Supplementary Material: R3D-AD: Reconstruction via Diffusion for 3D Anomaly Detection

Zheyuan Zhou¹*, Le Wang¹*, Naiyu Fang^{1,2}, Zili Wang¹, Lemiao Qiu¹(⊠), and Shuyou Zhang¹

 ¹ State Key Laboratory of Fluid Power & Mechatronic System, Zhejiang University, Hangzhou, China
 ² S-Lab, Nanyang Technological University, Singapore, Singapore

https://zhouzheyuan.github.io/r3d-ad

A Appendix

A.1 Additional implement details

Patch-Gen pseudocode We formulate the process of the proposed 3D anomaly simulation strategy Patch-Gen in Algorithm 1. The procedure begins by taking an initial point cloud \mathcal{P} as input and aims to produce an augmented point cloud \mathcal{P}_a that reflects the addition of anomaly. The rotation matrix \mathcal{R} is obtained by applying arbitrary rotation angles to all the rotation axes. The translation matrix \mathcal{T} is sampled from a Gaussian distribution, and after normalization and scaling, it dictates the displacement of the nearest points towards the viewpoint, while the rest of the point cloud remains unchanged.

Algorithm 1 Patch-Gen	
Input: \mathcal{P} : input point cloud	
N: number of points to select	
S: scaling factor for transformation	
Output: P_a : augmented point cloud	
$\mathcal{R} \leftarrow \text{random rotation matrix}$	$\triangleright \mathbb{R}^{3 \times 3}$
$\mathcal{P}_a = \mathcal{P} \cdot \mathcal{R}$	\triangleright apply rotation
$\mathcal{P}_v \leftarrow \text{random viewpoint}$	$\triangleright \mathbb{R}^{1 \times 3}$
$\mathcal{P}_n = NN(\mathcal{P}_a, \mathcal{P}_v, N) \qquad \triangleright \text{ select } N$	nearest neighbor points to the viewpoint
$\mathcal{T} \leftarrow \text{random translation matrix}$	$\triangleright \mathbb{R}^{N imes 3}$
$\mathcal{P}_n = \mathcal{P}_n + S \cdot \textit{normalize}(\mathcal{P}_n - \mathcal{P}_v) \odot \mathcal{T}$	\triangleright update selected points only

^{*} Equal contribution.

2 Z. Zhou et al.

R3D-AD pseudocode To further clarify the overall architecture of the proposed network R3D-AD, we provide the training and testing iteration procedures more compactly in Algorithm 2 and Algorithm 3, respectively.

During **training**, anomalies are simulated by Patch-Gen, and noise is artificially added following a Gaussian distribution. The model predicts this noise and calculates a displacement to correct for it. The reconstruction loss is measured by comparing the original and corrected point clouds.

Algorithm 2 R3D-AD training iteration					
Input: \mathcal{P} : input point cloud					
Output: \mathcal{L} : reconstruction loss					
$\mathcal{P}^{'} \sim \operatorname{Uniform}(normalize(\mathcal{P}))$	\triangleright normalize and downsample the input point cloud				
$\mathcal{P}_{a}^{(0)} = Patch-Gen(\mathcal{P}')$	\triangleright 3D anomaly simulation strategy (Algorithm 1)				
$c = PointNet(\mathcal{P}_a^{(0)})$	\triangleright feature extraction				
$\mathcal{P}_a^{(0)} \sim q(\mathcal{P}_a^{(0)})$	\triangleright point distribution				
$t \sim \text{Uniform}(\{1, \dots, T\})$	\triangleright step distribution				
$oldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$	\triangleright noise distribution				
$oldsymbol{\mu} = oldsymbol{\epsilon}_ heta (\sqrt{ar{lpha}_t} \mathcal{P}_a^{(0)} + \sqrt{1 - ar{lpha}_t}oldsymbol{\epsilon}, oldsymbol{c}, oldsymbol{e})$	t) \triangleright noise prediction				
$\Delta = \frac{1}{\sqrt{\bar{\alpha}_t}} \left(\sqrt{\bar{\alpha}_t} \mathcal{P}_a^{(0)} + \sqrt{1 - \bar{\alpha}_t} \right) \left(\epsilon \right)$	$(\mathbf{z} - \boldsymbol{\mu}) \end{pmatrix} \qquad \triangleright \text{ displacement prediction}$				
$\mathcal{L} = \left\ \mathcal{P}^{'} - (\mathcal{P}_{a}^{(0)} + \varDelta) ight\ ^{2}$	\triangleright relative reconstruction loss				

During **testing**, noise is progressively removed from a simulated noisy version of the cloud, aiming to reconstruct its anomaly-free outfits. The anomaly score is assessed by comparing the clusters after KNN of the original and reconstructed point clouds.

Algorithm 3 R3D-AD testing	g iteration
Input: \mathcal{P} : input point cloud	
Output: \mathcal{A} : anomaly score	
$\mathcal{P}' \sim \text{Uniform}(normalize(\mathcal{P}))$	\triangleright normalize and downsample the input point cloud
$c = PointNet(\mathcal{P}')$	\triangleright feature extraction
$\Delta^{(T)} \sim \mathcal{N}(0, \mathbf{I})$	
for $t = T, \ldots, 1$ do	
$\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} =$	= 0
$\Delta^{(t-1)} = \frac{1}{\sqrt{\alpha_t}} \left(\Delta^{(t)} - \frac{1-\alpha_t}{\sqrt{1-\alpha_t}} \right)$	$\epsilon \epsilon_{oldsymbol{ heta}}(\Delta^{(t)},oldsymbol{c},t)) + \sigma_t \mathbf{z}$
end for	
$\widehat{\mathcal{P}} = \mathcal{P}^{'} + \Delta^{(0)}$	\triangleright reconstructed point cloud
$\widehat{cluster} = KNN(\widehat{\mathcal{P}}, k)$	\triangleright reconstructed point-cluster
$\mathit{cluster} = \mathit{KNN}(\mathcal{P}^{'},k)$	\triangleright input point-cluster
$\mathcal{A} = \left\ cluster - \widehat{cluster} ight\ ^2$	\triangleright euclidean distance for point-cluster

3

Fig. 1: t-SNE visualization on Real3D-AD.

Anomaly type	Bulge	Sink	Oracle
Airplane	1.31	1.35	1.58
Candybar	2.43	2.30	2.54
Car	1.15	1.23	1.37
Chicken	3.50	2.92	4.02
Diamond	0.84	0.83	0.97
Duck	1.53	1.29	1.67
Fish	1.42	1.45	1.57
Gemstone	2.58	5.23	5.26
Seahorse	2.37	2.35	2.45
Shell	1.30	1.29	1.40
Starfish	2.47	2.46	2.64
Toffees	1.73	1.71	1.79

Table 1: PSNR of generated anomalous with Patch-Gen on Real3D-AD.

A.2 Additional experiments

Quality of the generated anomalies The proposed 3D anomaly simulation strategy Patch-Gen is designed to address the problem of the lack of 3D anomalous samples in the training phase.

T-distributed Stochastic Neighbor Embedding (t-SNE) [7] is particularly effective at visualizing high-dimensional samples by giving each data point a corresponding location in a low-dimensional map, allowing complex data to be understood at a glance. We follow [4] and use the t-SNE to validate the quality and effectiveness of our generated anomaly samples. As shown in Fig 1, the generated anomalies are clearly distinguished from normal samples and overlap with real anomalous samples, which strengthens our model to reconstruct well on unseen anomalies.

Peak Signal-to-Noise Ratio (PSNR) is an engineering term that quantifies the quality of the reconstruction of a signal. PSNR is typically measured in decibels (dB) and calculated based on the mean squared error between the origin and the reconstruction. The higher the PSNR value, the better the quality of the reconstruction. In Table 1, the PSNR is computed by comparing the generated

4 Z. Zhou et al.

Training Dataset	Category	Testing Dataset	Category	I-AUROC	CD	Oracle
Real3D-AD Real3D-AD	Airplane Car	ShapeNetCore.v2 ShapeNetCore.v2	Airplane Car		$\begin{array}{c} 0.032\\ 0.077 \end{array}$	$\left \begin{array}{c} 0.001 \\ 0.004 \end{array} \right $
ShapeNetCore.v2 ShapeNetCore.v2	Airplane Car	Real3D-AD Real3D-AD	Airplane Car	$0.614 \\ 0.601$	- -	$\left \begin{array}{c} 0.772 \\ 0.713 \end{array} \right $
Anomaly-ShapeNet	{bowl03}	Anomaly-ShapeNet	bowl4	0.715	-	0.744

 Table 2: Generalization capability of R3D-AD for unseen data.

samples with real anomalies. We randomly select two normal samples to calculate their PSNR, and we average the PSNR obtained from multiple times of randomization to obtain the upper bound of the PSNR limit for each category. The Oracle PSNR servers are a reference to the generation quality.

Generalization on unseen data To assess the robustness and generalization capabilities of our proposed model, we conduct a series of experiments on different categories from diverse datasets, as outlined in Table 2. The oracle result represents the performance ceiling of our model, which is obtained by training on the category that is identical to the testing.

For known categories, we focus on the well-regarded ShapeNetCore.v2 dataset [2], which includes categories such as Airplanes and Cars, also featured in the Real3D-AD dataset [6]. It's pertinent to note that ShapeNetCore.v2 is not an anomaly detection dataset; it does not encompass anomalous samples. Therefore, for the first and second rows in Table 2, the AUROC metric cannot be utilized in this context. Instead, we resort to evaluating the generalization performance of models trained on Real3D-AD of the same category on ShapeNetCore.v2 using the Chamfer Distance (CD) metric. The marked decline in performance observed upon transitioning from ShapeNetCore.v2 to Real3D-AD, and vice versa, illuminates the hurdles presented by inconsistencies between datasets. This highlights the importance of our reconstruction approach, which effectively learns inductive biases, allowing for better generalization across different data distributions.

For **unknown categories**, we utilize the Anomaly-ShapeNet dataset [5], as shown in the last row of Table. 2. The model was trained on a subset of Bowl and tested a category it had never encountered during training. Remarkably, despite this lack of prior exposure, our model achieves an impressive score of 0.715 imagelevel AUROC. This performance surpassed all other methods trained and tested exclusively on "bowl4", thus demonstrating the superior generalization capability of our method.

These results not only validate the effectiveness of our approach in handling both known and unknown categories but also underscore its potential for realworld applications where data diversity and unseen scenarios are commonplace.

Method	BT	F [3]	M3DM [9]	Pate	hCore [8]	CPMF [1]	Reg3D-AD [6]	IMRNet [5]	Ours
Feat.	Raw	FPFH	PointMAE	FPFH	PointMAE	ResNet	PointMAE	PointMAE	Raw
ashtray0	0.578	0.420	0.577	0.587	0.591	0.353	0.597	0.671	0.833
bag0	0.410	0.546	0.537	0.571	0.601	0.643	0.706	0.660	0.720
bottle0	0.597	0.344	0.574	0.604	0.513	0.520	0.486	0.552	0.733
bottle1	0.510	0.546	0.637	0.667	0.601	0.482	0.695	0.700	0.737
bottle3	0.568	0.322	0.541	0.572	0.650	0.405	0.525	0.640	0.781
bowl0	0.564	0.509	0.634	0.504	0.523	0.783	0.671	0.681	0.819
bowl1	0.264	0.668	0.663	0.639	0.629	0.639	0.525	0.702	0.778
bowl2	0.525	0.510	0.684	0.615	0.458	0.625	0.490	0.685	0.741
bowl3	0.385	0.490	0.617	0.537	0.579	0.658	0.348	0.599	0.767
bowl4	0.664	0.609	0.464	0.494	0.501	0.683	0.663	0.676	0.744
bowl5	0.417	0.699	0.409	0.558	0.593	0.685	0.593	0.710	0.656
bucket0	0.617	0.401	0.309	0.469	0.593	0.482	0.610	0.580	0.683
bucket1	0.321	0.633	0.501	0.551	0.561	0.601	0.752	0.771	0.756
cap0	0.668	0.618	0.557	0.580	0.589	0.601	0.693	0.737	0.822
cap3	0.527	0.522	0.423	0.453	0.476	0.551	0.725	0.775	0.730
cap4	0.468	0.520	0.777	0.757	0.727	0.553	0.643	0.652	0.681
cap5	0.373	0.586	0.639	0.790	0.538	0.697	0.467	0.652	0.670
cup0	0.403	0.586	0.539	0.600	0.610	0.497	0.510	0.643	0.776
cup1	0.521	0.610	0.556	0.586	0.556	0.499	0.538	0.757	0.757
eraser0	0.525	0.719	0.627	0.657	0.677	0.689	0.343	0.548	0.890
headset0	0.378	0.520	0.577	0.583	0.591	0.643	0.537	0.720	0.738
headset1	0.515	0.490	0.617	0.637	0.627	0.458	0.610	0.676	0.795
helmet0	0.553	0.571	0.526	0.546	0.556	0.555	0.600	0.597	0.757
helmet2	0.602	0.542	0.623	0.425	0.447	0.462	0.614	0.641	0.633
helmet3	0.526	0.444	0.374	0.404	0.424	0.520	0.367	0.573	0.707
helmet4	0.349	0.719	0.427	0.484	0.552	0.589	0.381	0.600	0.720
jar0	0.420	0.424	0.441	0.472	0.483	0.610	0.592	0.780	0.838
microphone0	0.563	0.671	0.357	0.388	0.488	0.509	0.414	0.755	0.762
shelf0	0.164	0.609	0.564	0.494	0.523	0.685	0.688	0.603	0.696
tap0	0.525	0.560	0.754	0.753	0.458	0.359	0.676	0.676	0.736
tap1	0.573	0.546	0.739	0.766	0.538	0.697	0.641	0.696	0.900
vase0	0.531	0.342	0.423	0.455	0.447	0.451	0.533	0.533	0.788
vase1	0.549	0.219	0.427	0.423	0.552	0.345	0.702	0.757	0.729
vase2	0.410	0.546	0.737	0.721	0.741	0.582	0.605	0.614	0.752
vase3	0.717	0.699	0.439	0.449	0.460	0.582	0.650	0.700	0.742
vase4	0.425	0.510	0.476	0.506	0.516	0.514	0.500	0.524	0.630
vase5	0.585	0.409	0.317	0.417	0.579	0.618	0.520	0.676	0.757
vase7	0.448	0.518	0.657	0.693	0.650	0.397	0.462	0.635	0.771
vase8	0.424	0.668	0.663	0.662	0.663	0.529	0.620	0.630	0.721
vase9	0.564	0.268	0.663	0.660	0.629	0.609	0.594	0.594	0.718
Average	0.493	0.528	0.552	0.568	0.562	0.559	0.572	0.659	0.749

 Table 3: Complete image-level anomaly detection AUROC on Anomaly-ShapeNet dataset. We highlight the best result in **bold**.

A.3 Additional main results

Anomaly-ShapeNet [5] contains a total of 40 categories. In the main text, due to the space limitation, we consider objects that belong to the same kind but with differing appearances to be in the same category (e.g., bottle0, bottle1, bottle3 are categorized as Bottle). Here, we provide the specific image-level AUROC as in Table 3.

(b) Visualization on Anomaly-ShapeNet dataset.

Fig. 2: Visualization on Real3D-AD dataset and Anomaly-ShapeNet dataset. The red region indicates the real abnormal area of the anomaly point cloud in the testing set, while the yellow region indicates the simulated abnormal area generated by Patch-Gen based on the normal point cloud in the training set.

A.4 Additional qualitative results

To further demonstrate and compare the effect of our proposed 3D anomaly simulation strategy Patch-Gen, we conduct additional qualitative analysis on the Real3D-AD dataset and the Anomaly-ShapeNet dataset.

The first row shows the anomaly samples in the testing split, where the second row shows the normal samples in the training split, and the third row shows the anomaly samples simulated by Patch-Gen. It can be seen from Fig. 2 that our method fully simulates the defects that vary in different classes, proving that our method can well compensate for the domain gap caused by using only positive samples for training in 3D anomaly detection.

References

- 1. Cao, Y., Xu, X., Shen, W.: Complementary pseudo multimodal feature for point cloud anomaly detection. arXiv preprint (2023)
- Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.: ShapeNet: An Information-Rich 3D Model Repository. arXiv preprint (2015)
- 3. Horwitz, E., Hoshen, Y.: Back to the feature: Classical 3d features are (almost) all you need for 3d anomaly detection. In: CVPRW (2023)
- 4. Li, C.L., Sohn, K., Yoon, J., Pfister, T.: Cutpaste: Self-supervised learning for anomaly detection and localization. In: CVPR (2021)
- Li, W., Xu, X., Gu, Y., Zheng, B., Gao, S., Wu, Y.: Towards scalable 3d anomaly detection and localization: A benchmark via 3d anomaly synthesis and a selfsupervised learning network. arXiv preprint (2023)
- Liu, J., Xie, G., Li, X., Wang, J., Liu, Y., Wang, C., Zheng, F., et al.: Real3d-ad: A dataset of point cloud anomaly detection. In: NeurIPS (2023)
- 7. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research (2008)
- 8. Roth, K., Pemula, L., Zepeda, J., Schölkopf, B., Brox, T., Gehler, P.: Towards total recall in industrial anomaly detection. In: CVPR (2022)
- 9. Wang, Y., Peng, J., Zhang, J., Yi, R., Wang, Y., Wang, C.: Multimodal industrial anomaly detection via hybrid fusion. In: CVPR (2023)