Instead of progressively denoising the elements of a
noisy layout, our method learns to gradually move, or flow, the elements
of an initial sample until it reaches its final prediction. In addition, we
employ a conditioning scheme that allows us to handle various generation
tasks with varying degrees of conditioning with a single model. Empir-
ically, LayoutFlow performs on par with state-of-the-art models while
being significantly faster. The project page, including our code, can be
found at https://julianguerreiro.github.io/layoutflow/.
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1 Introduction

Layout design describes the process of arranging various elements, such as im-
ages, text, or other components, on a page or screen. Finding an appropriate
layout forms a crucial part of creating documents, user interfaces, graphic de-
signs, and other compositions since the arrangement of different elements can
substantially impact how the intended message or purpose is communicated.
Over the years, several approaches have been explored to automate layout gen-
eration in a data-driven manner using machine learning methods. Nonetheless,
current layout generation models still leave room for improvement in terms of
layout quality and sampling speed.

Motivated by this observation, we propose LayoutFlow, a generative frame-
work based on Flow Matching [1,32,33,44] that can produce high-quality layouts
while requiring less time than previous methods. Flow Matching has recently
been introduced as a powerful generative framework and demonstrated strong
performance on various tasks, including image generation [34]. Intuitively, flow-
based models try to learn a flow that moves samples from a base distribution to
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Fig. 1: Comparison of different layout generation trajectories. Given a ran-
domly initialized layout at time t = 0 with fixed element sizes, we visualize different
states of the generation process until the final layout at t = 1. In addition, we overlay
the trajectory, which can be interpreted as the movement of the elements over time, on
top of the final layout. A circle marks the location of the initial sample and a triangle
marks the final location. Flow Matching produces smooth and directed paths, whereas
both diffusion models slowly converge to the final prediction under noisy trajectories
with a long path length. As a result, flow-based models require fewer evaluation steps
than diffusion, leading to faster sampling.

a target distribution defined by the training data. In this work, we investigate
how to apply Flow Matching for layout generation and show that flows offer a
more intuitive generation process from a geometrical interpretation compared to
previous models.

Most recent layout generation models [4, 5, 8, 15, 20, 22, 28, 48] have been
based on the diffusion framework [18] which has become the standard for various
generative tasks [39]. While diffusion models are commonly described as models
that learn to gradually remove random noise that was added to the training data,
the generation process can also be interpreted in analogy to flow-based models
as moving samples from a Gaussian base distribution to a data distribution. In
the diffusion case, however, additional randomness is introduced along the way
by adding noise. Mathematically, this corresponds to a Stochastic Differential
Equation (SDE), whereas a flow is defined by a simpler Ordinary Differential
Equation (ODE), which we describe in more detail in Sec. 3.
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In the context of layout generation, the differences between diffusion-based
and flow-based models become apparent when visualizing the trajectories created
by the generation process, as illustrated in Fig. 1. The trajectories show how the
sample from the base distribution is moved by the flow or backward diffusion
process until it reaches the final layout prediction. While our LayoutFlow model
produces smooth trajectories with short path lengths, diffusion-based models
follow a noisy trajectory that constantly changes directions due to the added
noise. As a result, diffusion models tend to require more sampling steps, i.e.,
longer inference time, than flow-based models. Altogether, we argue that learning
how to move the initial sample straight toward the final prediction is much more
natural than trying to do so under additional noise. Overall, our contributions
can be summarized as follows:

1. Motivated by its geometrical interpretation, we apply Flow Matching to the
task of layout generation and propose a novel model called LayoutFlow,
which can handle various tasks utilizing a conditioning mechanism.

2. On top of generating simpler trajectories, flow-based models generally also
offer more choices than diffusion models, such as different prior distributions
or training trajectories. We, therefore, extensively explore this additional
flexibility offered by Flow Matching in the context of layout generation.

3. Empirically, we demonstrate that our proposed flow-based model signifi-
cantly outperforms previous diffusion-based layout generation models of sim-
ilar size and performs on par compared to a significantly larger model. In
either case, our model greatly speeds up inference, requiring only a fraction
of the time previous models need to generate samples.

2 Related Work

2.1 Layout Generation

Over the years, layout generation has been investigated using various methods.
Early works started exploring generating layouts by minimizing an energy func-
tion based on pre-defined constraints [36,37]. With the advent of generative ma-
chine learning techniques, however, research shifted to a more data-centric learn-
ing approach and started to use Variational Autoencoders (VAE) [2, 13, 27, 47],
and Generative Adversarial Networks (GAN) [25, 29, 30]. While earlier works
explored a variety of different architectures, such as Graph Convolutional Net-
works [27], Long-Short Term Memories (LSTM) [13,24] or Transformers [14,45,
47], most recent research has converged to using a Transformer-based architec-
ture due to its flexibility and strong performance.

Diffusion-based Models. As diffusion models have proven to generate more
diverse data and are generally easy to train, especially compared to GANs, most
recent research has shifted towards exploring the diffusion process for layout gen-
eration tasks. Since layouts are represented by categorical data defining types of
elements and continuous numerical values describing the element position and
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size, applying standard diffusion models is not straightforward. As a result, dif-
ferent approaches have incorporated a diffusion loss into their training process,
which can be divided into continuous [18] and discrete diffusion models [3]. For
the discrete case, the continuous coordinates are quantized and interpreted as
different states along with the categorical element type [15, 20, 22, 48]. In this
discrete scenario, the forward diffusion process is modeled as a random walk
between discrete states that, in addition to the quantized states, also include a
mask state, which removes elements from the canvas. While LayoutDM [22] and
LDGM [20] rely on the mask-and-replace strategy proposed in [12], LayoutDiffu-
sion [48] introduces a new mild forward process that is closer to the continuous
process while still increasingly masking elements over time.

On the other hand, continuous diffusion models have been less common as
they have not attained the same performance as discrete models. In particular,
continuous models have struggled to produce layouts with well-aligned elements.
The first continuous layout generation model based on diffusion was proposed
by Chai et al . [4], but is restricted to generating continuous element coordi-
nates given categorical type data as a condition. Cheng et al . [8] introduced a
latent diffusion model for layout design focusing on user constraints by embed-
ding the layout into continuous representation, on which the diffusion process is
performed. The first continuous diffusion-based layout generation model acting
on the layout representation and able to handle unconditional generation was
proposed by Chen et al . [5]. Their work addresses the alignment issue observed
for continuous diffusion by introducing a specific regularization loss. Lastly, Levi
et al . [28] proposed DLT, which applies a continuous diffusion process on the
element coordinates and a discrete process on the element types.

Large Language Models. Motivated by the strong generalization capabil-
ities of Large Language Models (LLM), the most recent works [11, 31, 43] have
investigated the layout generation abilities of LLMs. While LLMs provide some
interesting applications, such as zero-shot synthesis, they typically consist of bil-
lions of parameters, resulting in long inference times. Moreover, current models
are limited to conditional layout generation. In contrast, our proposed approach
aims to offer a lightweight model for unconditional and conditional layout gen-
eration.

2.2 Flow Matching and Diffusion Models

Flow-based models are based on learning a mapping between samples from a sim-
pler distribution to a data distribution. Over the years, there have been various
methods, such as Normalizing Flows or Continuous Normalizing Flows, which
have used neural networks to estimate such a mapping, which can subsequently
be used to sample from the learned distribution [26]. Until recently, the biggest
issue with flow-based models has been the need to backpropagate through an
ODE during training. However, recent models have proposed training algorithms
that only require explicitly solving an ODE during inference [1, 32, 33, 35, 44]
demonstrating impressive results and outperforming diffusion models on the im-
age generation task [34]. Our proposed model builds on this improvement by
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utilizing Flow Matching for layout generation while offering an improved geo-
metrical interpretation.

Diffusion models, which were first proposed by Sohl-Dickenstein et al . [40]
and later popularized by Ho et al . [18], can be formulated similarly to flow-
based models. In fact, the term Flow Matching was inspired by the similar Score
Matching loss [21] used by diffusion models. However, flows are characterized by
an ODE, whereas the diffusion process can be formulated as an SDE with an
additional stochastic component described by Brownian Motion [42]. As a result,
diffusion models are restricted to a Gaussian as a base distribution, while flow-
based models allow for more flexibility, which we also explore in our experiments.
Notably, Song et al . [41] proposed DDIM, an alternative sampling method that
makes it possible to sample using an ODE formulation on a model trained with an
SDE forward process, effectively leading to smoother trajectories. In the context
of layout generation, however, models have been using the SDE formulation
following DDPM [18]. Our argument for introducing Flow Matching instead of
just using DDIM for smoother trajectories lies in its increased flexibility and
simplicity. Moreover, if the goal is to sample using an ODE, it seems more
natural to also use an ODE during training instead of the more complex SDE
used in diffusion.

3 Preliminary: Flow Matching

In this section, we first present the mathematical definition of a flow and then
introduce how to train a neural network to estimate a flow via Flow Matching.
The term flow in Flow Matching refers to a mapping between samples of two
distributions. In general, flow-based models aim to estimate the flow between a
known source probability distribution p0(x), e.g ., a Gaussian distribution, and
the typically more complex data distribution p1(x). Given a data point x ∈ Rd,
the flow ϕ : [0, 1]×Rd → Rd can be defined by the following Ordinary Differential
Equation (ODE)

d

dt
ϕt(x) = vt(ϕt(x)), ϕ0(x) = x0, (1)

where the time-dependent vector field vt : [0, 1] × Rd → Rd is said to construct
the flow [32] with the boundary condition ϕ0(x) = x0. In other words, the flow
ϕt(x) describes how an initial sample x0 is transported over time and is given as
the solution to the ODE in Eq. (1). As the flow transports samples with respect
to time, the associated probability distribution is transformed according to the
change of variables formula and creates a probability density path

pt = [ϕt]∗p0 = p0(ϕ
−1
t (x)) det

[
dϕ−1

t

dt
(x)

]
(2)

with ϕ−1
t denoting the inverse of the flow and ∗ representing the push-forward

operator. If the flow constructed by the vector field vt satisfies Eq. (2), it is
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said that vt generates the probability path pt. This is the case if vt follows the
continuity equation, which holds for our considerations in this paper.

Instead of estimating the flow directly, Flow Matching trains a neural network
uθ(t, x) with weights θ to match the vector field vt and then solves the ODE for a
given boundary condition x0 to obtain the flow. The Flow Matching loss function
is defined as the expectation over uniformly sampled timesteps and samples along
the probability density path as follows

LFM (θ) = Et∼U(0,1),x∼pt(x)∥uθ(t, x)− vt(x)∥2. (3)

However, this loss alone does not allow us to train the model as we usually do
not have access to pt nor vt. As an extension, Lipman et al . [32] have proposed
a Conditional Flow Matching objective and is given as

LCFM (θ) = Et∼U(0,1),z∼q(z),x∼pt(x|z)∥uθ(t, x)− vt(x|z)∥2, (4)

with vt(x|z) denoting a conditional vector field generating the conditional prob-
ability path pt(x|z) and q(z) being a distribution over a latent conditioning
variable z. By introducing the conditional formulation of the Flow Matching
objective, training a neural network becomes possible by choosing and train-
ing with a conditional vector field and its associated probability path. For an
overview of the various choices and more details on Conditional Flow Matching,
we recommend [32,44].

4 Conditional Flow Matching for Layout Generation

4.1 Data Representation

A layout typically consists of various elements, such as text, tables, or images
placed on a canvas. Mathematically, we can describe a layout A as a set of N
elements ek with k ∈ [1, N ] in the following way

A = {ek = (gk,ak)|k ∈ [1, N ]}, (5)

where we split each element into its geometrical information gk = (ckx, c
k
y , w

k, hk)

described by the bounding box center (ckx, c
k
y), width wk and height hk, and its

category information ak describing the element type, such as text or image. In
our considerations, the elements on the canvas do not possess an inherent order,
which is why the canvas is considered a set of elements. Layout generation can
be divided into various tasks depending on the conditioning assumptions. For
example, in the unconditional generation setting, it is assumed that no prior
knowledge is available, while for the refinement task, a complete but coarse
layout is given. Since Flow-Matching requires the input data to be continuous,
we convert the categorical information ak into a continuous embedding, denoted
as ãk, using B Analog Bits [7]. To learn the flow, we define a data sample
x ∈ R(4+B)·Nmax as the concatenation of all the elements gk and ãk in a single
layout. If the number of elements is smaller than Nmax, the maximum number
of elements contained in a single layout across the entire dataset, we pad the
remaining dimensions.
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Algorithm 1: Training
x0 ∼ p0(x), x1 ∼ pdata(x), t ∼ U(0, 1) // Sampling from distributions
xt ← (1− t)x0 + tx1 // Linear interpolation
vt ← x1 − x0 // Calculate the constant vector field
ut ← fθ(xt, t) // Get vector field prediction from network
L(θ) = ∥ut − vt∥2 + λ∥ug

θ (t,xt)− (g1 − g0)∥1 // Compute loss

gk1

gk0

= (1 − t)gk0 + tgk1gk
t

Sample  and g0 ∼ p0 t ∼ 𝒰(0,1) ãk
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Fig. 2: Overview of the training procedure of LayoutFlow for the type-
conditioned scenario. First, we sample an initial layout from a base distribution
and a time t. Then, an intermediate sample gt is calculated by linearly interpolating
between the initial sample and the ground truth layout. Each intermediate element is
embedded jointly with the given element condition ãk. Lastly, the Transformer archi-
tecture takes all the element embeddings to predict a vector field.

4.2 Training

To generate layouts, we want to find a way to sample from a data distribution
pdata(x), whereas we only have access to a limited amount of samples x through
our training data. More specifically, our goal is to train a neural network that
allows us to sample from the underlying data distribution and guide the sampling
based on certain conditional constraints. To that end, we propose LayoutFlow,
a layout generation model based on Flow Matching.

An overview of the training procedure for the type-conditioned scenario is
illustrated in Fig. 2 and summarized in Algorithm 1 for the unconditional case.
In the first step, we randomly sample a layout x0 from a prior distribution p0,
e.g ., a Gaussian distribution. This sample will typically not be well-aligned, and
some elements might not be located on the canvas. In addition, we also randomly
select a time t, which determines the intermediate sample xt on the flow trajec-
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tory used during training. For LayoutFlow, we train on a simple linear trajectory
following [32, 44]. Therefore, the intermediate sample is simply obtained by lin-
early interpolating between the ground truth layout x1 and the initial sample
x0. The same trajectory is not used again during training since x0 and t change
with every iteration.

The network fθ is trained to output the conditional vector field, correspond-
ing to the derivative of the trajectory as defined in Eq. (1). This derivative is
simply a constant for the linear trajectory case, specifically the difference be-
tween x0 and x1. Intuitively, the network learns to output a direction pointing
toward a data sample, which can be used during sampling to move the initial
data samples toward a better prediction. While we train our network using linear
trajectories, this does not mean that the model will also produce straight tra-
jectories during sampling. As mentioned in Eq. (4), the linear trajectory, which
is derived by the conditional vector field in Eq. (4), acts as a proxy to learn the
actual vector field in Eq. (3) defined by Flow Matching.

In our experiments, we found that using only the Mean Squared Error (MSE)
as a loss function tends to lead to poorly aligned layouts, which results in subop-
timal perceptual quality. This observation is similar to the issue described in [5].
We hypothesize that this can be attributed to the fact that the MSE penalizes all
mistakes within the same distance equally, regardless of direction, whereas the
alignment between elements is usually only measured along the horizontal and
vertical direction. As a result, the minimization objective does not fully align
with the perceptual quality. To tackle this issue, we add an L1 regularization
on the geometrical part of the output ug

θ as the L1 loss encourages sparsity of
the error vector, which can also be interpreted as minimizing the error along the
axis dimensions. Therefore, our final training loss can be written as

L(θ) = LCFM(θ) + λL1(θ) = LCFM(θ) + λ∥ug
θ (t,xt)− (g1 − g0)∥1, (6)

where λ is a hyperparameter.

4.3 Sampling

After training our neural network to predict a vector field, we can generate new
layouts by sampling from our initial distribution and solving the ODE describing
the flow as defined in Eq. (1). In practice, this can be done using any numerical
ODE solver. Figure 3 illustrates the sampling process using the Euler method [10]
to solve the ODE. For a fixed number of evaluation steps T , the initial sample
x0 is moved along the direction predicted by the network in an autoregressive
manner. Therefore, the backward process can be denoted as

x i+1
T

= x i
T
+

1

T
uθ

(
i

T
,x i

T

)
, (7)

with i ∈ N and i ∈ [0, T−1] indicating how far along the sample has been moved.
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g i + 1
T

= g i
T

+ 1
T

uθ(g i
T
, t = i

T
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T

Fig. 3: Overview of the type-conditioned
inference process. The initial sample is au-
toregressively moved in the predicted direction.
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4.4 Network Architecture

Here, we describe the actual implementation of the network fθ to efficiently
handle the layout. We first embed the elements of the sampled intermediate
layout xt and then use a Transformer to predict the conditional vector field as
depicted in Fig. 2. First, we separately embed the geometrical information gk

t

and the element type ãkt using a linear layer. A conditioning mask is embedded
and added to the geometrical and type embedding to inform the network about
which parts of the input act as a condition. The example in Fig. 2 illustrates this
for the type-conditioned case, where the network is informed through the masks
mtype and mpos that ãk is taken from x1 while only the geometrical information
gk
t was taken from the training trajectory. In a subsequent step, we concatenate

both embeddings and pass them through another linear layer to obtain a high-
dimensional embedding fkt representing an element of the intermediate layout xt.
Next, all element embeddings fkt are processed by a transformer encoder network
together with the temporal information t incorporated in each layer. Finally, the
output of the Transformer is projected back to the same dimension as the input
layout using a linear layer representing the vector field.

4.5 Conditioning Mechanism

As layout generation involves various tasks with different assumptions about
available knowledge, we employ a conditioning mechanism to perform these tasks
with just a single model. Similarly to [5,20,28], we mark the conditioning input
by including the information in the element embedding while distinguishing be-
tween the four different scenarios depicted in Fig. 4. During training, we simply
randomly sample each mask with the same probability. Alternatively, it is also
possible to only train an unconditional model and impose the conditions during
sampling through a guidance strategy, similar to [22, 48]. However, we empiri-
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cally found that including conditioning during training works better. For a more
detailed analysis, we refer to the supplementary material.

5 Experiments

To compare LayoutFlow with other methods, we first perform a series of exper-
iments on various layout generation tasks. In addition, we conduct an ablation
study on our proposed method.

5.1 Experimental Settings

Datasets. We evaluate the performance of our network on the RICO [9] and
PubLayNet [49] datasets, following previous methods. RICO consists of over
66k User Interface (UI) layouts with 25 element categories, while PubLayNet
comprises over 360k document layouts annotated with 5 different element types.
We train our network using the dataset split described in [23,48], which discards
layouts containing more than 20 elements.

Implementation Details. Similar to LayoutDM and DLT, we employ a 4-
layer Transformer network with 8 attention heads and a model dimension of 512
for a fair comparison. The model is trained using the AdamW optimizer with a
learning rate of 0.0005. In addition to the MSE Flow Matching loss, we regularize
the training by calculating the L1 loss between the geometrical information as
described in Eq. (6) with λ = 0.2. For inference, we obtain the flow using a
NeuralODE solver [6] for 100 steps with the Euler method.

Evaluation Metrics. Following previous work [4, 5, 28, 48], we evaluate
our method as well as comparable approaches using Frechet Inception Distance
(FID) [16], Maximum Intersection over Union (mIoU) [25], Alignment [27], and
Overlap [29]. FID and mIoU inherently evaluate both fidelity and diversity [17]
of the generated results. For the FID calculation, we use the same network
with identical weights as LayoutDiffusion [48] to measure the similarity between
the generated layouts and the original dataset based on the feature space. The
mIoU metric compares sets of layouts and measures their similarity by opti-
mally matching generated and real layouts that maximize the average IoU. On
the other hand, Alignment and Overlap capture the fidelity property. Nonethe-
less, both metrics should be judged with respect to a reference dataset, where
the best outputs lead to similar values.

Comparison with Existing Approaches. To validate the performance of
our proposed method, we compare it to state-of-the-art techniques. Since there
is no standard way of splitting the datasets, we need to retrain the models that
do not follow the dataset split used in LayoutDiffusion [48] for a fair compari-
son. This fact limits us to only compare to methods that have made their code
publicly available. Therefore, we compare our method against the two discrete
diffusion models LayoutDM [4] and LayoutDiffusion [48] as well as the discrete-
continuous diffusion model DLT [28]. Where applicable, we additionally compare
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Table 1: Quantitative results for various layout generation tasks on the
RICO and PubLayNet datasets. The two best results are highlighted in bold and
underlined. The → symbol indicates best results are the ones closest to the validation
data. Models marked with * have been retrained.

RICO PubLayNet
Task Model FID↓ Ali→ Ove→ mIoU↑ FID↓ Ali→ Ove→ mIoU↑

Un-Gen

LayoutTransformer 24.32 0.037 0.542 0.587 30.05 0.067 0.005 0.359
LayoutFormer++ 20.20 0.051 0.546 0.634 47.08 0.228 0.001 0.401

LayoutDM* 4.43 0.143 0.584 0.582 36.85 0.180 0.132 0.382
DLT* 13.02 0.271 0.571 0.566 12.70 0.117 0.036 0.431
LayoutDiffusion 2.49 0.069 0.502 0.620 8.63 0.065 0.003 0.417
LayoutFlow (ours) 2.37 0.150 0.498 0.570 8.87 0.057 0.009 0.424

Gen-Type

NDN-none 13.76 0.560 0.550 0.350 35.67 0.350 0.170 0.310
LayoutFormer++ 2.48 0.124 0.537 0.377 10.15 0.025 0.009 0.333

LayoutDM* 2.39 0.222 0.598 0.341 39.12 0.267 0.139 0.348
DLT* 6.64 0.303 0.616 0.326 7.09 0.097 0.040 0.349
LayoutDiffusion 1.56 0.124 0.491 0.345 3.73 0.029 0.005 0.343
LayoutFlow (ours) 1.48 0.176 0.517 0.322 3.66 0.037 0.011 0.350

Gen-TypeSize
LayoutDM* 1.76 0.175 0.606 0.424 29.91 0.246 0.160 0.436
DLT* 6.27 0.332 0.609 0.424 5.35 0.130 0.053 0.426
LayoutFlow (ours) 1.03 0.283 0.523 0.470 1.26 0.041 0.031 0.454

Validation Data 2.10 0.093 0.466 0.658 8.10 0.022 0.003 0.434

LayoutFlow to the non-diffusion-based models LayoutTransformer [14], Layout-
Former++ [23], NDN-none [27] and RUITE [38].

Tasks. We test LayoutFlow and existing approaches on various common
unconditional and conditional layout generation tasks. Un-Gen describes the
layout generation task without any constraints. For the conditional scenario, we
consider Gen-Type as assuming the element types as given, while Gen-TypeSize
assumes element types and sizes are known. Lastly, we consider the Completion
task, which takes in a partial layout that is missing up to 20% of its elements,
and the Refinement task following [48] with a standard deviation of 0.01.

5.2 Evaluation

Quantitative Evaluation. In Tab. 1, we report the results of our experiments
comparing LayoutFlow with existing approaches for different layout generation
tasks. In terms of FID, our model outperforms state-of-the-art methods across
all three tasks, except for a close second place on the PubLayNet Un-Gen task,
proving its strong capabilities to model the underlying sample distribution. In
particular, the FID score of 2.37 produced by LayoutFlow on the unconditional
generation for RICO almost matches the score obtained when comparing the
validation with the test dataset. Note that for the conditional tasks, the FID
score can become even lower than the validation dataset since the generated
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Table 2: Quantitative results for the completion and refinement tasks on
the RICO and PubLayNet datasets. The two best results are highlighted in bold
and underlined. Models marked with * have been retrained.

RICO PubLayNet
Task Model FID↓ Ali→ Ove→ mIoU↑ FID↓ Ali→ Ove→ mIoU↑

Completion LayoutDM* 6.80 0.054 0.630 0.678 25.02 0.169 0.107 0.678
LayoutFlow (ours) 1.51 0.150 0.474 0.741 1.10 0.054 0.127 0.746

Refinement

RUITE 7.93 0.177 0.492 0.658 7.89 0.073 0.038 0.637
LayoutFormer++ 3.67 0.141 0.503 0.656 2.94 0.042 0.013 0.642

LayoutDM* 2.91 0.143 0.575 0.437 48.61 0.286 0.173 0.372
LayoutDiffusion 0.55 0.102 0.469 0.719 2.05 0.035 0.008 0.660
LayoutFlow (ours) 0.77 0.152 0.455 0.700 0.18 0.020 0.005 0.723

Validation Data 2.10 0.093 0.466 0.658 8.10 0.022 0.003 0.434

images share more similarities through conditioning. Regarding the geometrical
metrics Alignment, Overlap, and mIoU, our method consistently outperforms
LayoutDM and DLT while usually producing values close to LayoutDiffusion, a
significantly larger model with 85M parameters compared to around 15M used
by LayoutFlow. A comparison between the quality and the sampling speed is
illustrated in Fig. 5, clearly showing that our method closes the gap between
inference speed and performance. While non-diffusion models outperform dif-
fusion models on some geometrical metrics, the drastically higher FID score
implies that the generated results lack diversity.

On the completion task, shown in Tab. 2, LayoutFlow is able to clearly out-
perform LayoutDM, the only diffusion model that can handle that task, except
for falling behind on Alignment for RICO. On the refinement task, LayoutFlow
significantly improves the noisy layouts on PubLayNet, while being the second-
best model for RICO, underlining its broad capabilities.

Qualitative Evaluation. We provide some qualitative examples in Fig. 6
for the unconditional Fig. 7 as well as for the conditional generation task on the
RICO dataset. More samples for the other tasks and PubLayNet can be found
in the supplementary material. Overall, LayoutFlow shows a strong performance
across all tasks, producing visually pleasing results that resemble real layouts.

Limitations. We discuss the limitations of our proposed methods in the
supplementary material.

5.3 Ablation Study

In order to justify our design choices, we perform an ablation study on uncon-
ditional layout generation using the RICO dataset.

Diffusion vs. Flow. We show that employing Flow Matching as the gener-
ative model is essential by also training the model used for LayoutFlow and only
substituting Flow Matching with diffusion. We test two methods for sampling
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from the diffusion-based model, i.e., DDPM and DDIM. As shown in Tab. 3, nei-
ther approach is able to reach the same performance as LayoutFlow, and both
seem to be particularly lacking in terms of Overlap. Interestingly, DDIM out-
performs DDPM by a large margin, which might be related to DDIM sampling
based on an ODE instead of an SDE.

Regularization Loss. We validate the efficacy of our regularization loss
proposed in Eq. (6) and the choice of λ in Tab. 4. It can be clearly observed
that a stronger regularization using the L1-loss provides better alignment but
increases the FID. Therefore, we considered the trade-off across all metrics and
chose λ = 0.2 for LayoutFlow.

Initial Distribution. Since flow-based models allow for arbitrary initial
distributions, we explore two alternatives. First, we try a uniform distribution
to ensure all initial samples are placed on the canvas. In addition, as Analog
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Table 3: Ablation study on the
choice of training approaches using
the same architecture

Approach FID↓ Ali→ Ove→ mIoU↑

Diff.(DDPM) 34.89 0.128 0.335 0.116
Diff.(DDIM) 3.18 0.181 0.561 0.548
Flow 2.37 0.150 0.498 0.570

Table 4: Ablation study on differ-
ent loss functions

Loss FID↓ Ali→ Ove→ mIoU↑

LCFM 2.27 0.194 0.507 0.570
LCFM + 0.1L1 2.20 0.155 0.495 0.559
LCFM + 0.2L1 2.37 0.150 0.498 0.570
LCFM + 0.3L1 2.40 0.144 0.498 0.581
LCFM + 0.4L1 2.60 0.134 0.498 0.579
L1-loss only 26.64 0.159 0.625 0.586

Table 5: Ablation study on differ-
ent initial distributions

Distribution FID↓ Ali→ Ove→ mIoU↑

Gaussian 2.37 0.150 0.498 0.570
Uniform 2.61 0.115 0.481 0.584
Mixture 2.52 0.160 0.494 0.562

Table 6: Ablation study on differ-
ent training trajectories

Trajectory FID↓ Ali→ Ove→ mIoU↑

Linear 2.37 0.150 0.498 0.570
Sine/Cosine 2.33 0.172 0.533 0.557
Sine 2.48 0.152 0.480 0.565

Bits have a smaller sample space, we tested using a Gaussian for the geometrical
elements and a uniform distribution for the Analog Bits. Altogether, the results
in Tab. 5 indicate that a Gaussian initial distribution provides the best overall
performance measured by the FID score, whereas a uniform distribution provides
stronger results in terms of geometrical metrics, such as Alignment and Overlap.

Training Trajectories. As long as the conditional vector field fulfills the
criteria presented in Sec. 3, it can be freely chosen for training. In addition to
the linear training trajectory proposed in [32,44], we also explore the sine/cosine
interpolation introduced in [1] and a sine-based interpolation, as shown in Tab. 6.
The choice of training trajectories only slightly affects the performance.

6 Conclusion

In this paper, we explored the application of Flow Matching for layout genera-
tion and, as a result, proposed LayoutFlow, a flow-based model that is able to
handle various layout generation tasks. Our model is able to significantly speed
up inference compared to other diffusion-based models while providing state-
of-the-art performance. Even though we tested a diverse set of design options,
there still remains room for further exploration into applying Flow Matching to
layout generation, for example, different training trajectories, conditioning meth-
ods, or initial distributions. Furthermore, LayoutFlow might also be extended
to generate layouts considering the content in the elements, similar to related
work [19, 46]. Overall, we demonstrate that Flow Matching provides a highly
flexible and powerful tool for layout generation that offers a natural geometrical
interpretation.
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