
Supplementary Material:
R3D-AD: Reconstruction via Diffusion for 3D

Anomaly Detection

Zheyuan Zhou1∗, Le Wang1∗, Naiyu Fang1,2,
Zili Wang1, Lemiao Qiu1(�), and Shuyou Zhang1

1 State Key Laboratory of Fluid Power & Mechatronic System,
Zhejiang University, Hangzhou, China

2 S-Lab, Nanyang Technological University, Singapore, Singapore

https://zhouzheyuan.github.io/r3d-ad

A Appendix

A.1 Additional implement details

Patch-Gen pseudocode We formulate the process of the proposed 3D anomaly
simulation strategy Patch-Gen in Algorithm 1. The procedure begins by taking
an initial point cloud P as input and aims to produce an augmented point cloud
Pa that reflects the addition of anomaly. The rotation matrix R is obtained
by applying arbitrary rotation angles to all the rotation axes. The translation
matrix T is sampled from a Gaussian distribution, and after normalization and
scaling, it dictates the displacement of the nearest points towards the viewpoint,
while the rest of the point cloud remains unchanged.

Algorithm 1 Patch-Gen
Input: P: input point cloud

N : number of points to select
S: scaling factor for transformation

Output: Pa: augmented point cloud
R← random rotation matrix ▷ R3×3

Pa = P · R ▷ apply rotation
Pv ← random viewpoint ▷ R1×3

Pn = NN(Pa,Pv, N) ▷ select N nearest neighbor points to the viewpoint
T ← random translation matrix ▷ RN×3

Pn = Pn + S · normalize(Pn − Pv)⊙ T ▷ update selected points only

∗ Equal contribution.

https://zhouzheyuan.github.io/r3d-ad
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R3D-AD pseudocode To further clarify the overall architecture of the pro-
posed network R3D-AD, we provide the training and testing iteration procedures
more compactly in Algorithm 2 and Algorithm 3, respectively.

During training, anomalies are simulated by Patch-Gen, and noise is artifi-
cially added following a Gaussian distribution. The model predicts this noise and
calculates a displacement to correct for it. The reconstruction loss is measured
by comparing the original and corrected point clouds.

Algorithm 2 R3D-AD training iteration
Input: P: input point cloud
Output: L: reconstruction loss
P

′
∼ Uniform(normalize(P)) ▷ normalize and downsample the input point cloud

P(0)
a = Patch-Gen(P

′
) ▷ 3D anomaly simulation strategy (Algorithm 1)

c = PointNet(P(0)
a ) ▷ feature extraction

P(0)
a ∼ q(P(0)

a ) ▷ point distribution
t ∼ Uniform({1, . . . , T}) ▷ step distribution
ϵ ∼ N (0, I) ▷ noise distribution
µ = ϵθ(

√
ᾱtP(0)

a +
√
1− ᾱtϵ, c, t) ▷ noise prediction

∆ = 1√
ᾱt

(√
ᾱtP(0)

a +
√
1− ᾱt(ϵ− µ)

)
▷ displacement prediction

L =
∥∥∥P ′
− (P(0)

a +∆)
∥∥∥2

▷ relative reconstruction loss

During testing, noise is progressively removed from a simulated noisy version
of the cloud, aiming to reconstruct its anomaly-free outfits. The anomaly score is
assessed by comparing the clusters after KNN of the original and reconstructed
point clouds.

Algorithm 3 R3D-AD testing iteration
Input: P: input point cloud
Output: A: anomaly score
P

′
∼ Uniform(normalize(P)) ▷ normalize and downsample the input point cloud

c = PointNet(P
′
) ▷ feature extraction

∆(T ) ∼ N (0, I)
for t = T, . . . , 1 do

z ∼ N (0, I) if t > 1, else z = 0
∆(t−1) = 1√

αt
(∆(t) − 1−αt√

1−αt
ϵθ(∆

(t), c, t)) + σtz

end for
P̂ = P

′
+∆(0) ▷ reconstructed point cloud

̂cluster = KNN(P̂, k) ▷ reconstructed point-cluster
cluster = KNN(P

′
, k) ▷ input point-cluster

A =
∥∥∥cluster − ̂cluster

∥∥∥2

▷ euclidean distance for point-cluster
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Fig. 1: t-SNE visualization on Real3D-AD.

Anomaly type Bulge Sink Oracle

Airplane 1.31 1.35 1.58
Candybar 2.43 2.30 2.54
Car 1.15 1.23 1.37
Chicken 3.50 2.92 4.02
Diamond 0.84 0.83 0.97
Duck 1.53 1.29 1.67
Fish 1.42 1.45 1.57
Gemstone 2.58 5.23 5.26
Seahorse 2.37 2.35 2.45
Shell 1.30 1.29 1.40
Starfish 2.47 2.46 2.64
Toffees 1.73 1.71 1.79

Table 1: PSNR of generated anomalous with Patch-Gen on Real3D-AD.

A.2 Additional experiments

Quality of the generated anomalies The proposed 3D anomaly simulation
strategy Patch-Gen is designed to address the problem of the lack of 3D anoma-
lous samples in the training phase.

T-distributed Stochastic Neighbor Embedding (t-SNE) [7] is particularly ef-
fective at visualizing high-dimensional samples by giving each data point a cor-
responding location in a low-dimensional map, allowing complex data to be
understood at a glance. We follow [4] and use the t-SNE to validate the qual-
ity and effectiveness of our generated anomaly samples. As shown in Fig 1, the
generated anomalies are clearly distinguished from normal samples and overlap
with real anomalous samples, which strengthens our model to reconstruct well
on unseen anomalies.

Peak Signal-to-Noise Ratio (PSNR) is an engineering term that quantifies the
quality of the reconstruction of a signal. PSNR is typically measured in decibels
(dB) and calculated based on the mean squared error between the origin and
the reconstruction. The higher the PSNR value, the better the quality of the
reconstruction. In Table 1, the PSNR is computed by comparing the generated
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Training Testing I-AUROC CD OracleDataset Category Dataset Category

Real3D-AD Airplane ShapeNetCore.v2 Airplane - 0.032 0.001
Real3D-AD Car ShapeNetCore.v2 Car - 0.077 0.004

ShapeNetCore.v2 Airplane Real3D-AD Airplane 0.614 - 0.772
ShapeNetCore.v2 Car Real3D-AD Car 0.601 - 0.713

Anomaly-ShapeNet {bowl0..3} Anomaly-ShapeNet bowl4 0.715 - 0.744
Table 2: Generalization capability of R3D-AD for unseen data.

samples with real anomalies. We randomly select two normal samples to cal-
culate their PSNR, and we average the PSNR obtained from multiple times of
randomization to obtain the upper bound of the PSNR limit for each category.
The Oracle PSNR servers are a reference to the generation quality.

Generalization on unseen data To assess the robustness and generalization
capabilities of our proposed model, we conduct a series of experiments on dif-
ferent categories from diverse datasets, as outlined in Table 2. The oracle result
represents the performance ceiling of our model, which is obtained by training
on the category that is identical to the testing.

For known categories, we focus on the well-regarded ShapeNetCore.v2
dataset [2], which includes categories such as Airplanes and Cars, also featured
in the Real3D-AD dataset [6]. It’s pertinent to note that ShapeNetCore.v2 is
not an anomaly detection dataset; it does not encompass anomalous samples.
Therefore, for the first and second rows in Table 2, the AUROC metric cannot
be utilized in this context. Instead, we resort to evaluating the generalization
performance of models trained on Real3D-AD of the same category on ShapeNet-
Core.v2 using the Chamfer Distance (CD) metric. The marked decline in perfor-
mance observed upon transitioning from ShapeNetCore.v2 to Real3D-AD, and
vice versa, illuminates the hurdles presented by inconsistencies between datasets.
This highlights the importance of our reconstruction approach, which effectively
learns inductive biases, allowing for better generalization across different data
distributions.

For unknown categories, we utilize the Anomaly-ShapeNet dataset [5], as
shown in the last row of Table. 2. The model was trained on a subset of Bowl and
tested a category it had never encountered during training. Remarkably, despite
this lack of prior exposure, our model achieves an impressive score of 0.715 image-
level AUROC. This performance surpassed all other methods trained and tested
exclusively on “bowl4”, thus demonstrating the superior generalization capability
of our method.

These results not only validate the effectiveness of our approach in handling
both known and unknown categories but also underscore its potential for real-
world applications where data diversity and unseen scenarios are commonplace.
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Method BTF [3] M3DM [9] PatchCore [8] CPMF [1] Reg3D-AD [6] IMRNet [5] Ours

Feat. Raw FPFH PointMAE FPFH PointMAE ResNet PointMAE PointMAE Raw

ashtray0 0.578 0.420 0.577 0.587 0.591 0.353 0.597 0.671 0.833
bag0 0.410 0.546 0.537 0.571 0.601 0.643 0.706 0.660 0.720
bottle0 0.597 0.344 0.574 0.604 0.513 0.520 0.486 0.552 0.733
bottle1 0.510 0.546 0.637 0.667 0.601 0.482 0.695 0.700 0.737
bottle3 0.568 0.322 0.541 0.572 0.650 0.405 0.525 0.640 0.781
bowl0 0.564 0.509 0.634 0.504 0.523 0.783 0.671 0.681 0.819
bowl1 0.264 0.668 0.663 0.639 0.629 0.639 0.525 0.702 0.778
bowl2 0.525 0.510 0.684 0.615 0.458 0.625 0.490 0.685 0.741
bowl3 0.385 0.490 0.617 0.537 0.579 0.658 0.348 0.599 0.767
bowl4 0.664 0.609 0.464 0.494 0.501 0.683 0.663 0.676 0.744
bowl5 0.417 0.699 0.409 0.558 0.593 0.685 0.593 0.710 0.656
bucket0 0.617 0.401 0.309 0.469 0.593 0.482 0.610 0.580 0.683
bucket1 0.321 0.633 0.501 0.551 0.561 0.601 0.752 0.771 0.756
cap0 0.668 0.618 0.557 0.580 0.589 0.601 0.693 0.737 0.822
cap3 0.527 0.522 0.423 0.453 0.476 0.551 0.725 0.775 0.730
cap4 0.468 0.520 0.777 0.757 0.727 0.553 0.643 0.652 0.681
cap5 0.373 0.586 0.639 0.790 0.538 0.697 0.467 0.652 0.670
cup0 0.403 0.586 0.539 0.600 0.610 0.497 0.510 0.643 0.776
cup1 0.521 0.610 0.556 0.586 0.556 0.499 0.538 0.757 0.757
eraser0 0.525 0.719 0.627 0.657 0.677 0.689 0.343 0.548 0.890
headset0 0.378 0.520 0.577 0.583 0.591 0.643 0.537 0.720 0.738
headset1 0.515 0.490 0.617 0.637 0.627 0.458 0.610 0.676 0.795
helmet0 0.553 0.571 0.526 0.546 0.556 0.555 0.600 0.597 0.757
helmet2 0.602 0.542 0.623 0.425 0.447 0.462 0.614 0.641 0.633
helmet3 0.526 0.444 0.374 0.404 0.424 0.520 0.367 0.573 0.707
helmet4 0.349 0.719 0.427 0.484 0.552 0.589 0.381 0.600 0.720
jar0 0.420 0.424 0.441 0.472 0.483 0.610 0.592 0.780 0.838
microphone0 0.563 0.671 0.357 0.388 0.488 0.509 0.414 0.755 0.762
shelf0 0.164 0.609 0.564 0.494 0.523 0.685 0.688 0.603 0.696
tap0 0.525 0.560 0.754 0.753 0.458 0.359 0.676 0.676 0.736
tap1 0.573 0.546 0.739 0.766 0.538 0.697 0.641 0.696 0.900
vase0 0.531 0.342 0.423 0.455 0.447 0.451 0.533 0.533 0.788
vase1 0.549 0.219 0.427 0.423 0.552 0.345 0.702 0.757 0.729
vase2 0.410 0.546 0.737 0.721 0.741 0.582 0.605 0.614 0.752
vase3 0.717 0.699 0.439 0.449 0.460 0.582 0.650 0.700 0.742
vase4 0.425 0.510 0.476 0.506 0.516 0.514 0.500 0.524 0.630
vase5 0.585 0.409 0.317 0.417 0.579 0.618 0.520 0.676 0.757
vase7 0.448 0.518 0.657 0.693 0.650 0.397 0.462 0.635 0.771
vase8 0.424 0.668 0.663 0.662 0.663 0.529 0.620 0.630 0.721
vase9 0.564 0.268 0.663 0.660 0.629 0.609 0.594 0.594 0.718

Average 0.493 0.528 0.552 0.568 0.562 0.559 0.572 0.659 0.749

Table 3: Complete image-level anomaly detection AUROC on Anomaly-ShapeNet
dataset. We highlight the best result in bold.

A.3 Additional main results

Anomaly-ShapeNet [5] contains a total of 40 categories. In the main text, due to
the space limitation, we consider objects that belong to the same kind but with
differing appearances to be in the same category (e.g., bottle0, bottle1, bottle3
are categorized as Bottle). Here, we provide the specific image-level AUROC as
in Table 3.
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Fig. 2: Visualization on Real3D-AD dataset and Anomaly-ShapeNet dataset. The red
region indicates the real abnormal area of the anomaly point cloud in the testing set,
while the yellow region indicates the simulated abnormal area generated by Patch-Gen
based on the normal point cloud in the training set.

A.4 Additional qualitative results

To further demonstrate and compare the effect of our proposed 3D anomaly
simulation strategy Patch-Gen, we conduct additional qualitative analysis on
the Real3D-AD dataset and the Anomaly-ShapeNet dataset.

The first row shows the anomaly samples in the testing split, where the
second row shows the normal samples in the training split, and the third row
shows the anomaly samples simulated by Patch-Gen. It can be seen from Fig. 2
that our method fully simulates the defects that vary in different classes, proving
that our method can well compensate for the domain gap caused by using only
positive samples for training in 3D anomaly detection.
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